一种AlyInxGa1‑x‑yN薄膜的外延结构及生长方法与流程

文档序号:12014983阅读:250来源:国知局
一种AlyInxGa1‑x‑yN薄膜的外延结构及生长方法与流程
一种AlyInxGa1-x-yN薄膜的外延结构及生长方法技术领域本发明涉及半导体材料,尤其是涉及一种AlyInxGa1-x-yN薄膜的外延结构及生长方法。

背景技术:
AlyInxGa1-x-yN材料体系作为一种重要的半导体材料,被广泛地应用于制作绿、蓝和紫外波段的发光器件和探测器,以及高功率、高温度的射频电子器件。由于缺乏晶格匹配的衬底,AlyInxGa1-x-yN材料通常是在异质衬底上外延生长获得的。常用的异质衬底主要为蓝宝石、碳化硅和硅。这些异质衬底材料与AlyInxGa1-x-yN材料之间存在晶格失配及热膨胀系数差异,使在其上生长的AlyInxGa1-x-yN薄膜承受巨大的双轴应力。这种双轴应力对AlyInxGa1-x-yN材料及器件将产生下列不利影响:(1)导致外延片弯曲、变形;(2)导致外延薄膜破碎或龟裂;(3)在AlyInxGa1-x-yN材料内诱导产生大量的位错缺陷,从而影响各种器件的光电性能及可靠性;(4)AlyInxGa1-x-yN材料体系存在极强的压电极化效应,因此应力将引起压电场,压电场的存在会降低InGaN/GaN多量子阱的内量子效率;(5)应力影响InGaN层中In的掺入。因此,开发出一种能弛豫应力的材料结构及生长工艺是非常必要的。目前,为了释放AlyInxGa1-x-yN外延薄膜所受的应力,很多常见的外延技术方法被使用;如:侧向外延法、Al组分渐变AlGaN缓冲层技术以及图形衬底技术等。这些技术方法虽能在一定程度上缓解外延薄膜所受应力,但是也存在某些不足之处。Al组分渐变AlGaN缓冲层技术需要耗费数个小时的时间来生长AlGaN缓冲层,不利于产业化的成本控制。侧向外延法和图形衬底技术,需要在生长前先对衬底进行加工处理,工序较为复杂。

技术实现要素:
本发明的第一个目的在于提供一种AlyInxGa1-x-yN薄膜的外延结构,该外延结构在衬底与外延材料之间的缓冲层中设计了大量的空腔,这种空腔有两个作用:(1)增加了薄膜柔性,为应力的弛豫提供了变形空间,可以释放AlyInxGa1-x-yN薄膜所受到的来自衬底的应力;(2)对于发光器件,空腔增强了界面反射,故可提高光的提取效率。本发明的第二个目的在于提供一种AlyInxGa1-x-yN薄膜的外延结构的生长方法。本发明的第一个目的是这样实现的:一种AlyInxGa1-x-yN薄膜的外延结构,自下而上依次包括:衬底、AlN缓冲层、InxGa1-xN(0≤x≤1)缓冲层、AlyGa1-yN(0≤y≤1)掩模层和AlyInxGa1-x-yN(0≤x≤1,0≤y≤1)主层,其特征在于:在所述AlyGa1-yN掩模层中、InxGa1-xN(0≤x≤1)缓冲层和AlyInxGa1-x-yN(0≤x≤1,0≤y≤1)主层之间,设有呈间隔排布、竖向的微孔,在每个微孔的下对应位置的InxGa1-xN缓冲层中设有一个空腔,InxGa1-xN缓冲层为蜂窝状结构。所述AlN缓冲层的厚度为50~200nm。所述InxGa1-xN(0≤x≤1)缓冲层的厚度为100~800nm。所述AlyGa1-yN(0≤y≤1)掩模层的厚度为10~50nm。所述AlyInxGa1-x-yN(0≤x≤1,0≤y≤1)主层的厚度为1~6μm。所述AlyGa1-yN掩模层中的微孔的直径<10nm。所述AlyGa1-yN掩模层中的微孔与InxGa1-xN缓冲层内的空腔一一对应。所述InxGa1-xN缓冲层内的空腔的直径和深度在50--800nm之间。所述微孔和空腔的分布密度在5×106cm-2--5×108cm-2之间。本发明的第一个目的是这样实现的:一种AlyInxGa1-x-yN薄膜的外延结构的生长方法,包括以下步骤:A、将衬底装入MOCVD反应室;B、生长AlN缓冲层;C、生长InxGa1-xN(0≤x≤1)缓冲层;D、生长AlyGa1-yN(0≤y≤1)掩模层;E、在通入反应室的氨气量占总气量比小于<1%的条件下,以1摄氏度/s的速率快速升温至1100℃以上的刻蚀温度,并在刻蚀时间10s--600s内刻蚀温度保持稳定;在此过程中,AlyGa1-yN(0≤y≤1)掩模层中会先形成微孔,H2再从微孔钻入,刻蚀InxGa1-xN(0≤x≤1)缓冲层,并在其中形成空腔;F、生长AlyInxGa1-x-yN(0≤x≤1,0≤y≤1)主层;G、降温至150℃以下,将外延片从MOCVD反应室中取出,得到最终的AlInGaN薄膜材料。在步骤C中,InxGa1-xN(0≤x≤1)缓冲层的In组分值可影响空腔的长大速率。在步骤C中,InxGa1-xN(0≤x≤1)缓冲层的厚度决定了空腔的最大深度。在步骤D中,AlyGa1-yN(0≤y≤1)掩模层的厚度、组分可影响微孔的形成速度及分布密度。在步骤E中,NH3浓度也是非常重要的参数,NH3对AlInGaN材料体系的分解有抑制作用,因此,此步如果在关闭氨气的条件下进行,将更有利于微孔的形成和空腔的长大。在步骤E中,升温速率及温差决定了AlN掩模层所受应力大小,影响微孔的形成。在步骤E中,刻蚀温度影响空腔的长大速率,可调节刻蚀时间控制空腔302的深度和大小。在上述步骤中,最重要的为步骤E:在H2的环境下(少氨或者无氨),快速升温至1100℃以上,此时AlyGa1-yN(0≤y≤1)掩模层401受到来自InxGa1-xN(0≤x≤1)缓冲层的张应力;在张应力作用下,AlyGa1-yN(0≤y≤1)掩模层中某些质量较差的位置易产生应力集中而出现微裂纹,从而形成了微孔。微孔形成后,微孔的位置下面的InxGa1-xN(0≤x≤1)缓冲层相应地暴露在高温H2的环境中,InxGa1-xN(0≤x≤1)材料开始分解。相对AlyGa1-yN(0≤y≤1)材料来说,InxGa1-xN(0≤x≤1)的分解温度要低很多;因此,只要在合适的温度下,H2将会有选择性地只刻蚀InxGa1-xN(0≤x≤1)材料,而AlyGa1-yN(0≤y≤1)材料相当于这种刻蚀过程的掩模,从而在InxGa1-xN(0≤x≤1)缓冲层中形成了空腔。另外,由于AlyGa1-yN(0≤y≤1)掩模层中微孔的孔径为纳米量级,因此在微孔上生长AlyInxGa1-x-yN(0≤x≤1,0≤y≤1)主层时,可以将微孔口迅速合拢,而不会将已形成的空腔填平。本发明是在衬底与外延材料之间的缓冲层中设计了大量的空腔,这种空腔有两个作用:(1)增加了薄膜柔性,为应力的弛豫提供了变形空间,可以释放AlyInxGa1-x-yN薄膜所受到的来自衬底的应力;(2)对于发光器件,空腔增强了界面反射,故可提高光的提取效率。本发明是在实现弛豫应力的基础上,克服了Al组分渐变AlGaN缓冲层技术需要耗费数个小时的时间来生长AlGaN缓冲层、不利于产业化的成本控制,以及侧向外延法和图形衬底技术需要在生长前先对衬底进行加工处理、工序较为复杂的不足。附图说明图1为本发明所设计的AlyInxGa1-x-yN(0≤x≤1,0≤y≤1)外延结构的示意图。图中,衬底101、AlN缓冲层201、InxGa1-xN(0≤x≤1)缓冲层301、空腔302、AlyGa1-yN(0≤y≤1)掩模层401、微孔402、AlyInxGa1-x-yN(0≤x≤1,0≤y≤1)主层501。图2为InxGa1-xN(0≤x≤1)缓冲层301的蜂窝状结构俯视示意图。图3为根据本发明设计,实际生长的硅衬底上氮化物薄膜的TEM照片。图4为暗场下的光学显微镜观测照片,用来表征根据本发明设计生长的硅衬底上氮化物薄膜中空腔302的密度分布,图中的亮点即为空腔。具体实施方式下面结合实例并对照附图1对本发明作进一步的详细说明。本实例采用自制型7*2CCSMOCVD系统进行外延生长。所用衬底为硅衬底,所用Ga、Al、N源分别为三甲基镓(TMGa)、三甲基铝(TMAl)和氨气(NH3),载气为H2。A、将干净的(111)晶面硅衬底101装入MOCVD反应室,在H2气氛下加热至1200℃,烘烤25分钟。B、降温至950℃,往MOCVD反应室内通入TMAl,通入时间为25s,流量为21μmol/min。C、升温至1190℃,升温过程中通入氨气,流量为0.026mol/min;温度稳定后,通入TMAl,流量为14μmol/min,生长70nm左右厚的AlN缓冲层201。D、在温度1145℃下生长500nm左右厚的InxGa1-xN(x=0)缓冲层301,氨气流量为0.2mol/min,TMGa流量为101μmol/min。E、在温度950℃,氨气流量为0.026mol/min的条件下生长20nm左右厚的AlyGa1-yN(0≤y≤1)掩模层401;该层分两步完成:第一步生长了约15nm厚的Al组分逐渐增大的AlGaN层,TMGa流量由20.4μmol/min渐变至2μmol/min,同时TMAl流量由1.4μmol/min渐变至21.2μmol/min;第二步为5nm厚的AlN层,TMAl流量为21.2μmol/min。F、以1℃/s的升温速率快速升温至1200℃,氨气流量为0.026mol/min,稳定30s;G、在温度1100℃下生长3μm左右厚的AlyInxGa1-x-yN(x=0,y=0)主层501,氨气流量为0.2mol/min,TMGa流量为156μmol/min。在步骤D中,InxGa1-xN缓冲层301的In含量为0,故所需刻蚀温度较高。在步骤E中,AlyGa1-yN(0≤y≤1)掩模层401分两层生长:第一层为Al组分渐变层,可起到积累应力的作用,并与随后的AlyGa1-yN(y=1)层一起,影响着微孔402的大小及密度分布。在步骤F中,升温过程通入了NH3,NH3抑制了InxGa1-xN(x=0)缓冲层301的分解,故所需刻蚀温度较高。图3为采用上述外延工艺生长出的实验样品的TEM照片,空腔302直径约为200nm,深度约250nm。图4为采用光学显微镜在暗场下观测该样品中空腔302密度分布的照片,其密度约为5e7cm-2。图中所示的亮点即为空腔302。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1