二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用与流程

文档序号:18877578发布日期:2019-10-15 18:18阅读:448来源:国知局
二维有序TiO2纳米井薄膜的制备方法及在自供能光电器件中的应用与流程

本发明属于光电器件技术领域,具体涉及二维有序TiO2纳米井薄膜的制备方法,以及该TiO2纳米井薄膜在构筑性能可控的自供能型光电器件中的应用。



背景技术:

异质结型光电探测器利用光伏特性能同时有效的提高器件的光响应度和响应速度,其原理在于内建电势差的存在能有效分离光生电子空穴对,从而使得器件在不需要偏压驱动的情况下可以完全独立且持续稳定的工作,这种在零偏压下工作的新型器件被称为自供能型光电探测器(H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Adv. Mater.2016, 28, 403)。而目前半导体光电器件的制备工艺复杂、耗费时间且价格昂贵,使实验室规模的研究难以普及到产业化生产。

TiO2作为一种非常有潜力的n型宽禁带半导体材料,因其独特的物理稳定性、化学惰性和突出的紫外光吸收特性(锐钛矿带隙为3.2 eV),被广泛应用在新型日盲紫外光探测器上(K. Lee, A. Mazare, P. Schmuki, Chem. Rev.2014, 114, 9385)。在众多的合成手段上,阳极氧化是一种普适简单的自组装方法。通过对钛金属衬底的电化学氧化得到一维有序的TiO2纳米管阵列,可以实现低成本大面积制备(P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed.2011, 50, 2904)。可惜的是研究表明电荷在TiO2纳米管基器件中的传输主要是通过截面的相邻管之间,并没有充分有效地利用一维管道(L. Wang, W. Yang, H. Chong, L. Wang, F. Gao, L. Tian, Z. Yang, RSC Adv.2015, 5, 52388; G. Liu, N. Hoivik, X. Wang, S. Lu, K. Wang, H. Jakobsen, Electrochim. Acta2013, 93, 80);此外,由于管间距延长了电子的传输通道且增加了晶面接触,大大降低了电子迁移率,从而导致响应速度很慢(X. Wang, W. Song, B. Liu, G. Chen, D. Chen, C. Zhou, G. Shen, Adv. Funct. Mater.2013, 23, 1202)。另一方面,目前已报道的TiO2基自供能光电探测器多采用了光电化学池组装工艺,其中的液态电解液的易挥发大大影响了器件的稳定性,不利于实际生产应用(Q. Zhu, C. Xie, H. Li, C. Yang, D. Zeng, Nano Energy2014, 9, 252. J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, E. Xie, Nanoscale2015, 8, 50)。所以现仍缺乏关于全固态自供能型TiO2基紫外光探测器的研究报道。另目前此类器件在性能上存在光电流不稳定,强度不够高和反应速率有限等缺点。



技术实现要素:

本发明的目的在于提供一种合成工艺简单可控且可大规模生产的二维有序TiO2纳米井薄膜的制备方法,并利用本发明方法制得的TiO2纳米井薄膜与无机、有机半导体复合,构筑新型异质结自供能型光电探测器件。

本发明还提供无机层状介孔NiO纳米花结构与TiO2纳米井复合的TiO2/NiO复合物的制备方法,和其自供能特性的测试。

本发明还提供具有工艺可控的有机半导体聚苯胺纳米结构与TiO2纳米井复合的TiO2/PANI复合物的制备方法,和其自供能特性的测试。

本发明提出的二维有序的TiO2纳米井薄膜的制备方法,具体步骤为:

以金属钛片为阳极,铂丝网为阴极,同时插入30~40wt%的氟化铵、5~20%的二甲亚砜和70~90%的乳酸的混合液中,施加40~70 V电压阳极氧化7~12小时,制得TiO2纳米管阵列薄膜,该薄膜厚度为1~5微米,管径为150~350纳米;

将制得的TiO2纳米管阵列薄膜用物理剥离的方法除去并用大量的乙醇冲洗干燥,然后置于马弗炉中加热,升温速率为3~10℃/min,至400~600℃,煅烧1-3小时,制得TiO2纳米井阵列薄膜,该薄层TiO2纳米井阵列的厚度为50~200纳米,井口径为100~300纳米。

所述的物理剥离方法可以是胶带撕扯,大功率超声。超声时,超声溶液可以为丙酮、乙醇祸水。

本发明提出的TiO2/NiO异质结复合物光电探测器件的制备方法,具体步骤为:

以上述制得TiO2纳米井薄膜为基底,将无机镍盐,尿素溶解于水介质中,通过低温75~95℃水热反应12~48小时,然后置于马弗炉中加热,升温速率为3~10℃/min,至400~600℃,煅烧1-3小时,制得TiO2纳米井与层状NiO纳米花结构的复合物TiO2/NiO;

在制得的TiO2/NiO复合物上滴加大小为0.003~0.005 cm2的银浆作为电极,构筑得到“金属电极-半导体薄膜-金属电极”结构的光电器件,即TiO2/NiO异质结复合物光电探测器件。

其中,所述的层状NiO纳米花结构具有介孔特性,孔径小于20 nm,花瓣侧面高度500~900 nm。

制备的TiO2/NiO复合物光电器件,具有如下特点:

在外界光源的照射下,施加零偏压,器件中的TiO2和NiO之间的p-n结产生内建电势差,致使光生电子空穴对迅速分离,并在器件两端检测到的明显的光电流,大小可以达到300~400 pA,光电流与暗电流之比可以达到10~30倍;其上升和下降时间均可在10 s以内;该器件具有紫外光响应,日盲的特点,在280 ~ 700 nm的光源照射下,仅紫外区280~400 nm间具有良好的光响应度,零偏压下可达到40~70 μA/W。

本发明提出的TiO2/PANI异质结复合物光电探测器件的制备方法,具体步骤为:

步骤一:配制含10~50 μL苯胺单体的1 M硫酸水溶液10-50 mL,并放入上述制得的TiO2纳米井薄膜基底;

步骤二:配制含30~90 mg过硫酸铵的1 M硫酸水溶液10-50 mL;

步骤三:将步骤二的溶液迅速加入步骤一的溶液中,通过控制温度的原位聚合反应得到形貌可控的聚苯胺纳米结构的TiO2/PANI复合物;

步骤四:在制得的TiO2/PANI复合物上滴加大小为0.003~0.005 cm2的银浆作为电极,构筑“金属电极-半导体薄膜-金属电极”结构的光电器件,即TiO2/PANI异质结复合物光电探测器件。

本发明中,所述通过控制温度的原位聚合反应得到形貌可控的聚苯胺纳米结构的TiO2/PANI复合物,当控制温度为室温10~25℃,原位聚合反应制得直径为10~100 nm的聚苯胺纳米纤维随机的分布在TiO2纳米井表面上。

当控制温度为低温-10~0℃,原位聚合反应制得聚苯胺薄膜覆盖在TiO2纳米井的井沿上,留井底部的TiO2未被覆盖。

当控制温度为低温-10~0℃,原位聚合反应重复操作两遍,可制得聚苯胺纳米突簇堆积的薄膜完全覆盖住TiO2纳米井,聚苯胺膜厚度为200~400 nm。

所制备的TiO2/PANI复合物光电器件,具有如下特点:

在外界光源的照射下,施加零偏压,器件中的TiO2和聚苯胺之间的p-n结产生内建电势差,致使光生电子空穴对迅速分离,并在器件两端检测到的明显的光电流,大小可以达到0.2~35 nA,光电流与暗电流之比可以达到10~103倍;器件具有优异的快速响应性能,在脉冲激光的照射下,其上升和下降时间均可在35 ms以下;该器件具有紫外光响应,日盲的特点,在280 ~ 700 nm的光源照射下,仅紫外区280~400 nm间具有良好的光响应度,零偏压下可达到70~3700 μA/W。

本发明提出的两种TiO2纳米井基异质结复合物光电器件在不施加偏压驱动下具有很高灵敏度,超快响应速度和良好光谱选择性,可作为节能型高频紫外光探测器和高频光电转换器,在光通信、军事、医疗、光电存储、环境等领域有着广泛的应用前景。

本发明的优点在于:

1.制备原料简单易得,工艺简单可控,且可大规模生产,避开了其他合成技术中繁琐的操作步骤和对设备的高要求,成本低;制备全过程均采用绿色方法,对环境污染小;

2.反应操作简单,具有普适性,可以与无机、有机半导体材料复合制备异质结复合物;

3.器件组装工艺简单,成本低廉可大面积快速构筑,所制探测器无需外界电压驱动即可长期稳定工作,具有优异的紫外光自供能特性。

本发明避免了光电器件复杂昂贵的制备工艺,可实现大规模器件的快速构筑;利用p-n结的光伏效应,在零偏压驱动下使得光生载流子在内建电势作用下快速分离,实现器件的自供能,光电流稳定且响应速度超快,并对紫外光具有良好选择性,可作为节能型高频探测器和高频光电转换器,应用在光通信、军事、医疗、光电存储等领域。

附图说明

图1为TiO2纳米井薄膜、TiO2/NiO和TiO2/PANI复合物制备过程示意图。

图2为实施例1中的TiO2纳米管阵列的微观扫描电镜形貌,其中,(a)表面图,(b)侧面图;以及实施例1中的TiO2纳米井薄膜的微观扫描电镜形貌,其中,(c)表面图,(d)侧面图。

图3为实施例2的TiO2/NiO复合物的微观扫描电镜形貌,其中,(a~c)表面图,(d)侧面图。

图4为实施例2中的TiO2/NiO复合物器件的光电响应曲线,其中,(a)0V偏压下的电流-时间曲线;(b)0V偏压下的响应度曲线。

图5为TiO2/PANI复合物的微观扫描电镜形貌,其中,(a~b):实施例3中-5℃下反应的TiO2/PANI复合物;(c~d)实施例3中10℃下反应的TiO2/PANI复合物;(e~f)实施例3中10℃下二次聚合反应的TiO2/PANI复合物。

图6为TiO2/PANI复合物器件的光电响应曲线,包括频谱响应度曲线、电流-时间曲线和脉冲激光照射下的快速响应曲线,其中,(a~c)实施例4中的器件;(d~f)实施例5中的器件;(g-i)实施例6中的器件。

具体实施方式

下面通过具体实施例,进一步说明本发明的内容,以便更好理解本发明的内容而非限制本发明的保护范围。

本发明制得的TiO2纳米井基异质结复合物光电器件的性能表征如下:

TiO2纳米井基异质结复合物的显微形貌由Zeiss公司的Sigma场发射扫描电镜(FESEM)测得。

TiO2纳米井基异质结复合物器件的光电性能由Keithley公司的4200-SCS半导体表征仪测得。

各测试都在室温环境条件下进行,除非另有说明。

实施例1、 TiO2纳米井薄膜的制备

取2cm×2cm大小,纯度为99.6%的钛片为阳极,铂丝网为阴极,35wt%的氟化铵、10%的二甲亚砜和85%的乳酸的混合液为电解液,施加45 V电压阳极氧化12小时,制得TiO2纳米管阵列薄膜(形貌见图2,a~b);用大量乙醇清洗,氮气吹干,之后用胶带将制得的薄膜撕掉,再用乙醇清洗氮气吹干;之后将钛片放置于马弗炉中煅烧处理,程序设置为在85 分钟内从室温加热到450℃,并在该温度条件下保温120分钟,之后自然冷却至室温。将钛片基底取出,可得到锐钛矿型二维有序的TiO2纳米井薄膜(形貌见图2,c~d)。

重复以上操作步骤,将电压升至60 V,阳极氧化时间缩短至8.5小时,可得类似产物。

重复以上操作步骤,将保温温度升至500 ℃,保温时间减至60分钟,可得类似产物。

重复以上操作步骤,仅将保温时间减少至60 分钟,可得类似产物。

实施例2、 TiO2/NiO异质结复合物的制备和光电器件自供能特性的测试

分别取57 mg六水合氯化镍和288 mg尿素,溶解于100 mL去离子水的蓝盖玻璃瓶中,室温下搅拌10分钟后,将实施例1中制得的TiO2纳米井薄膜基底平放于玻璃瓶底,之后放入烘箱中90℃保温24小时,反应后自然冷却到室温。取出基底用水冲洗三次后放置于马弗炉中煅烧处理,程序设置为在140分钟内从室温加热到450℃,并在该温度条件下保温120 分钟,保温完成后自然冷却至室温。将基底取出可制得层状介孔NiO纳米化结构与TiO2纳米井的复合物TiO2/NiO(形貌见图3)。

重复以上操作步骤,将烘箱中保温时间延长至36小时,可得类似产物。

重复以上操作步骤,将马弗炉中保温温度升至500℃,保温时间减至60分钟,可得类似产物。

取实施例2中的TiO2/NiO复合物,分别在TiO2纳米井薄膜和NiO纳米花的两端滴加银浆,室温下干燥后形成“金属电极―半导体薄膜―金属电极”结构的光电探测器。随后通过光电测试系统,在0 V偏压和没有光照的条件下,器件的暗电流约为25 pA,在波长为350 nm的光照条件下,光电流为375 pA,光暗电流比14倍,上升和下降速度分别为1.2 s和7.1 s。该器件的截止波长为400 nm,紫外-可见抑制比为16,具有良好的紫外光选择性;另根据公式:Rλ=(Ilight- Idark)/PλSRλ:响应度,Ilight:光电流,Idark:暗电流,Pλ:特定波长光功率密度,S:有效光照面积)可算出0偏压下350 nm时的响应度约为42 μA/W,表明该器件在不提供外电压驱动下可实现紫外光的探测。

实施例3、 TiO2/PANI异质结复合物的制备

于烧杯中配制含有27.39 μL苯胺单体的1 M 硫酸水溶液20 mL,将实施例1中制得的TiO2纳米井薄膜基底平放于烧杯底部,之后迅速沿杯壁倒入另一份配置好的含有68.48 mg过硫酸铵的1 M硫酸水溶液20 mL。混合后在-5℃反应24小时,之后将基底取出,用水清洗三次后放置于在60℃的烘箱中干燥后可得到聚苯胺薄膜与TiO2纳米井的复合物TiO2/PANI(形貌见图5,a~b)。

重复以上操作步骤,将反应温度升至10℃反应24小时,可得到聚苯胺纤维与TiO2纳米井的复合物(形貌见图5,c~d)。

重复以上操作步骤二次,利用制得的TiO2/PANI复合物薄膜再次作为基底二次反应,增加复合物的厚度,可得聚苯胺突簇堆积的薄膜与TiO2纳米井的复合物(形貌见图5,e~f)。

实施例4、TiO2/PANI复合物的光电器件自供能特性的测试

取实施例3中-5℃反应24小时制得的TiO2/PANI复合物,分别在TiO2纳米井薄膜和聚苯胺的两端滴加银浆,室温下干燥后形成“金属电极―半导体薄膜―金属电极”结构的光电探测器。通过光电测试系统,在0 V偏压和没有光照的条件下,器件的暗电流约为45 pA,在波长为320 nm的光照条件下,光电流为3.3 nA,光暗电流比高达73倍,在脉冲激光的照射下,施加0偏压,上升和下降速度分别为4.5 ms和33.6 ms。此外,器件的截止波长为400 nm,紫外-可见抑制比为37,具有良好的紫外光选择性;0V偏压下320 nm时的响应度约为490 μA/W,表明该器件在不提供外电压驱动下具有很强的紫外光响应(见图6,a~c)。

实施例5、 TiO2/PANI复合物的光电器件自供能特性的测试

取实施例3中10℃反应24小时制得的TiO2/PANI复合物,分别在TiO2纳米井薄膜和聚苯胺的两端滴加银浆,室温下干燥后形成“金属电极―半导体薄膜―金属电极”结构的光电探测器。通过光电测试系统,在0 V偏压和没有光照的条件下,器件的暗电流约为40 pA,在波长为320 nm的光照条件下,光电流为32 nA,光暗电流比高达800倍,在脉冲激光的照射下,施加0偏压,上升和下降速度分别为3.8 ms和30.7 ms。此外,器件的截止波长为400 nm,紫外-可见抑制比为34,具有良好的紫外光选择性;0V偏压下320 nm时的响应度约为3600 μA/W,表明该器件具有非常优异的自供能特性(见图6,d~f)。

实施例6、 TiO2/PANI复合物的光电器件自供能特性的测试

取实施例3中10℃反应24小时且重复操作两次聚合反应制得的TiO2/PANI复合物,分别在TiO2纳米井薄膜和聚苯胺的两端滴加银浆,室温下干燥后形成“金属电极―半导体薄膜―金属电极”结构的光电探测器。通过光电测试系统,在0 V偏压和没有光照的条件下,器件的暗电流约为3 pA,在波长为320 nm的光照条件下,光电流为260 pA,光暗电流比高达86倍,在脉冲激光的照射下,施加0偏压,上升和下降速度分别为1.2 ms和22.8 ms。此外,器件的截止波长为400 nm,紫外-可见抑制比为78,具有良好的紫外光选择性;0偏压下320 nm时的响应度约为37 μA/W,表明该器件在不提供外电压驱动下具有良好的紫外光响应(见图6,g~i)。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1