用于三维NAND硬膜应用的纳米结晶金刚石碳膜的制作方法

文档序号:12513833阅读:284来源:国知局
用于三维NAND硬膜应用的纳米结晶金刚石碳膜的制作方法与工艺

本文所公开的实施方式一般涉及包括惰性碳膜的器件器件。更具体地,实施方式一般涉及纳米结晶金刚石膜。



背景技术:

随着半导体工业进入新一代的具有更高性能与更大功能性的集成电路(IC),形成这些IC的元件的密度增加,同时个别部件或元件之间的尺寸(dimension)、大小(size)、与间距减少。虽然在过去这样的减少仅受限于使用光刻界定结构的能力,但尺寸是以μm或nm测量的器件的几何特征已产生新的限制因素,所述限制因素诸如为金属元件的导电率、在元件之间所用的绝缘材料的介电常数、或是三维NAND或DRAM工艺中的挑战。这些限制可受惠于更耐久且更高硬度的硬膜。

厚的碳硬膜广为所知,且常用作POR膜。然而,随着DRAM与NAND将其规模持续缩小降至低于10nm的工艺必要条件时,预料当前的碳硬膜组成物是不足够的。此规模缩小将要求更高深宽比的深接触孔或沟槽蚀刻。高深宽比蚀刻问题包括阻塞、孔洞形状扭曲、与图案变形、顶部关键尺寸膨大、线弯折、轮廓弓形化,上述问题通常在这些应用中观察到。许多蚀刻挑战取决于硬膜材料性质。深接触孔变形是由于硬膜较低密度与不良的热导率。狭缝图案变形或线弯折是由于硬膜材料较低的选择性与应力。所以,期望有一种具有更高的密度、更高的蚀刻选择性、较低的应力与绝佳的热导率的蚀刻硬膜。

纳米结晶金刚石已知是高硬度材料。由于纳米结晶金刚石材料有诸如极高的硬度、化学惰性以及高热导率之类的非常见的性质,所以纳米结晶金刚石材料可用于抗磨耗涂层、光学窗、表面声波器件和热散播件。但是,纳米结晶金刚石膜尚未被应用于半导体制造工艺。

因此,需要更高硬度的膜以用于半导体器件。



技术实现要素:

本文所公开的实施方式一般地涉及纳米结晶金刚石层。通过将晶粒尺寸控制在2nm至5nm之间,可在半导体器件相关方面利用纳米结晶金刚石膜。这些纳米结晶金刚石膜可用在各式各样应用中,诸如纳米结晶金刚石层用作为蚀刻工艺期间的硬膜。在一个实施方式中,一种器件可包括:基板,具处理表面与支撑表面;器件层,形成在处理表面上;以及纳米结晶金刚石层,形成于处理层上,所述纳米结晶金刚石层具有介于2nm至5nm之间的平均晶粒尺寸。

在另一个实施方式中,一种用于处理基板的方法可包括:将基板定位在处理腔室中,所述基板具有处理表面与支撑表面;在所述处理表面上沉积器件层;在器件层上沉积纳米结晶金刚石层,所述纳米结晶金刚石层具有介于2nm至5nm之间的平均晶粒尺寸;图案化纳米结晶金刚石层;蚀刻器件层以形成特征;以及从器件层的表面移除任何残留的纳米结晶金刚石层。

在另一个实施方式中,一种器件可包括:基板,具处理表面与支撑表面;多个器件层,形成于处理表面上,所述器件层形成三维NAND结构的一个或多个部件;多个通道,形成为穿过器件层,所述多个通道的每一个连接所述一个或多个部件的至少一个;以及纳米结晶金刚石层,形成在处理层上,所述纳米结晶金刚石层具有介于2nm至5nm之间的平均晶粒尺寸。

附图说明

因此,以上简要总结的本公开内容的上述特征可被详细的理解的方式、对本公开内容更加特定的描述可以通过参考实施方式获得,所述实施方式中的一些示出于附图之中。然而,值得注意的是,所述附图仅示出了本公开内容的典型的实施方式,并且所述附图因此并不会被视为对本公开内容范围的限制。

图1是根据一个或多个实施方式的所配置的CVD处理腔室的示意性截面视图;

图2是根据一个或多个实施方式的纳米结晶金刚石层的侧视图;以及

图3是根据一个或多个实施方式的以纳米结晶金刚石层处理基板的方法的流程图。

为了促进理解,已在尽可能的情况下,使用相同的参考数字指定附图中共通的相同的元件。可以考虑到的是,一个具体实施方式中的元件和特征可有利地整合于其它具体实施方式中,而无需额外的说明。

具体实施方式

本文公开的实施方式一般地涉及基板上所形成的纳米结晶金刚石层。纳米结晶金刚石层提供更高密度、更高蚀刻选择性、更低应力和绝佳热导率,上述性质是处理基板中低于10nm边界的特征所需的。下文中,参考附图来更清楚地描述实施方式。

图1是CVD处理腔室100的示意性截面视图,CVD处理腔室100可用于根据本文所述的实施方式沉积以碳为基础的层。可适于执行本文所述的碳层沉积方法的处理腔室是化学气相沉积腔室,所述腔室可购自美国加州Santa Clara的应用材料公司。应当应了解的是,下文所述的腔室为示例性腔室,而其他腔室(包括来自其他制造商的腔室)可与本公开内容的方面一并使用或经修饰而完成本公开内容的方面。

处理腔室100可为处理系统(未示出)的一部分,所述处理系统包括多个处理腔室,所述多个处理腔室连接中央传递室(未示出)且由机械手(未示出)所服务。处理腔室100包括界定处理空间112的壁106、底部108与盖110。壁106与底部108可由单一块铝所制造。处理腔室100也可包括泵送环114,泵送环114将处理空间112流体连通(fluidly)耦接至排气口116及其他泵送部件(未示出)。

基板支撑组件138可被加热,且基板支撑组件138可中央设置在处理腔室100内。基板支撑组件138于沉积工艺期间支撑基板103。基板支撑组件138通常由铝、陶瓷、或铝与陶瓷的组合所制造,且包括至少一个偏压电极132。

真空通口可用于在基板103与基板支撑组件138之间施加真空,以于沉积工艺期间将基板103固定到基板支撑组件138。偏压电极132可例如设置在基板支撑组件138中,并耦接偏压电源130A与130B,以在处理的同时将基板支撑组件138和定位在基板支撑组件138上的基板103偏压至预定的偏压电力水平。

可独立地配置偏压电源130A与130B,以于各种频率将电力递送到基板103与基板支撑组件138,所述频率为诸如约1MHz至约60MHz的频率。可在不偏离本文所述实施方式的情况下而运用本文所述的频率的各种排列组合。

通常,基板支撑组件138耦接心柱(stem)142。心柱142提供基板支撑组件138与处理腔室100的其他部件之间的电导线、真空和气体供应线路所用的导管。此外,心柱142将基板支撑组件138耦接至升降系统144,所述升降系统144于升高位置(如图1所示)与降下位置(未示出)之间移动基板支撑组件138,以促进机械传送。波纹管146提供处理空间112与处理腔室100外的大气之间的真空密封,同时促进基板支撑组件138的移动。

喷头118通常可耦接至盖110的内侧120。进入处理腔室100的气体(即,处理气体与其他气体)通过喷头118并进入处理腔室100。喷头118可配置成提供均匀气流给处理腔室100。均匀的气流是促进基板103上均匀的层形成所期望的。包括气源104的远程等离子体源105可耦接至处理空间112。如本文所示,诸如远程等离子体产生器之类的远程活化源用于生成反应性物种的等离子体,所述反应性物种之后被递送至处理空间112中。示例性的远程等离子体产生器可购自诸如MKS Instruments公司及Advanced Energy Industries公司之类的供应商。

此外,等离子体电源160可耦接至喷头118以使通过喷头118朝向基板支撑组件138上设置的基板103的气体赋有能量。等离子体电源160可提供射频(RF)电力。

处理腔室100的功能可由运算装置154所控制。运算装置154可以是任何形式的通用计算机的其中一种,所述通用计算机可用在工业设施中以控制各种腔室与次处理器。运算装置154可包括计算机处理器156与内存158。内存158可包括任何适合的内存,诸如随机存取内存、只读内存、闪存、硬盘、或其他形式的远程或本地端数字储存装置。运算装置154可包括各种支持电路162,支持电路162可耦接至计算机处理器156以用常规方式支持计算机处理器156。如需要,软件程序可储存于内存158中或由位于远程的第二运算装置(未示出)所执行。

运算装置154可进一步包括一个或多个计算机可读介质(未示出)。计算机可读介质通常包括任何位于远程或本地端的装置,所述装置能够储存可由运算装置检索的信息。可与本文所述的实施方式一并使用的计算机可读介质的实例包括固态内存、软盘、外接或内部硬盘和光学内存(例如CD、DVD、BR-D等)。在一个实施方式中,内存158可以是计算机可读介质。软件程序可储存在计算机可读介质上,以由运算装置执行。

软件程序在执行时会将通用计算机转换成特定处理计算机,所述特定处理计算机控制腔室操作而执行腔室处理。或者,软件程序可于硬件中执行如应用特定的集成电路或其他类型的硬件实施方式,或是软件与硬件的组合。

图2是根据一个实施方式的上面形成有纳米结晶金刚石层的器件200,在所述实施方式中,器件200是NAND器件。器件200包括基板202、多个器件层204和纳米结晶金刚石层206。

基板202可以是本领域中公知的任何半导体基板,诸如单晶硅、四四族化合物(诸如硅锗或硅锗碳)、三五族化合物、二六族化合物、此类基板上的外延层、或任何其他半导体或非半导体材料(诸如氧化硅、玻璃、塑料、金属、或陶瓷基板)。基板202可包括于基板202上制造的集成电路,诸如内存器件(未示出)用的驱动电路。

多个器件层204可形成于基板202的表面上。多个器件层204可为形成三维垂直NAND结构的部件的沉积层。由多个器件层(例如电介质或分离式电荷储存区段)的全部或部分所形成的部件。电介质部分可独立地选自任何一种或多种相同或不同的电绝缘材料,诸如氧化硅、氮化硅、氮氧化硅、或其他高k绝缘材料。在一个实施方式中,所述结构可由以交替方式沉积的成对的氧化硅/氮化硅所构成。所述氧化硅/氮化硅对的总宽度可介于100至600埃之间。所述氧化硅/氮化硅对的数目可大于10对,诸如32对、64对、或更多对。在一个实施方式中,所述氧化硅/氮化硅对的数目介于10至64对之间。总厚度可介于约2微米至约4微米之间。

分离式电荷储存区段可包括导电(例如,金属或金属合金,诸如钛、铂、钌、氮化钛、氮化铪、氮化钽、氮化锆、或诸如硅化钛、硅化镍、硅化钴之类的金属硅化物、或前述材料的组合)或半导体(例如多晶硅)浮动栅极、导电纳米粒子、或分离式电荷储存电介质(例如氮化硅或其他电介质)特征。然而,应了解的是,可使用电介质电荷储存特征或其他浮动栅极材料取代上述材料。

纳米结晶金刚石层206是结晶碳层,具有高sp3含量与小型结晶尺寸。非晶形与纳米结晶碳中最常见的化学键是三配位(sp2键结)与四配位(sp3键结)。在sp3配置中,碳原子形成四个sp3轨道,产生对相邻原子的强σ键。具有高sp3含量的碳膜中,sp3含量大于80%,诸如大于约90%、或大于约95%。本文所示的纳米结晶金刚石层206具有高sp3含量(例如,纳米结晶金刚石晶粒)且由sp2基质(例如石墨)所支撑。小结晶尺寸是小于6nm的结晶尺寸,诸如介于2nm至5nm之间。纳米结晶金刚石层可具有方均根高度差小于6nm的表面粗糙度。纳米结晶金刚石层可具有介于2.5g/cm3至3.5g/cm3之间的密度,诸如3g/cm3。纳米结晶金刚石层具有介于-50MPa至-150MPa之间的应力,诸如介于-80MPa至-120MPa之间的应力。相较于当前可获得的类似金刚石的碳膜,纳米结晶金刚石层可具有介于2至4之间的全面蚀刻选择性。

器件200包括通道208。本文所示的通道208形成为穿过纳米结晶金刚石层206与多个器件层204。通道208可实质上垂直基板202的第一表面210。例如,通道208可具有柱状形状。通道208可实质上垂直基板202的第一表面210延伸。可选的主体接触电极(未示出)可设置在基板202中,以从下方提供对通道208的连接部分的主体接触。在一些实施方式中,通道208可为填充的特征。在一些其他实施方式中,通道208可以是中空的。在这些实施方式中,可形成绝缘填充材料212以填充由通道208所环绕的中空部分。绝缘填充材料212可包括任何电绝缘材料,诸如氧化硅、氮化硅、氮氧化硅、或其他高k绝缘材料。

任何适合的半导体材料可用于通道208,所述材料例如硅、锗、硅锗、或其他化合半导体材料,诸如三五族、二六族、或者是导电(或半导体)氧化物,或是其他材料。半导体材料可为非晶形、多晶、或单晶。半导体通道材料可通过任何适合的沉积方法形成。例如,在一个实施方式中,半导体通道材料是由低压化学气相沉积(LPCVD)所沉积。在一些其他实施方式中,半导体通道材料可以是通过将最初沉积的非晶形半导体材料再结晶而形成的再结晶多晶半导体材料。

图3是根据一各或多个实施方式的方法300的流程图,方法300用于以纳米结晶金刚石层处理基板。用于器件层的蚀刻化学(etching chemistry)实质上是对纳米结晶金刚石呈惰性。就此而言,本文所述的实施方式使用包括纳米结晶金刚石层的硬膜,而非传统的硬膜。传统的硬膜具有许多限制条件,这些限制条件会容许上文所描述的结构性缺陷。一个实例中,顶部关键尺寸膨大部分是由于较少硬膜残留,这是由传统硬膜与下面的层之间不良的蚀刻选择性所引发。在另一个实例中,深接触孔变形是由于硬膜较低的密度与不良热导率所造成。狭缝图案变形或线弯折是由于HM材料较低的选择性与应力所造成。纳米结晶金刚石层容许高深宽比特征得以形成,同时避免特征的非圆形蚀刻的弓形化与弯折以及避免上文所述的图案崩溃,上述现象与传统硬膜有关连。纳米结晶金刚石层因具高物理抵抗性、呈化学惰性和有高热导率而达成这些优势。拥有高物理抵抗性和呈化学惰性容许有优于先前已知的硬膜更为改善的蚀刻选择性。改良的蚀刻选择性使良好的蚀刻轮廓得以维持。进一步而言,纳米结晶金刚石层比标准碳硬膜更接近金刚石,而给予层高热导率。蚀刻工艺期间,累积显著量的热。此热若仍堵塞(trap)在下面的层中,会产生翘曲。纳米结晶金刚石层容许有效的热传,而阻止翘曲或其他与热相关的扭曲。纳米结晶金刚石层进而可通过在含氧气体或含氮气体的存在下灰化而轻易且选择性地移除。

方法300开始于302,步骤为将基板定位在处理腔室中,所述基板具有处理表面与支撑表面。所述基板可为任何组成,诸如结晶硅基板。所述基板也可包括一个或多个特征,诸如介层窗(via)或互连件。所述基板可支撑在基板支撑件上。基板支撑件可维持在特定的温度范围。在一个实施方式中,所述基板支撑件维持在介于约500摄氏度至约650摄氏度的温度范围中。

与一个或多个实施方式一并使用的处理腔室可为任何具远程等离子体源的CVD处理腔室,诸如上文所述的处理腔室100或来自其他制造商的腔室。下文所述的流速与其他处理参数是针对300mm的基板。应了解的是,可根据受处理的基板的尺寸以及所用的腔室类型调整这些参数但不可脱离本文公开的实施方式。

如本文所用的“基板表面”是指形成于基板上且在上面可执行膜处理的任何基板或材料表面。例如,可在上面执行处理的基板表面取决于应用而包括诸如下述的材料:硅、氧化硅、氮化硅、掺杂硅、锗、砷化镓、玻璃、蓝宝石、以及任何其他材料,诸如金属、金属氮化物、金属合金、以及其他导电材料。基板表面也可包括介电材料,诸如二氧化硅以及碳掺杂的氧化硅。基板可具有各种尺寸,诸如200mm、300mm或其他直径的晶片,以及矩形或方形嵌板(pane)。

于304,器件层随后可沉积于处理表面上。器件层可以是参考图2所述的器件层。进一步而言,器件层可以是多个器件层的其中一层。所述多个器件层可协同作用,以形成一个或多个特征或部件,诸如三维NAND器件的部件。

于306,纳米结晶金刚石层随后沉积在器件层上。纳米结晶金刚石层可具有小于6nm的平均晶粒尺寸。在一个实例中,纳米结晶金刚石层具有介于2nm至5nm之间的平均晶粒尺寸。小晶粒尺寸(诸如低于6nm)容许更好地控制硬膜层(诸如纳米结晶金刚石层)与下面的层之间的黏着及容许硬膜层有更小尺寸。沉积期间较大的晶粒尺寸的随机定位将会增加硬膜层与下面的层之间的非接触空间的数目。非接触空间是硬膜层与下面的层之间硬膜层不直接接触下面的层的空间,这是由于硬膜层的晶粒形状与尺寸所致,且也是由于下面的层本身的粗糙度所致。较大的非接触空间减少层的黏着,且减少硬膜层与下面的层之间的热传。非接触空间的尺寸因较小的晶粒而减少,因为较小的晶粒在沉积为层的一部分时可比较大的晶粒更为紧密地堆积。另外,由于较小的晶粒尺寸,所述层可制作得比较大的晶粒尺寸的层还要薄,同时维持与下面的层有良好的接触。

最后,较小的晶粒尺寸容许硬膜层中较小的粗糙度。线宽粗糙度(LWR)也已知为线边缘粗糙度(LER),所述线宽粗糙度是硬膜地势或特征的宽度上的过量变化。由于LWR或LER所致之粗糙度与变化可能是不利的,因为所述变化可能在蚀刻期间转移到沟槽上且最终转移到电路。随着硬膜地势的特征尺寸减少,这些变化变得更为显著。从硬膜层形成的特征的关键尺寸可透过减少LER或LWR的效应而制作得更小。可透过拥有较小的晶粒尺寸从而拥有较小粗糙度并进而减少LER或LWR。

纳米结晶金刚石层的沉积可开始于在第一压力下递送沉积气体至远程等离子体腔室。所述沉积气体包括含碳前驱物与含氢气体。在此实施方式中,含碳前驱物是烷类前驱物。所述烷类前驱物可为饱和的非分支碳氢化合物,诸如甲烷、乙烷、丙烷以及前述物质的组合。其他烷类前驱物包括正丁烷、正戊烷、正己烷、正庚烷、正辛烷以及前述物质的组合。所述含氢气体可包括H2、H2O、NH3、或其他含氢分子。所述沉积气体可进一步包括惰性气体。所述惰性气体可以是稀有气体,诸如氩气。

沉积气体随后递送至远程等离子体腔室。所述沉积气体可于腔室内混合或是在进入腔室之前先混合。沉积气体于相对高的压力下递送,所述压力诸如为大于5托耳。在一个实施方式中,所述沉积气体是在介于约10托耳至100托耳(诸如约50托耳)之间递送。

沉积气体随后可活化而产生活化的沉积气体。沉积气体可通过使用电源形成等离子体而活化。可使用能够将气体活化成反应性物种且维持反应性物种的等离子体的任何电源。例如,可使用以射频(RF)、直流(DC)、或微波(MW)为基础的放电技术。电源产生源等离子体电力,所述源等离子体电力被施加到远程等离子体腔室以生成和维持沉积气体的等离子体。在使用射频电力用于源等离子体电力的实施方式中,对于300mm基板而言,可在从约2MHz至约170MHz的频率和介于500瓦至5000瓦的功率水平下递送源等离子体电力(介于基板顶部表面处0.56W/cm2至基板顶部表面处5.56W/cm2之间)。其他实施方式包括,对于300mm基板而言,在介于1000瓦至3000瓦的功率水平下递送源等离子体电力(介于基板顶部表面处1.11W/cm2至基板顶部表面处3.33W/cm2之间)。可根据受处理的基板的大小调整施加的功率。

根据远程等离子体腔室中的高压及其他因素,离子化物种的形成将会最小化,同时自由基的形成会最大化。不希望受理论所限制,相信纳米结晶金刚石层应主要为sp3键而非sp2键。进一步而言,相信可通过在沉积所述层期间使自由基物种的数目增加超过离子化物种,而达成更多的sp3键结。离子化物种具高能量,可相较于自由基需要更多的移动空间。通过增加压力,电子能量减少,同时与其他分子碰撞的可能性增加。电子能量的减少及碰撞数目的增加使自由基的形成比离子形成更为有利。

一旦活化,所述活化的沉积气体随后递送通过具有第二压力的第二空间。所述第二空间可以是第二腔室或是处理空间与远程等离子体腔室之间的另一个受限区域。在一个实例中,第二空间是远程等离子体腔室与处理空间之间的连接件。

第二压力小于第一压力。根据流速、总体积的改变、或前述的组合的从远程等离子体腔室到第二空间的移动造成活化沉积气体在第二空间中压力减少。所述压力减少而容许从自由基物种更好地沉积,同时减少离子化物种与沉积层的碰撞。在一个实施方式中,第二压力介于约1托耳至约5托耳之间。

活化的沉积气体随后递送到处理腔室的处理空间中的基板。所述基板可具任何组成,诸如结晶硅基板。所述基板也可包括一个或多个特征,诸如介层窗或互连件。所述基板可支撑在基板支撑件上。基板支撑件可维持在特定的温度范围。在一个实施方式中,所述基板支撑件维持在介于约500摄氏度至约650摄氏度的温度范围中。

所述基板可预先种晶(preseed)以沉积纳米结晶层。在一个实施方式中,所述基板于种晶溶液中浸润或以其他方式于种晶溶液中涂布。种晶溶液是以乙醇为基础的纳米金刚石悬浮液。所述基板于超声处理期间在所述悬浮液中浸润,而使悬浮的纳米金刚石中的一些纳米金刚石黏着到基板表面。可运用其他的预先种晶技术,但不可脱离本文所述的实施方式。

与一个或多个实施方式一并使用的处理腔室可以是具远程等离子体源的任何CVD处理腔室,诸如上文所述的处理腔室100或购自其他制造商的腔室。下文所描述的流速与其他处理条件处理参数是针对300mm的基板。应了解的是,可根据受处理的基板的尺寸以及所用的腔室类型调整这些参数但不可脱离本文公开的实施方式。

如本文所用的“基板表面”是指形成于基板上且在上面可执行膜处理的任何基板或材料表面。例如,可在上面执行处理的基板表面取决于应用而包括诸如下述的材料:硅、氧化硅、氮化硅、掺杂硅、锗、砷化镓、玻璃、蓝宝石以及任何其他材料,诸如金属、金属氮化物、金属合金以及其他导电材料。基板表面也可包括介电材料,诸如二氧化硅以及碳掺杂的氧化硅。基板可具有各种尺寸,诸如200mm、300mm、或其他直径的晶片,以及矩形或方形嵌板(pane)。

处理空间于第三压力接收活化的沉积气体,所述第三压力小于第二压力。所述第三压力可以是低于2托耳的压力,诸如介于约500毫托耳至1托耳之间的压力。

纳米结晶金刚石层进而沉积于基板表面上。来自先前形成的活化沉积气体的自由基冲射于基板表面上,以形成纳米结晶金刚石层。相信低压对于从远程形成的自由基在纳米结晶金刚石层中形成sp3键结是有利的。远程等离子体源中较高的压力容许优先形成自由基,而处理空间中的低压容许从先前形成的自由基中有更均匀的沉积。

一旦沉积纳米结晶金刚石层,则将含氢气体递送到远程等离子体腔室。含氢气体可于单独的时间递送,或可从前一步骤维持所述气体流动。此部分无烷类前驱物存在。含氢气体可以惰性气体递送,或作为多种含氢气体的组合的一部分。

含氢气体随后活化而产生活化含氢气体。使用相同的压力、温度、功率类型、功率范围和其他形成等离子体的参数(如参考形成活化沉积气体所讨论的参数),可将含氢气体转换成等离子体。

一旦形成活化的含氢气体,所述气体可递送至处理空间中的基板。所述处理空间与基板可维持在相同压力、温度和前文所述的其他参数。沉积工艺期间,相信聚合物可形成于沉积的纳米结晶金刚石层的表面上。所述聚合物可影响进一步的沉积,且另外劣化沉积的层的性能。通过将活化的含氢气体递送到沉积的层,所述聚合物成为挥发性,且可随后从腔室移除,使得他们不会影响后续的沉积工艺。

之后可重复上述元件以沉积期望厚度的纳米结晶金刚石堆叠。每一沉积循环产生介于约20埃至约200埃的厚度,诸如约100埃。通过重复上述步骤,先前的层作为下一沉积的种晶层,而容许总体期望厚度得以沉积。在一个实施方式中,纳米结晶金刚石堆叠沉积达1μm厚。

器件层可预先种晶以供沉积纳米结晶金刚石层。在一个实施方式中,基板于种晶溶液中浸润或以其他方式于种晶溶液中涂布。种晶溶液是以乙醇为基础的纳米金刚石悬浮液。所述基板于超声处理期间在所述悬浮液中浸润,而使悬浮的纳米金刚石中的一些纳米金刚石黏着到基板表面。可运用其他的预先种晶技术,但不可脱离本文所述的实施方式。

可使用沉积气体沉积纳米结晶金刚石层。所述沉积气体包括含碳前驱物与含氢气体。在此实施方式中,含碳前驱物可以是烷类、烯类或炔类前驱物。烷类前驱物可以是饱和的非分支碳氢化合物,诸如甲烷、乙烷、丙烷及前述物质的组合。其他烷类前驱物包括正丁烷、正戊烷、正己烷、正庚烷、正辛烷及前述物质的组合。所述含氢气体可包括H2、H2O、NH3或其他含氢分子。所述沉积气体可进一步包括惰性气体。所述惰性气体可以是稀有气体,诸如氩气。

于308,随后可图案化及蚀刻纳米结晶金刚石层。图案化可包括于纳米结晶金刚石层上沉积光刻胶。所述光刻胶随后暴露至适当波长的辐射,以产生图案。之后将所述图案蚀刻进入光刻胶、再进入纳米结晶金刚石层。

于元件310,之后可蚀刻器件层以形成特征。以形成于纳米结晶金刚石层中的图案,之后可蚀刻器件层。器件层是通过蚀刻剂蚀刻,所述蚀刻剂对器件层有优于纳米结晶金刚石层的选择性。器件层是以本领域中所公知的化学条件与技术所蚀刻。在一个实施方式中,蚀刻剂是含氯蚀刻剂。

于元件312,纳米结晶金刚石层随后可从器件层的表面移除。纳米结晶金刚石层可例如透过使用等离子体灰化工艺从器件层表面灰化。等离子体灰化工艺可包括活化含氧气体(诸如O2)。当使用O2时,灰化速率为约900埃/分或更高。纳米结晶金刚石层可使用高深宽比蚀刻系统灰化,所述系统诸如Centura Avatar蚀刻系统,可购自位在美国加州Santa Clara的应用材料公司。

表1显示非晶形碳硬膜(ACH)与纳米结晶金刚石硬膜之间的蚀刻选择性比较和伴随的膜性质。

表1

所述膜在硅基板上沉积至均匀厚度。所沉积的第一膜是ACH膜。所述ACH膜是使用CVD工艺从甲烷与含氢前驱物沉积。在550摄氏度的沉积温度下,沉积速率是约2500埃/分。RMS粗糙度为约0.46。密度为1.45g/cm3。应力为约50MPa,且热导率为低于1W/(m*K)。经标准化至标准ACH膜的ACH的全面蚀刻选择性为约1。ACH膜可由O2与N2等离子体处理移除。

沉积的第二膜是NCD膜。NCD膜是使用MWCVD工艺从甲烷与含氢前驱物沉积。在600摄氏度的沉积温度下,沉积速率是约170埃/分。RMS粗糙度为约7.54。密度为3.2g/cm3。应力为约-207MPa,且热导率为约12W/(m*K)。经标准化至标准ACH膜的NCD的全面蚀刻选择性为约2.4。NCD膜可由O2与N2等离子体处理移除。

上表呈现ACH与NCD膜的全面膜性质(诸如蚀刻速率、选择性与可剥除性)之间的比较。如本文所示,NCD膜具有比ACH膜高得多的蚀刻选择性。进一步而言,NCD可由相同蚀刻工艺蚀刻和剥除。

虽然前述内容涉及设备与方法的实施方式,但可不脱离所述设备与方法的基本范围而设计其他与进一步的实施方式,且所述设备与方法的范围由随后的权利要求所确定。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1