具有补偿区的半导体器件的制作方法

文档序号:7046414阅读:122来源:国知局
具有补偿区的半导体器件的制作方法
【专利摘要】本发明公开了具有补偿区的半导体器件。一种半导体器件包括:半导体基体,所述半导体基体包括内区和边缘区;在所述内区和边缘区中并且耦合到第一端子的第一掺杂类型的第一掺杂器件区;以及在所述内区中并耦合到第二端子的与所述第一掺杂类型互补的第二掺杂类型的至少一个第二掺杂器件区。此外,所述半导体器件包括所述边缘区中的少数载流子转换器结构。所述少数载流子转换器结构包括:与第一掺杂器件区邻接的第二掺杂类型的第一阱区,以及将所述第一阱区电耦合到第一掺杂器件区的导体。
【专利说明】具有补偿区的半导体器件

【技术领域】
[0001] 本发明的实施例涉及具有边缘终止的半导体器件,具体而言,涉及垂直功率半导 体器件。

【背景技术】
[0002] 诸如功率二极管或功率M0SFET的功率半导体器件设计用来承受高阻断电压。那 些功率器件包括在P型掺杂半导体区和η型掺杂半导体区之间形成的pn结。当pn结反向 偏置时,该组件阻断(被关闭)。在这种情况下,耗尽区(也被称为空间电荷区)在P型掺杂 和η型掺杂区中传播。通常,这些半导体区中的一个区是比这些半导体区中的另一个区更 轻度掺杂的,从而使得耗尽区主要在更轻度掺杂的区中延伸,其主要支持跨pn结施加的电 压。支持阻断电压的半导体区在二极管中被称为基极区,而在M0SFET中被称为漂移区。
[0003] pn结支持高电压的能力受限于雪崩击穿现象。随着跨pn结施加的电压增加,形 成pn结的那些半导体区中的电场增加。电场导致半导体区中存在的移动电荷载流子的加 速。当由于电场导致电荷载流子加速,使得它们通过碰撞电离产生电子-空穴对时,雪崩击 穿发生。由碰撞电离产生的电荷载流子产生新的电荷载流子,从而存在倍增效应。在雪崩击 穿开始时,极大的电流在相反方向上流过pn结。雪崩击穿发生时的电压被称为击穿电压。
[0004] 雪崩击穿发生时的电场被称为临界电场(Erait)。临界电场的绝对值主要取决于用 于形成pn结的半导体材料的类型,并且弱依赖于较轻度掺杂的半导体区的掺杂浓度。
[0005] 临界电场是针对在与电场的场强矢量垂直的方向上具有无限尺寸的半导体区定 义的理论值。然而,功率半导体组件具有在横向方向上终止于边缘表面的有限尺寸的半导 体基体。在垂直功率半导体器件中, pn结通常不会延伸到半导体基体的边缘表面,而是在 横向方向上远离半导体基体的边缘表面,所述垂直功率半导体器件是pn结主要在半导体 基体的水平面中延伸的半导体器件。在这种情况下,在横向方向上邻接pn结的半导体基体 的半导体区(边缘区)也必须承受阻断电压。
[0006] 在所谓的超结器件中,pn结具有相对大的面积。这些器件包括与漂移区互补掺杂 并且与漂移区邻接的补偿区。补偿区和漂移区之间的pn结形成半导体器件的整体pn结的 一部分。补偿区用于当pn结反向偏置时,对漂移区中的掺杂载流子进行补偿。补偿效果允 许具有比常规(非超结)器件更高掺杂浓度的漂移区的实现,从而以给定的电压阻断能力导 致较低的导通电阻。
[0007] 当pn结为正向偏置时,从补偿区发射到漂移区中的少数电荷载流子以及漂移区 中的多数电荷载流子形成电荷载流子等离子体。当pn结为反向偏置时,该电荷载流子等离 子体必须在半导体器件阻断之前从漂移区移除。当pn结为正向偏置时,存储在边缘区中的 大量的电荷载流子可能导致边缘区的降低的电压阻断能力,并且可能导致半导体器件的破 坏。


【发明内容】

[0008] 第一实施例涉及半导体器件。所述半导体器件包括:半导体基体,所述半导体基体 包括内区和边缘区;在所述内区和所述边缘区中并且耦合到第一端子的第一掺杂类型的第 一掺杂器件区;以及在所述内区中并耦合到第二端子的与所述第一掺杂类型互补的第二掺 杂类型的至少一个第二掺杂器件区。此外,所述半导体器件包括所述边缘区中的少数载流 子转换器结构。所述少数载流子转换器结构包括:与第一器件区邻接的第二掺杂类型的第 一阱区,以及将所述第一阱区电耦合到第一器件区的导体。

【专利附图】

【附图说明】
[0009] 现在将参考附图来解释示例。附图用来示出基本操作,从而仅示出用于理解基本 原理的必要方面。附图不是按比例的。在附图中,相同的参考字符表示相同的特征。
[0010] 图1示意性地示出了在半导体基体的边缘区中包括少数电荷载流子转换器的半 导体器件的垂直横截面视图; 图2示出了根据一个实施例的少数电荷载流子转换器; 图3示出了根据另外实施例的少数电荷载流子转换器; 图4示出了根据一个实施例的包括具有水平拓扑的少数电荷载流子转换器的半导体 器件的顶视图; 图5示出了根据一个实施例的包括具有水平拓扑的少数电荷载流子转换器的半导体 器件的顶视图; 图6示出了根据一个实施例的包括具有水平拓扑的少数电荷载流子转换器的半导体 器件的顶视图; 图7示出了根据一个实施例的包括具有水平拓扑的电荷载流子转换器的半导体器件 的顶视图; 图8示出了在半导体基体的边缘区中包括少数电荷载流子转换器的M0S晶体管的垂直 横截面视图;以及 图9示出了在半导体基体的边缘区中包括少数电荷载流子转换器的二极管的垂直横 截面视图。

【具体实施方式】
[0011] 在下面的详细描述中,参考了附图。附图形成了说明书的一部分,并且通过图示的 方式示出了可以在其中实施本发明的具体实施例。应当理解的是:除非特别另外指出,否则 本文中描述的各个实施例的特征可以互相组合。
[0012] 图1示出了根据一个实施例的半导体器件的垂直横截面视图。所述半导体器件包 括具有第一表面101、内区110以及边缘区120的半导体基体100。图1在垂直剖面中示出 了半导体器件,该垂直剖面是与第一表面101垂直的剖面。例如,该半导体基体包括诸如硅 (Si)、碳化硅(SiC)、氮化镓(GaN)、砷化镓(GaAs)等的常规半导体材料。
[0013] 参照图1,在内区110和边缘区120中布置了第一掺杂类型的第一掺杂器件区11。 至少一个第二掺杂器件区21与内区110中的第一器件区11形成pn结J。
[0014] 第一器件区11电耦合或连接到第一电极或端子31,并且第二器件区21电耦合到 第二电极或端子32。第一器件区11在下面也将被称为漂移区或基极区,并且第二器件21 也将被称为补偿区。根据一个实施例,有多个补偿区21位于内区110中。
[0015] 半导体器件还包括边缘区中的少数载流子转换器结构40。下面在本文中进一步详 细解释该少数载流子转换器结构40。
[0016] 器件结J所在的内区110也可以被称为半导体器件的活动区。边缘区120在半导 体基体100的横向方向上与内区或活动区110邻接,并且包围内区110。半导体基体100的 "横向方向"是与半导体基体1〇〇的第一表面101平行的方向。由于边缘区120包围活动 区110,因此边缘区120总是位于半导体基体100的活动区110与边缘表面102之间。"边 缘表面102"是半导体基体100的表面,其在横向方向上终止半导体基体100。参照图1,边 缘区120可以与边缘表面102邻接。然而,边缘区120不一定与边缘表面102邻接。根据 另外的实施例(未示出),边缘区120还可以位于内区110与在半导体基体100中实现的另 外半导体器件(未示出)的活动区之间。因此,边缘区120和实现在边缘区120中的边缘终 止结构40以活动区110 "终止"半导体器件,但不一定终止半导体基体100,在半导体基体 100中可以实现额外的半导体器件。换句话说,在一个半导体基体100中,可以单片集成两 个或更多个半导体器件,其中,这些半导体器件中的每一个具有其自己的终止系统。不言自 明的是:单个半导体器件的这些终止系统可以彼此不同,这取决于每一个集成半导体器件 的需求,尤其是所期望的电压阻断能力。
[0017] 在图1中示出的实施例中,第一区11经由具有与第一区11相同的掺杂类型但较 高掺杂浓度的第三区12耦合到第一端子31。第一区11的掺杂浓度在例如1E12 cnT3与 1E16 cm_3之间;第二区21的掺杂浓度在例如1E12 cm_3与1E16 cm_3之间;以及第三区12 的掺杂浓度在例如1E18 cm_3与1E21 cm_3之间。根据一个实施例,第一区11中的掺杂剂原 子的总数量基本上与至少一个第二区21中的掺杂剂原子的总数量相对应。
[0018] 根据一个实施例,第三区12由具有第三区的所期望掺杂浓度的掺杂的半导体衬 底形成。在该实施例中,可以将第一区11和第二区21布置在衬底上形成的外延层中。外 延层可以使用与第一区11的所期望掺杂浓度相对应的掺杂浓度形成,并且第二区21 (以及 在第一区11中形成的其它区)可以通过注入和扩散过程中的至少一个过程来产生。然而, 也有可能在形成外延层的外延生长过程中产生第一区11、第二区21。
[0019] 根据另外的实施例,半导体基体100包括具有第一区11的掺杂浓度的半导体衬 底。在该衬底中,第二区21和第三区12 (以及在第一区11中形成的其它区)可以通过注 入和扩散过程中的至少一个过程来产生。
[0020] 参照图1,边缘区120可选地包括第二掺杂类型的至少一个另外器件区22。该至 少一个另外器件区22在下文中将被称为补偿区。然而,不同于内区110中的至少一个补偿 区21,边缘区120中的该补偿区22可以是浮置的。也就是说,边缘区120中的至少一个补 偿区22可以没有电连接到端子之一,诸如第二端子32。
[0021] 当半导体器件实现为M0S晶体管时,半导体器件可以包括另外器件特征,诸如,例 如基体区、源极区、漏极区、以及栅极电极。然而,在图1以及在图2至7中,仅示出了对于 当结J正向偏置时,理解边缘终止结构40的一种操作方式来说必要的半导体器件的那些特 征。可以在包括漂移区(诸如图1中示出的漂移区11)和结(诸如图1中示出的漂移区11 和补偿区21之间的结J)的任意半导体器件中采用该边缘终止结构40。例如,具有漂移区 以及漂移区和补偿区之间的结的半导体器件包括:诸如M0SFET (金属氧化物栅型场效应晶 体管)的MOS晶体管、IGBT (绝缘栅双极晶体管)、或p-i-n二极管。在IGBT中,第三区12 与第一区11互补掺杂。
[0022] 在图1中描绘了半导体器件的一种操作方式,并且具体而言,在下文中解释了边 缘终止结构40的一种操作方式。图1的半导体器件可以假定两种不同的操作状态,S卩,在 其中pn结J是正向偏置的第一操作状态以及在其中pn结J是反向偏置的第二操作状态。 pn结J是正向偏置还是反向偏置取决于施加于第一和第二端子31、32之间的电压。仅出于 解释的目的,假定第一器件区11是η型掺杂的,而第二器件区21是p型掺杂的。在这种情 况下,当正电压施加于第一端子31与第二端子32之间时,pn结J是反向偏置的;并且当负 电压施加于第一端子31与第二端子32之间时(这对应于第二端子32与第一端子31之间 的正电压),pn结J是正向偏置的。然而,下面解释的操作方式相应地应用于具有p型第一 区11和η型第二区21的半导体器件(差别在于:与具有η型第一区11的器件相比,电压的 极性必须反转)。当pn结J反向偏置时,耗尽区(空间电荷区)在第一器件区11中和开始于 pn结J处的第二器件区21中扩展。随着对pn结J进行反向偏置的电压增加,耗尽区向第 一器件区11和第二器件区21中扩展得越深。
[0023] 当pn结J正向偏置时,第三区12发射第一类型的电荷载流子到第一区11中,并 且至少一个第二器件区21发射第二类型的电荷载流子到第一区11中。当第一区11和第 三区12是η型掺杂时,第一类型的电荷载流子是η型载流子(电子),并且当第二器件区21 是Ρ型掺杂时,第二类型的电荷载流子是Ρ型载流子(空穴)。导致pn结J正向偏置的施加 于第一和第二端子31、32之间的电压造成第二区21和第三区12处的电位之间的电压差。 该电压差导致电场,该电场继而导致η型载流子向第二区21行进并且ρ型载流子向第三区 12行进,从而使得电流在第一和第二端子31、32之间流动。
[0024] 在η型第一器件区11中,ρ型电荷载流子(空穴)是少数电荷载流子。当半导体从 正向偏置状态切换到反向偏置时,这些少数电荷载流子必须在半导体器件能够阻断之前从 第一器件区11移除。由第二器件区21发射的ρ型电荷载流子的一部分行进到半导体器件 的边缘区120中。然而,在边缘区中,没有与第二和第三区21、12之间的电场类似的电场, 从而在边缘区120中,ρ型电荷载流子不会被迫进入第三器件区12。
[0025] 当在内区中包括如图1中所示的第一和第二器件区的常规半导体器件反向偏置 时,Ρ型电荷载流子必须从边缘区移除。然而,Ρ型电荷载流子从边缘区的移除可能导致从 半导体器件的边缘区到内区的电流,这可能导致常规半导体器件的破坏。参照图1,第二区 21连接到第二端子32,其中,在图1中仅示意性地示出了该电连接。来自边缘区的电流导 致流向第二端子32的电流。该电流主要集中在内区110靠近边缘区120的那些区中,并且 可能导致第二区21与第二端子之间的接触区(图1中未示出)中的热过载。此外,从边缘区 120到内区110的电流可能造成电荷载流子的倍增,并因此导致雪崩击穿。最后,从边缘区 120向内区110 (电荷载流子在那些区中流动)的电荷载流子流动具有与增加的掺杂浓度相 同的效果,并因此可以导致器件在那些区中的降低的电压阻断。
[0026] 因此,期望总地降低半导体器件的边缘区120中的少数电荷载流子的浓度。图1 中示出的半导体器件包括具有少数电荷载流子阱的边缘结构40,少数电荷载流子阱收集边 缘区120中的少数电荷载流子并导致少数电荷载流子与多数电荷载流子重新组合。由此, 少数载流子的密度在边缘结构40附近降低到接近于零,并且在整个边缘区120中降低。多 数电荷载流子基本上在半导体基体100的垂直方向上从第三区12向少数电荷载流子阱流 动,在少数电荷载流子阱中它们与少数电荷载流子重新组合。因此,去往电荷载流子阱中的 少数电荷载流子流导致从第三区到少数电荷载流子阱的相应的多数电荷载流子流。当半导 体器件从第一操作状态(当pn结J正向偏置时)切换到第二操作状态(当pn结J反向偏置 时)时,极大地降低了少数电荷电流在半导体器件的横向方向上的流动。
[0027] 参照图1,少数电荷载流子阱40包括第二掺杂类型的第一阱区41。例如,第一阱 区41的掺杂浓度在1E18 cm_3与1E21 cm_3之间。第一阱区41通过导体42电连接到第一 区11。在图1的实施例中,第一讲区41与第一表面101相邻,并且导体42布置在第一表 面101上,并且电连接到第一阱区41和第一器件区11的与第一表面101邻接的区。在图1 的实施例中,第一阱区41位于内区110与导体42接触第一器件区11的位置之间。少数电 荷载流子阱40在半导体基体100的横向(水平)方向上与内区110间隔开。根据一个实施 例,最外面的第二器件区21和第一阱区41之间的距离d在2μπι与几百μπι之间。例如, 该距离取决于半导体器件的所期望的电压阻断能力,并且随着所期望的电压阻断能力增加 而增加。例如,当电压阻断能力约为20V时,距离d约为2 μ m,并且当电压阻断能力为几百 V时距离?/可以高达几百μπι。"最外面的第二区21"是距离边缘区120最近的第二区21。
[0028] 根据另外实施例(未不出),导体42不位于第一表面101的顶部,而是位于从第一 表面101延伸到半导体基体100中的沟槽中。
[0029] 参照图2,其示出了仅边缘区120的垂直横截面视图,少数电荷载流子阱40可以附 加地包括第二掺杂类型的并且比第一阱区41更低掺杂的第二阱区44。第二阱区44与第一 阱区41邻接,并且与第一阱区41相比,可以从第一表面101向半导体基体100中延伸得更 深。导体42可以接触第一和第二阱区41、44二者。此外,少数电荷载流子阱40可以包括 与第一区11邻接并且比第一区11更高掺杂的第一掺杂类型的接触区43。接触区43电连 接到导体42。接触区43可以与第一阱区41 (如图所示)或第二阱区44邻接,或者可以与 阱区41、44间隔开。根据一个实施例,第二阱区的掺杂浓度基本与第三区12的掺杂浓度相 对应。
[0030] 根据一个实施例,未由导体42覆盖的边缘区120中的第一表面101的那些区域由 钝化层49覆盖。钝化层49可以包括诸如氧化物、氮化物、和酰亚胺、或DLC (类金刚石碳) 的常规钝化材料。
[0031] 参照图2,边缘区120中的可选补偿区22和第二阱区44在半导体基体100的横向 方向上分别具有宽度wl和《2。半导体基体100的"第一横向方向"是从内区110朝具有少 数电荷载流子阱的边缘结构的方向。根据一个实施例,补偿区22的第一宽度wl小于第二 阱区44的第二宽度《2。根据一个实施例,第二宽度《2在第一宽度W的1. 5倍与3倍之 间,也就是说:1.5·Μ/Ιι:ν?(?3'Ι<ν?。
[0032] 在边缘区120中存在至少两个补偿区22的一个实施例中,两个相邻的补偿区22 具有相互的第一距离dl。此外,在最外面的补偿区22和第二阱区44之间存在第二距离 d2。"最外面的补偿区22"是距离第二阱区44最近的补偿区22。根据一个实施例,第一距 离dl小于第二距离d2。根据一个实施例,第二距离d2大于第一距离?/7的1. 5倍,也就是 说:of2 之 1.5-ciEcf2。
[0033] 在图2中示出的实施例中,补偿区22和第二阱区44的低端基本上在半导体基体 100的同一垂直位置处。补偿区22和第二阱区44的"低端"是那些面向第三器件区12的 端。然而,实现半导体器件从而使得补偿区22和第二阱区44的低端基本上结束于同一垂 直水平仅是示例。根据另外实施例(未示出),第二阱区44的低端比补偿区22的低端更靠 近第一表面101。
[0034] 根据另一个实施例,第二阱区44的低端比补偿区22的低端更靠近12。也就是说, 第二阱区44比补偿区22向第三区12延伸得更远。根据又一个实施例,第二阱区44的宽 度w2朝向第三区12增加,从而与在靠近第三区12的区中相比,第二阱区44在靠近第一表 面101的区中具有更小的宽度w2。
[0035] 在图2的半导体器件中,第一和第二阱区41、44位于内区110(图2中未示出)和接 触区43之间。根据图3中示出的另外实施例,接触区43位于内区110(图3中未示出)与第 一和第二阱区41、44之间。在该实施例中,第二阱区44可以延伸到半导体基体100的边缘 表面102。在该实施例中,接触区43和接触区43下面的区用作横向场停止(field-stop)。
[0036] 图4示意性地示出半导体基体100的第一表面101的顶视图。图4示意性地示出 半导体器件的内区110中的若干补偿区21的位置。在本实施例中,这些补偿区21是细长 的半导体区。边缘区120中的可选补偿区22是环形的并且包围内区110。等同地,在图4 的实施例中,第一阱区41和接触区43是环形的,并且包围内区110 (和可选的补偿区22)。 图4中没有示出半导体基体100的第一表面101顶部上的导体(图1-3中的42)。
[0037] 参照图5中示出的另外实施例,第一阱区41包围内区110 (其中,在图5中,仅示 出了内区110和边缘区120的一段),而有若干相互隔开的接触区43。根据一个实施例,第 一阱区41形成基本矩形的环(具有圆角),其中,接触区43位于该矩形环的每一个角中。根 据另外实施例(图5中的虚线示出的),接触区43也沿第一阱区41位于第一阱区41的角之 间。
[0038] 根据图6中示出的另一个实施例,在内区110 (其中,在图6中,仅示出了内区110 和边缘区120的一段)周围有多个相互隔开的第一阱区41和接触区43。在图5和6中,没 有示出电连接第一阱区41和接触区43的导体。
[0039] 根据图7中示出的另外实施例,第一阱区41和接触区43交替布置在内区110周 围,并且形成包围内区110 (其中,在图7中,仅示出了内区110和边缘区120的一段)的环。 在该实施例中,每一个第一阱区41与两个接触区43邻接。然而,这仅是示例。根据另外实 施例(未示出),每一个第一阱区41仅与一个接触区43邻接。
[0040] 图8示出了实现为M0S晶体管的半导体器件的垂直横截面视图。该半导体器件的 基本拓扑与参考图1解释的基本拓扑相对应。也就是说,半导体器件包括:具有内区110和 边缘区120的半导体基体100、在内区110和边缘区120中的漂移区11、在内区110中的多 个补偿区21,以及在边缘区120中的少数电荷载流子阱40。在图8中仅示意性地示出了少 数电荷载流子阱40。可以根据前文中参考图1至7解释的实施例中的一个实施例来实现少 数电荷载流子阱40。
[0041] 在图8的半导体器件中,第三半导体区12形成M0S晶体管的漏极区。此外,半导 体器件包括多个晶体管单元50,其中,每一个晶体管单元50包括:第一掺杂类型的源极区 51 ;第二掺杂类型的基体区52 ;与基体区52相邻并且通过栅极电介质54与基体区52介电 绝缘的栅极电极53。基体区52将源极区51与漂移区11分离。常规方式的栅极电极53 用来控制源极区51和漂移区11之间的基体区52中的导电沟道。晶体管单元50中的每一 个晶体管单元还包括一个补偿区21或一个补偿区21的一部分,其中,补偿区耦合到基体区 52。单独晶体管单元50的源极区和基体区通过源极电极34电连接到第二端子32。单独补 偿区21经由基体区52和源极电极34连接到第二端子32。在图8中没有示出可以覆盖边 缘区中的第一表面101的钝化层。该钝化层可以包括绝缘层。根据一个实施例,栅极电介 质54和栅极电极53不仅在单独晶体管单元的沟槽中形成,也在它们形成钝化层的边缘区 中的第一表面101上形成。
[0042] 单独晶体管单元50通过使它们的源极区和基体区51、52连接到第二端子32并且 通过使它们的栅极电极53连接到共栅端子55而并联连接。单独晶体管单元50共享漂移 区11和漏极区12,其中,在本实施例中,漏极区12经由漏极电极(未示出)连接到第一端子 31 (漏极端子)。
[0043] M0SFET可以实现为η型或p型M0SFET。在η型M0SFET中,源极区51、漂移区11 和漏极区12是η型掺杂的,而基体区52和补偿区21是ρ型掺杂的。在ρ型M0SFET中,单 独器件区的掺杂类型与η型M0SFET中相应器件区的掺杂类型是互补的。
[0044] 图8的M0SFET可以像常规M0SFET那样操作。也就是说,M0SFET可以操作在正向 偏置状态或反向偏置状态中。在正向偏置状态中,可以通过适当地控制单独晶体管单元50 的栅极电极53处的电位(驱动电势)来打开和关闭M0SFET。在M0SFET的正向偏置状态中, 补偿区21和漂移区11之间的ρη结是反向偏置的,从而使得当栅极电极53在源极区51和 漂移区11之间的基体区52中生成导电沟道时,M0SFET处于导通状态,并且当源极区51和 漂移区11之间的导电沟道中断时,M0SFET处于关断状态。在关断状态中,空间电荷区在漂 移区11中扩展,分别开始于基体区52和漂移区11之间以及基体区52和补偿区21之间的 ρη结。当漏极端子31和源极端子32之间存在正电压时,η型M0SFET处于正向偏置状态。 在ρ型M0SFET中,漏极端子和源极端子32之间的负电压对M0SFET进行反向偏置。
[0045] 当基体区52和漂移区11之间以及补偿区21和漂移区11之间的ρη结分别正向 偏置时,M0SFET处于反向偏置状态。在该操作状态中,M0SFET像二极管那样进行动作,其 中,在η型M0SFET中,基体区52和补偿区21形成阳极,并且漂移区和漏极区11、12形成该 二极管的基极和阴极。该二极管也被称为M0SFET的体二极管。
[0046] 图9示出了根据包括参考图1解释的基本器件拓扑的另外实施例的半导体器件的 垂直横截面视图。图9的半导体器件实现为二极管,其中,第一器件区11形成基极区,第三 器件区12形成第一发射极区,并且二极管附加地包括连接到第二端子32的第二发射极区 61。补偿区21耦合到第二发射极区61,并且经由第二发射极区61耦合到第二端子32。第 一发射极区12连接到第一端子31。
[0047] 在图9中仅示意性地示出了少数电荷载流子阱40。可以根据前文中参考图1至7 解释的实施例中的一个实施例来实现该少数电荷载流子阱。
[0048] 二极管可以操作在正向偏置状态和反向偏置状态中。在正向偏置状态中,第二发 射极区61和漂移区11之间以及补偿区21和基极区11之间的ρη结分别是正向偏置的。 在反向偏置状态中,ρη结是反向偏置的。在基极区11和第一发射极区12是η型掺杂并且 第二发射极区61和补偿区21是ρ型掺杂的情况下,当在第二端子32和第一端子31之间 施加正电压时,二极管是正向偏置的,并且当在第一端子31和第二端子32之间施加正电压 时,二极管是反向偏置的。
[0049] 在前文的描述中,方向术语,例如"顶部"、"底部"、"前"、"后"、"引导"、"尾随"等, 参考正被描述的图的定向来使用。因为实施例的组件可以被置于多个不同的定向上,所以 是出于说明的目的而绝非限制性的目的来使用方向术语。应当理解的是:可以在不脱离本 发明的范围的情况下使用其它实施例并进行结构或逻辑上的变化。因此,下面的详细描述 不应被视为具有限制意义,并且本发明的范围由所附的权利要求限定。
[0050] 虽然公开了本发明的各个示例性实施例,但对于本领域的技术人员来说将清楚的 是:可以在不脱离本发明的精神和范围的情况下进行将实现本发明的某些优点的各种变化 和修改。对本领域的技术人员来说将合理地清楚的是:可以适当地替换执行相同功能的其 它组件。应该提及的是:即使在对此没有明确提及的那些情况下,参照具体的图解释的特征 可以与其它图中的特征相组合。对本发明构思的这种修改意图被所附权利要求覆盖。
[0051] 为了描述方便,使用诸如"下面","以下","下部","以上","上部"等的空间相关的 术语来解释一个要素相对于第二要素的定位。除了与在图中描绘的那些不同的定向之外, 这些术语旨在涵盖器件的不同定向。此外,例如"第一"、"第二"等的术语也用来描述各种要 素、区、段等,并且也并非意图是限制性的。在整个说明书中,相同的术语指代相同的要素。
[0052] 如本文中所使用的,术语"具有"、"含有"、"包括"、"包含"等是开放式术语,其指示 所陈述的要素或特征的存在,但并不排除附加要素或特征。冠词"一"("a"、"an")和"该" 旨在包括复数以及单数,除非上下文另有清楚指示。
[0053] 考虑到上述范围的变型和应用,应当理解的是,本发明并不受限于上述描述,也不 受限于附图。而是,本发明仅由所附权利要求及其法律等同物限定。
[0054] 应当理解的是:除非特别另外指出,否则本文中描述的各个实施例的特征可以互 相组合。
【权利要求】
1. 一种半导体器件,包括: 半导体基体,其包括内区和边缘区; 第一掺杂类型的第一掺杂器件区,其在所述内区和所述边缘区中并且耦合到第一端 子; 与所述第一掺杂类型互补的第二掺杂类型的至少一个第二掺杂器件区,其在所述内区 中并耦合到第二端子; 所述边缘区中的少数载流子转换器结构,所述少数载流子转换器结构包括与所述第一 掺杂器件区邻接的所述第二掺杂类型的第一阱区,以及将所述第一阱区电耦合到所述第一 掺杂器件区的导体。
2. 根据权利要求1所述的半导体器件,其中,所述少数载流子转换器结构还包括所述 第一掺杂类型的并且比所述第一掺杂器件区更高掺杂的接触区,其中所述接触区连接到所 述导体并且与所述第一掺杂器件区邻接。
3. 根据权利要求1所述的半导体器件,其中,所述少数载流子转换器结构还包括所述 第二掺杂类型的并且比所述第一阱区更低掺杂的第二阱区,其中所述第二阱区与所述第一 掺杂器件区和所述第一阱区邻接,并且与所述第一阱区相比,所述第二阱区从第一表面更 深地延伸到所述半导体基体中。
4. 根据权利要求3所述的半导体器件,其中,所述第二阱区和所述第二掺杂器件区具 有基本相同的掺杂浓度。
5. 根据权利要求4所述的半导体器件,其中,所述导体连接到所述第二阱区。
6. 根据权利要求1所述的半导体器件,还包括所述边缘区中的第二掺杂的至少一个另 外器件区。
7. 根据权利要求6所述的半导体器件,其中,所述至少一个另外器件区是浮置的。
8. 根据权利要求1所述的半导体器件,其中,所述第一阱区在所述半导体基体的水平 面中包围所述内区。
9. 根据权利要求7所述的半导体器件,还包括所述第一掺杂类型的接触区,其中,所述 接触区比所述第一掺杂器件区更高掺杂,在所述半导体基体的水平面中包围所述内区,连 接到所述导体,并且与所述第一掺杂器件区邻接。
10. 根据权利要求8所述的半导体器件,还包括所述第一掺杂类型的并且比所述第一 掺杂器件区更高掺杂的多个接触区,其中,所述多个接触区在所述半导体基体的水平面中 相互隔开,连接到所述导体并且与所述第一掺杂器件区邻接。
11. 根据权利要求1所述的半导体器件,包括在所述半导体基体的水平面中相互隔开 的多个第一讲区。
12. 根据权利要求11所述的半导体器件,其中,所述多个第一阱区限定了围绕所述内 区的环。
13. 根据权利要求11所述的半导体器件,还包括所述第一掺杂类型的并且比第一掺杂 器件区更高掺杂的多个接触区,其中所述多个接触区中的每一个接触区连接到所述导体并 且与所述第一掺杂器件区邻接。
14. 根据权利要求12所述的半导体器件,其中,所述多个第一阱区和所述多个接触区 交替布置,并且限定了围绕所述内区的环。
15. 根据权利要求1所述的半导体器件, 其中,所述第一器件区是漂移区,所述第二器件区是补偿区,所述第一端子是漏极端 子,并且所述第二端子是源极端子,并且 其中,所述半导体器件还包括: 所述第一掺杂类型的源极区以及所述第二掺杂类型的基体区,分别连接到所述源极端 子,其中所述基体区布置在所述源极区和所述漂移区之间; 与所述基体区相邻并且通过栅极电介质与所述基体区介电绝缘的栅极电极。
16. 根据权利要求15所述的半导体器件,还包括所述第一掺杂类型的漏极区,其与所 述漂移区邻接,并且比所述漂移区更高掺杂。
17. 根据权利要求1所述的半导体器件, 其中,所述第一器件区是基极区,所述第二器件区是补偿区,所述第一端子是阳极和阴 极端子中的一个,并且所述第二端子是阳极和阴极端子中的另一个, 其中,所述半导体器件还包括: 所述第二掺杂类型的并且连接到所述第一端子的第一发射极区;以及 与所述基极区邻接并且比所述基极区更高掺杂的所述第一掺杂类型的第二发射极区。
【文档编号】H01L29/06GK104103691SQ201410149318
【公开日】2014年10月15日 申请日期:2014年4月15日 优先权日:2013年4月15日
【发明者】F.希尔勒 申请人:英飞凌科技奥地利有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1