用于制造具有隧道电介质层的太阳能电池的方法与流程

文档序号:12681029阅读:237来源:国知局
用于制造具有隧道电介质层的太阳能电池的方法与流程

本文所述的发明是在政府的支持下按照美国能源部颁发的合同号DE-FC36-07GO17043完成的。政府在本发明中可能具有一定的权利。

技术领域

本发明的实施例是在可再生能源领域,特别是用于制造具有隧道电介质层的太阳能电池的方法。



背景技术:

光伏电池(一般称为太阳能电池)是公知的用于将太阳辐射直接转换成电能的设备。一般来说,太阳能电池是在半导体晶片或衬底上使用半导体加工技术在衬底表面附近形成pn结来制造的。撞击在在衬底表面上的太阳辐射在衬底主体中产生电子和空穴对(其在衬底中迁移到p型掺杂区和n型掺杂区),从而在掺杂区之间产生电压差。掺杂区被连接到太阳能电池上的金属触点,以将电流从电池导向与其耦合的外部电路。

效率是太阳能电池的重要特征,因为其与太阳能电池的发电能力直接相关。因此,能够提高太阳能电池效率的技术总是所希望的。本发明的实施例通过提供制造太阳能电池结构的新颖工艺提高了太阳能电池的效率。

附图说明

图1示出了常规工艺的模型热预算(thermal budget),用于同根据本发明实施例的用于在太阳能电池中制造隧道电介质层的降低的热预算工艺进行对比。

图2示出了代表根据本发明实施例制造具有隧道电介质层的太阳能电池的方法的操作的流程图。

图3A示出根据本发明的一个实施例在制造包括隧道电介质层的太阳能电池的一个阶段的剖视图。

图3B示出根据本发明的一个实施例在制造包括隧道电介质层的太阳能电池的过程中与图2流程的操作202和图4流程的操作402相对应的阶段的剖视图。

图3C示出根据本发明的一个实施例在制造包括隧道电介质层的太阳能电池的过程中与图2流程的操作204和图4流程的操作404相对应的阶段的剖视图。

图4示出了代表根据本发明实施例制造具有隧道电介质层的太阳能电池的方法的操作的流程图。

图5A示出根据本发明的一个实施例在结合水化和热生长操作之后的隧道氧化物厚度的曲线图。

图5B示出根据本发明的一个实施例在结合水化和热生长操作之后的氧化物厚度的标准差的曲线图。

图6A示出根据本发明的一个实施例的作为隧道电介质层的水化薄膜成分的厚度的函数的少数载流子寿命的曲线图。

图6B示出根据本发明的一个实施例经过水化及热工艺组合的氧化物形成后的晶片的寿命的光致发光结果。

具体实施方式

本文描述了制造具有隧道电介质层的太阳能电池的方法。在下文的说明中阐述了许多具体细节(诸如具体的工艺流程操作),以便提供对本发明的实施例的透彻理解。对于本领域技术人员来说,显然可以不利用这些具体细节来实现本发明的实施例。在其它实例中,没有对公知的制造技术(如光刻技术和蚀刻技术)进行详细描述,以免不必要地模糊本发明的实施例。此外应当理解,附图中示出的各种实施例为示例性表示并且不一定按比例绘制。

本文公开了具有隧道电介质层的太阳能电池的制造方法。在一个实施例中,制造太阳能电池的方法包括将太阳能电池的衬底表面暴露到湿化学溶液中,以在衬底表面上提供氧化物层。然后在干燥气氛中以接近或超过900摄氏度的温度加热氧化物层,以将氧化物层转换成太阳能电池的隧道电介质层。在一个实施例中,制造太阳能电池的方法包括在低于摄氏600度的温度下,通过热氧化在太阳能电池的衬底表面上形成氧化物层。然后在干燥气氛中以接近或超过900摄氏度的温度加热该氧化物层,以将氧化物层转换成太阳能电池的隧道电介质层。

本文还公开了太阳能电池。在一个实施例中,太阳能电池包括衬底。隧道电介质层设置在衬底上,通过仅在摄氏900度附近或更高的温度加热氧化物层一次来形成该隧道电介质层。

根据本发明的一个实施例,多晶硅/隧道氧化工艺中的热预算被减小。例如在普通工艺中,隧道氧化层可在较低的压力下在约900摄氏度生长。然而,在一个实施例中,已经发现这种方法不足以获得最佳效率,因为热预算较高。较高的热预算会不利地增加循环时间和设备的磨损,这两个因素会提高整体生产成本。在一个特定实施例中,已经发现,传统方法会导致多晶硅沉积工艺中的高循环时间。

根据本发明的一个实施例,隧道电介质层包括在太阳能电池中以阻挡少数载流子。在一个实施例中,隧道电介质层的厚度为约15埃。然而,在常规情况下形成这种隧道电介质层所需的热预算可能会加速在太阳能电池单元的其他部分(例如整块衬底的衬底、背接触太阳能电池)形成缺陷。因此,在应用传统的方法时,有可能在通过包括隧道电介质层所提供的益处与制造这样的层通常需要增加的热预算的破坏性影响之间取得折衷。因此,根据本发明的一个实施例,本发明提供的方法允许制造用于高效率太阳能电池设计中的隧道电介质层,并且具有减小的热预算。在一个实施例中,通过减少热预算,能够减少或减轻由于热暴露加剧而增加的缺陷。在一个特定的实施例中,用于提供隧道电介质层的制造工艺被限制为在接近或小于700摄氏度的温度下进行,在整个工艺中仅应用一次900摄氏度附近或更高的温度下的工艺。在一个特定的实施例中,这种方法也减少了总循环时间,提高了在线制造太阳能电池的效率。

在一个实施例中,在太阳能电池的制造中改进了用于具有多晶硅触点的隧道结构的薄氧化硅(包括二氧化硅(SiO2))层的生长。例如,这种改进可包括一个或多个以下的膜属性:高性能并且较薄的隧道介电薄膜、可控厚度、可控质量、缩短的工艺循环时间和降低的工艺热预算。在一个实施例中,通过施加一个或多个本文描述的方法,可以在相对低的温度下(例如以降低的热预算)并以较短的循环时间在较宽的衬底上实现具有良好厚度控制的非常薄的氧化硅(例如,二氧化硅)隧道氧化物。在一个实施例中,在工艺炉中使用约为565摄氏度的峰值温度和减少了约1.5小时的循环时间。在一个实施例中,形成的水化氧化物使得晶片不太容易受到污染。上述实施例与包括在约900度摄氏和约500毫托的压强下进行生长的传统方法形成对比。

在根据本发明的一个实施例中,使用水化和热氧化生长的组合来实现较薄并且高品质的氧化膜。在一个实施例中,氧化膜的厚度大约是在1-2纳米的范围内。在一个实施例中,使用氧化剂、溶液化学物和照射的组合来增加的氧化物的生长率,并且在该工艺的水化生长部分期间改善厚度的均匀性。在一个实施例中,所形成的氧化物随后在一个低温热操作期间进一步加厚,这同时提高了氧化物的水化生长部分的质量。在一个实施例中,水化生长和热生长技术相结合,并执行低温热氧化生长工艺(例如,减少了热预算)以提供高品质的隧道电介质层。

在本发明的一个方面,制造隧道电介质层中的热预算与常规方法相比得到减少。例如,图1示出了常规工艺的模型热预算,用于同根据本发明实施例的用于在太阳能电池中制造隧道电介质层的降低的热预算工艺进行对比。

参照图1,绘出了针对常规工艺102和根据本发明实施例的降低的热预算工艺104的模型热预算的曲线图100,其中以摄氏度为单位的温度作为按分钟表示的经过时间的函数。在一个实施例中,常规工艺102在隧道电介质层的制造中包含在接近或超过约900摄氏度加热超过一次。与此相反,在一个实施例中,降低的热预算工艺104在隧道电介质层的制造中在接近或超过约900摄氏度只加热一次,如图1中所描绘的。

太阳能电池可以制造为包括隧道电介质层。例如,图2示出了代表根据本发明的一个实施例制造具有隧道电介质层的太阳能电池的方法中的操作的流程图200。图3A-3C示出根据本发明的一个实施例的制造包括隧道电介质层的太阳能电池的方法中与流程图200的操作相对应不同阶段的剖视图。

参照图3A,提供了用于太阳能电池制造的衬底302。在根据本发明的一个实施例中,衬底302是由整块硅衬底构成。在一个实施例中,整块硅衬底上掺杂有N型掺杂物。在一个实施例中,衬底302具有如图3A所示的纹理表面。

参照流程图200中的操作202和相应的图3B,制造太阳能电池的方法包括将衬底302的表面暴露到湿化学溶液中,以在衬底302的表面上提供氧化物层304。根据本发明的一个实施例,所述湿化学溶液包括氧化剂,例如但不限于臭氧(O3),或过氧化氢(H2O2)。在一个实施例中,在氧化物生长期间将湿化学溶液和衬底的表面暴露在可见光辐射中。在一个实施例中,衬底302是一个整块硅衬底,氧化物层304是氧化硅层。

参照流程图200中的操作204和相应的图3C,制造太阳能电池的方法还包括在干燥气氛中并在接近或超过900摄氏度的温度下加热氧化物层304,以将氧化物层304转换成太阳能电池的隧道电介质层306。在根据本发明的一个实施例中,在制造过程中仅将氧化物层304暴露到接近或超过900摄氏度的温度一次。在一个实施例中,在曝露操作202之后和在加热操作204之前,将氧化物层304从低于500摄氏度的温度加热到约565摄氏度的温度,然后冷却至低于500摄氏度的温度。

根据本发明的一个实施例,制造太阳能电池的方法还包括在加热操作204之前,在氧化物层304上方形成材料层308。在一个实施例中,材料层308是一种非晶硅层,该非晶硅层在加热操作204的过程中结晶成多晶硅层。在一个特定的实施例中,制造太阳能电池的方法进一步包括在多晶硅层308上方形成金属触点312,如图3C所示。

再次参照图3C,根据本发明的一个实施例,太阳能电池包括衬底302。隧道电介质层306被布置在衬底302中,该隧道电介质层是通过仅在接近或超过900摄氏度加热氧化物层(图3B的304)一次而形成的。在一个实施例中,所述太阳能电池还包括设置在隧道电介质层306上方的多晶硅层308。在一个特定的实施例中,太阳能电池进一步包括布置在多晶硅层308上方的金属触点312。在一个实施例中,衬底302是一个整块硅衬底,隧道电介质层304是氧化硅层。

在一个实施例中,所述太阳能电池是一种背接触太阳能电池。在该实施例中,背接触太阳电池包括衬底302中的P型和N型有源区。诸如触点312的导电触点被耦接到所述有源区,并且通过隔离区(如可以由介电材料构成的隔离区310)彼此分开。在一个实施例中,太阳能电池是一种背面接触太阳能电池,并且在光接收表面上设置了防反射涂层,如图3A-3C中的随机纹理化表面所示。在一个实施例中,该防反射涂层是厚度大约在70-80纳米范围内的氮化硅层。

在本发明的另一个方面,可以不使用水化处理制作包括隧道电介质层的太阳能电池。例如,图4示出根据本发明的一个实施例的代表具有隧道电介质层的太阳能电池的制造方法中的操作的流程图400。图3A-3C示出根据本发明的一个实施例的制造包括隧道电介质层的太阳能电池的方法中与流程图400的操作相对应的各个阶段的剖视图。

参照图3A,提供了用于太阳能电池制造的衬底302。在根据本发明的一个实施例中,衬底302是由整块硅衬底构成。在一个实施例中,整块硅衬底上掺杂有N型掺杂物。在一个实施例中,衬底302具有如图3A所示的纹理表面。

参照流程图400中的操作402和相应的图3B,制造太阳能电池的方法包括在低于600摄氏度的温度下通过热氧化在衬底302的表面上形成氧化物层304。根据本发明的一个实施例,氧化物层304是通过低压热氧化工艺形成的。在一个实施例中,在含氧(O2)气氛中在约500-580摄氏度的温度下执行所述低压热氧化工艺。在一个实施例中,衬底302是一个整块硅衬底,氧化物层304是氧化硅层。

参照流程图400中的操作404和相应的图3C,制造太阳能电池的方法还包括在干燥气氛中并在接近或超过900摄氏度的温度下加热氧化物层304,以将氧化物层304转换成太阳能电池的隧道电介质层306。在根据本发明的一个实施例中,在制造过程中仅将氧化物层304暴露到接近或超过900摄氏度的温度一次。在一个实施例中,在形成操作402之后和在加热操作404之前,将氧化物层304从低于500摄氏度的温度加热到约565摄氏度的温度,然后冷却至低于500摄氏度的温度。

根据本发明的一个实施例,制造太阳能电池的方法还包括在加热操作404之前,在氧化物层304上方形成材料层308。在一个实施例中,材料层308是一种非晶硅层,该非晶硅层在加热操作404期间结晶成多晶硅层。在一个特定的实施例中,制造太阳能电池的方法进一步包括在多晶硅层308上方形成金属触点312,如图3C所示。

如上所述,在本发明的一个方面,可通过对衬底进行水化工艺和热工艺的组合来制作隧道电介质层(例如,隧道氧化层)。图5A-5B分别示出了根据本发明的一个实施例在结合水化和热生长操作之后的隧道氧化物厚度和氧化物厚度的标准差的曲线图500A和500B。参照图500A和500B,水化生长时间、溶液区域浓度和温度存在变化。作为参考,所执行的热氧化在所有情况下均是相同的。图6A示出根据本发明的一个实施例的作为隧道电介质层的水化薄膜成分的厚度的函数的少数载流子寿命的曲线图600A。图6B示出根据本发明的一个实施例经过水化及热工艺组合的氧化物形成后的晶片的寿命的光致发光结果600B。从上述图表中示出的制作的薄膜类型的变化可以看出,根据本发明的一个实施例,可以通过调节生长工艺的水化处理部分来调节隧道电介质薄膜的具体期望属性。

如上文所述,在本发明的另一方面,可通过在制造期间仅将氧化物层暴露在大于约900摄氏度的温度一次来制造隧道电介质层(例如,隧道氧化层)。在一个实施例中,在与下一个制造工序中所希望的温度接近或基本上相同的温度下进行热氧化。该步骤可以在隧道氧化层上方形成硅层。因此,在一个实施例中,仅在约575摄氏度进行热氧化。

上文公开了具有隧道电介质层的太阳能电池的制造方法。根据本发明的实施例,制造太阳能电池的方法包括将太阳能电池的衬底表面暴露到湿化学溶液中,以在衬底的表面上提供氧化物层。该方法还包括在接近或超过900摄氏度的温度下在干燥气氛中加热氧化物层,将氧化物层转换成太阳能电池的隧道电介质层。在一个实施例中,在制造过程中仅将氧化物层暴露在接近或超过900摄氏度的温度一次。根据本发明的另一个实施例,制造太阳能电池的方法包括在低于600摄氏度的温度下,通过热氧化作用在太阳能电池的衬底表面上形成氧化物层。该方法还包括:在接近或超过900摄氏度的温度下在干燥气氛中加热氧化物层,以将氧化物层转换成太阳能电池的隧道电介质层。在一个实施例中,在制造过程中仅将氧化物层暴露在接近或超过900摄氏度的温度一次。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1