薄膜晶体管及其制备方法、阵列基板和显示装置与流程

文档序号:12599070阅读:823来源:国知局
薄膜晶体管及其制备方法、阵列基板和显示装置与流程

本发明的实施例涉及一种薄膜晶体管及其制备方法、阵列基板和显示装置。



背景技术:

近年来,显示技术的发展日新月异,早期的阴极射线管(Cathode Ray Tube,简称CRT)显示器也已经被有源矩阵型显示器例如有源矩阵液晶显示器(Active Matrix Liquid Crystal Display,简称AMLCD)、有源矩阵有机发光二极管显示器(Active Matrix Organic Light Emitting Diode,简称AMOLED)所取代。在这些有源矩阵型显示器中,薄膜晶体管(Thin Film Transistor,TFT)作为有源矩阵显示技术的核心器件受到了极大的关注并被广泛应用。

在薄膜晶体管的制备过程中,有源层的制备工艺是TFT技术的核心工艺之一。有源层的材料包括非晶硅、金属氧化物半导体等,有源层在材料方面的选择性较小,所以,需要从有源层的制备工艺和有源层的图案设计方面对有源层的性能进行改进。



技术实现要素:

本发明至少一实施例提供一种薄膜晶体管,该薄膜晶体管包括:衬底基板以及设置在所述衬底基板上的栅极、栅绝缘层、有源层、源极和漏极,其中,所述有源层包括源极区、漏极区和所述源极区和所述漏极区之间的沟道区,所述沟道区具有折曲式图案。

在本发明至少一实施例提供的薄膜晶体管中,所述折曲式图案包括弧线形图案、折线形图案或所述弧线形图案和所述折线形图案的组合。

在本发明至少一实施例提供的薄膜晶体管中,所述弧线形图案包括半圆环形图案、非闭合的圆环形图案、S形图案以及螺旋弧线形图案。

在本发明至少一实施例提供的薄膜晶体管中,所述折线形图案包括半方形图案、非闭合的长方形图案、Z字形图案以及螺旋“回”字形图案。

在本发明至少一实施例提供的薄膜晶体管中,所述有源层的宽长比为0.01~0.1。

在本发明至少一实施例提供的薄膜晶体管中,所述有源层的材料包括一维半导体性纳米材料。

在本发明至少一实施例提供的薄膜晶体管中,所述一维半导体性纳米材料包括半导体性碳纳米管和半导体性硅纳米线。

在本发明至少一实施例提供的薄膜晶体管中,所述薄膜晶体管为底栅型结构或者顶栅型结构。

本发明至少一实施例还提供一种阵列基板,包括上述任一薄膜晶体管和与所述薄膜晶体管的所述源极或所述漏极电连接的第一电极。

在本发明至少一实施例提供的阵列基板中,所述第一电极为像素电极,所述阵列基板还包括与所述像素电极形成电场的公共电极。

在本发明至少一实施例提供的阵列基板中,所述第一电极为阳极,所述阵列基板还包括位于所述阳极上方的有机材料功能层和阴极。

本发明至少一实施例还提供一种显示装置,包括上述任一阵列基板。

本发明至少一实施例还提供一种薄膜晶体管的制备方法,包括:提供衬底基板;在所述衬底基板上形成栅极、栅绝缘层、有源层、源极和漏极,其中,所述有源层包括源极区、漏极区和所述源极区和所述漏极区之间的沟道区,所述沟道区具有折曲式图案。

在本发明至少一实施例提供的制备方法中,所述折曲式图案包括弧线形图案、折线形图案以及所述弧线形图案和所述折线形图案的组合。

在本发明至少一实施例提供的制备方法中,所述弧线形图案包括半圆环形图案、非闭合的圆环形图案、S形图案以及螺旋弧线形图案;所述折线形图案包括半方形图案、非闭合的长方形图案、Z字形图案以及螺旋“回”字形图案。

本公开的至少一个实施例通过将沟道区设置成具有折曲式图案的结构,可以在不大幅度增加薄膜晶体管区域面积的情况下有效提高显示器件的长宽比,从而有效降低显示器件的关态电流,制备出高性能的显示装置。当有源层的材料为一维半导体性纳米材料时,将沟道区设置成具有折曲式图案的结构,降低显示器件的关态电流的效果尤其显著。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。

图1为一种沟道区的图案;

图2为本发明一实施例提供的一种薄膜晶体管的截面结构示意图;

图3为本发明一实施例提供的一种沟道区的图案;

图4为本发明一实施例提供的弧线形沟道区的图案;

图5为本发明一实施例提供的折线形沟道区的图案;

图6为本发明一实施例提供的另一种薄膜晶体管的截面结构示意图;

图7为本发明一实施例提供的一种阵列基板的截面结构示意图;

图8为本发明一实施例提供的另一种阵列基板的截面结构示意图。

附图标记:

1-源极区;2-漏极区;3-沟道区;101-衬底基板;102-栅极;103-栅绝缘层;104-有源层;105-源极;106-漏极;107-绝缘层;108-缓冲层;109-刻蚀阻挡层;110-公共电极;111-钝化层;112-第二绝缘层;114-阴极;115-像素界定层;116-有机材料功能层;117-第三绝缘层;118-第一过孔结构;119-第二过孔结构。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。

除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。

通常,有源层的图案为闭合的直条型(I型)结构,例如,图1为一种有源层的图案,该图案为面状的直条型结构。对于短沟道(沟道区有源层图案的长度较短)的薄膜晶体管(TFT)而言,其关态电流较大,在此性能基础上制备的显示器件的亮度较高,对比度也较差,特别地,当薄膜晶体管的有源层采用碳纳米管材料制备时,由于金属性和非金属性的碳纳米管很难完全分离,薄膜晶体管的沟道区越短,金属性碳纳米管越容易互联,从而使得显示器件的关态电流增大,进而导致碳纳米管薄膜晶体管的漏电流增大,发明人发现增加沟道区的长度能够有效降低显示器件的关态电流。

本发明至少一实施例提供一种薄膜晶体管,其包括:衬底基板以及设置在衬底基板上的栅极、栅绝缘层、有源层、源极和漏极,该有源层包括源极区、漏极区和源极区和漏极区之间的沟道区,沟道区具有折曲式图案。

本发明的实施例通过将沟道区设置成具有折曲式图案的结构,可以在不大幅度增加薄膜晶体管区域面积的情况下有效提高显示器件的长宽比,从而有效降低显示器件的关态电流,制备出高性能的显示装置。特别地,当有源层的材料为一维半导体性纳米材料时,将沟道区设置成具有折曲式图案的结构,降低显示器件的关态电流的效果尤其显著。

下面通过几个实施例对本发明的技术方案进行说明。

实施例一

本实施例提供一种薄膜晶体管,例如,图2为本实施例提供的一种薄膜晶体管的截面结构示意图。如图2所示,该薄膜晶体管包括:衬底基板101以及设置在衬底基板101上的栅极102、栅绝缘层103、有源层104、源极105和漏极106,该有源层104包括源极区1、漏极区2和源极区1和漏极区2之间的沟道区3,沟道区3具有折曲式图案。

需要说明的是,本实施例中具有折曲式图案的沟道区是指,沟道区所对应的有源层的图案是具有弯折结构的图形,该弯折结构既可以是曲线弯折结构也可以是直线弯折结构。该折曲式图案可以在不大幅度增加薄膜晶体管区域面积的情况下有效提高显示器件的长宽比,从而有效降低显示器件的关态电流,制备出高性能的显示装置。且将一维半导体性纳米材料应用于电子器件中时,降低显示器件的关态电流的效果尤其显著。采用一维半导体性纳米材料制备的电子器件的性能优于采用非一维半导体性纳米材料制备的电子器件的性能,除此之外,当有源层的材料为一维半导体性纳米材料时更容易将沟道区制作成折曲式图案。

例如,在本实施例提供的薄膜晶体管中,该折曲式图案包括弧线形图案、折线形图案或弧线形图案和折线形图案的组合。例如,图3为本实施例提供的一种沟道区的图案,沟道区的图案为折线形图案,且该折线形图案包括多个弯折结构。这样可以加长折线形图案的长度,以有效提高薄膜晶体管的长宽比。

例如,图4为本实施例提供的弧线形沟道区的图案,如图4所示,该弧线形图案包括半圆环形图案、非闭合的圆环形图案、S形图案以及螺旋弧线形图案。将沟道区的图案设计成具有多个弯曲结构的弧线形可以进一步地加长弧线形图案的长度,以有效提高薄膜晶体管的长宽比。例如,图4所示的有源层的图案还包括位于沟道区3两端的源极区1和漏极区2的图案。

例如,图5为本实施例提供的折线形沟道区的图案,如图5所示,该折线形图案包括半方形图案、非闭合的长方形图案、Z字形图案以及螺旋的“回”字形图案。将沟道区的图案设计成具有多个弯折结构的弧线形可以进一步地加长弧线形图案的长度,以有效提高薄膜晶体管的长宽比。例如,图5所示的有源层的图案还包括位于沟道区3两端的源极区1和漏极区2的图案。

例如,在本实施例提供的薄膜晶体管中,沟道区中有源层的宽长比可以为0.01~0.1。例如,进一步地,沟道区中有源层的宽长比可以为0.05~0.08,例如,进一步地,沟道区中有源层的宽长比可以为0.06。

例如,若光刻机的曝光精度要求线间距为3μm,如图5所示,对于长宽比为42μm/3μm的碳纳米管薄膜晶体管(CNT-TFT)形成的折线形沟道区的图案,其外围的栅极区域面积为378μm2(21μm×18μm),直条型CNT-TFT的栅极区域面积为432μm2(48μm×9μm),其面积缩小了12.5%(54μm2),从而增大了像素面积,提升了开口率,若亚像素面积为60μm×30μm,则开口率提升了约3.0%;若光刻机的曝光精度进一步提升,相应的要求线间距为2μm,则如图5所示,对于长宽比为88μm/2μm的CNT-TFT,其外围的栅极区域面积为440μm2(22μm×20μm),直条型CNT-TFT的栅极区域面积552μm2(92μm×6μm),其面积缩小了20.3%(112μm2),从而使得像素面积增大,开口率提升,若亚像素面积为60μm×30μm,则开口率提升了约6.2%。

例如,在本实施例提供的薄膜晶体管中,有源层的材料包括一维半导体性纳米材料,该有源层的材料还可以包括金属氧化物半导体、非晶硅半导体材料。

例如,在本实施例提供的薄膜晶体管中,该一维半导体性纳米材料包括半导体性碳纳米管和半导体性硅纳米线等。例如,该一维半导体性纳米材料还可以包括钪(Sc)、钛(Ti)、钴(Co)等IIIB-V族材料制备的纳米线。

例如,一维半导体性纳米材料中的半导体性碳纳米管,具有构建高效纳米光电子器件所需要的优异性质。半导体性碳纳米管可以弥补目前光电材料稳定性差、尺寸无法缩减等不足。例如,半导体性碳纳米管可以是半导体性单壁碳纳米管、半导体性双壁碳纳米管或者半导体性多壁碳纳米管。半导体纳米碳管是直接带隙材料,具有很好的吸光特性,且半导体性碳纳米管具有极高的室温迁移率,是良好的导电通道材料。此外,碳纳米管薄膜具有极低的光反射系数,其光谱吸收范围覆盖紫外光、可见光至红外光的波段。

基于半导体纳米碳管构建的多种纳米电子器件,特别是场效应晶体管,在功耗和集成度等主要性能指标方面显示出了明显优于其他非一维半导体材料制备的薄膜晶体管的特征。另外,由于半导体性碳纳米管场效应晶体管的极性取决于形成源极、漏极的金属材料,例如,由金属材料形成的源极和漏极可以与半导体碳纳米管形成的电子和空穴欧姆接触,形成高性能的空穴型(p型)场效应晶体管,可以增强晶体管的性能。

多个半导体性碳纳米管交叠(部分沿Y方向延伸,部分沿X方向延伸)对半导体性碳纳米管的关态电流有严重的影响,而通过增加沟道长度能够削减交叠的半导体性碳纳米管对器件关态电流的不利影响,在有限面积范围内实现沟道长度的增加,即采用折曲式有源层图案化设计,能够在保证大开口率和高分辨率的前提下,提高器件的长宽比,从而使得TFT的开关特性更优。

例如,在沟道区两端形成的源极和漏极的厚度可以为50~80nm,源极和漏极相对一面的侧壁要求较为陡峭,例如,源极和漏极垂直于沟道区的一维半导体性纳米材料。

例如,在本发明实施例提供的薄膜晶体管中,薄膜晶体管可以为底栅型结构、顶栅型结构或者双栅型结构。顶栅、底栅是相对于有源层和栅极的位置而定的,即相对于衬底基板,当栅极靠近衬底基板,有源层远离衬底基板时,为底栅型薄膜晶体管;当栅极远离衬底基板,有源层靠近衬底基板时,为顶栅型薄膜晶体管;双栅型结构则同时包括顶栅和底栅。例如,图2所示的薄膜晶体管为顶栅型结构,图6为本实施例提供的另一种薄膜晶体管的截面结构示意图,该薄膜晶体管为底栅型结构。

例如,在图2中,该顶栅型氧化物薄膜晶体管包括衬底基板101以及依次设置在衬底基板101上的有源层104、栅绝缘层103、栅极金属层102、绝缘层107和漏极105、源极106,该顶栅型氧化物薄膜晶体管还可以包括设置在衬底基板101和有源层104之间的缓冲层108。例如,缓冲层108在有源层104与衬底基板101之间充当一个过渡膜层,使有源层104与衬底基板101之间结合得更稳固,且可以防止衬底基板101中的有害杂质、离子等扩散到有源层104。

例如,缓冲层108的材料包括硅的氧化物(SiOx)或硅的氮化物(SiNx)。例如,该缓冲层108可以为由氮化硅或者氧化硅构成的单层结构,或者由氮化硅和氧化硅构成的双层结构。

例如,如图6所示,该底栅型薄膜晶体管包括衬底基板101以及依次设置在衬底基板101上的栅极102、栅绝缘层103、有源层104、漏极105和源极106,根据需要,还可以包括设置在有源层104和源极106之间、有源层104和漏极105之间的刻蚀阻挡层109,该刻蚀阻挡层109的材料包括氮化硅(SiNx)等。

例如,有源层104的材料为半导体性碳纳米管和半导体性硅纳米线等。有源层104的厚度可以为30~50nm,例如,可以为30nm、40nm或者50nm。

例如,该栅极102、源极105和漏极106的材料包括钼、钛、铜和铬等金属材料或者由上述金属形成的合金材料,例如,铜基合金材料包括铜钼合金(CuMo)、铜钛合金(CuTi)、铜钼钛合金(CuMoTi)、铜钼钨合金(CuMoW)、铜钼铌合金(CuMoNb)等,铬基合金材料包括铬钼合金(CrMo)、铬钛合金(CrTi)、铬钼钛合金(CrMoTi)等。例如,栅极102、源极105和漏极106的厚度可以为1~500nm,进一步地,栅极102的厚度可以为200~300nm,进一步地,栅极102的厚度可以为250nm。

例如,被用作栅绝缘层103的材料包括氮化硅(SiNx)、氧化硅(SiOx)、氧化铝(Al2O3)、氮化铝(AlN)或其他适合的材料。例如,栅绝缘层103的厚度可以为1~100nm,进一步地,栅绝缘层103的厚度可以为50nm。

例如,该衬底基板101的材料包括透明玻璃、陶瓷或者金属。

实施例二

本实施例提供一种阵列基板,该阵列基板包括实施例一中的任意一种薄膜晶体管和与薄膜晶体管的源极或漏极电连接的第一电极。例如,该阵列基板可应用于例如液晶显示面板、有机发光二极管显示面板、电子纸显示面板等。薄膜晶体管的各层结构可参见实施例一中的相关描述,在此不再赘述。

例如,示例性地,该第一电极113为像素电极。

例如,图7为本实施例提供的一种阵列基板的截面结构示意图,如图7所示,该阵列基板还包括第二绝缘层112、钝化层111和公共电极110。像素电极113(第一电极)通过形成在第二绝缘层112和钝化层111中的第一过孔结构118,例如与薄膜晶体管的漏极106电连接。薄膜晶体管的源极105与数据线(未示出)电连接或一体形成,薄膜晶体管的栅极102与栅线(未示出)电连接或一体形成。通常,数据线和栅线彼此交叉界定了阵列基板上的子像素,而该薄膜晶体管作为该子像素的开关元件。

例如,像素电极113采用透明导电材料形成或金属材料形成,例如,形成该像素电极113的材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)、氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。

例如,该钝化层111的材料可以为氮化硅(SiNx)、氧化硅(SiOx)以及丙烯酸类树脂等。

例如,第二绝缘层112的材料可以为有机绝缘材料或者无机绝缘材料或者有机绝缘材料和无机绝缘材料形成的叠层结构。例如,形成该绝缘层的材料为氮化硅(SiNx)、氧化硅(SiOx)、丙烯酸类树脂等。

例如,对于共平面切换型(In-Plane Switch,简称IPS)阵列基板而言,像素电极113和公共电极110同层间隔设置,且均为条状电极;对于高级超维场转换型(Advanced-super Dimensional Switching,简称ADS)阵列基板而言,像素电极113和公共电极110不同层设置,在上的电极为条状电极,在下的电极为板状电极。

例如,当像素电极113和公共电极110不同层设置时,像素电极113和公共电极110之间还设置有第三绝缘层117。

例如,示例性地,该第一电极可以为有机发光二极管的阳极,该阵列基板还包括位于阳极(第一电极)上方的有机材料功能层和阴极。

例如,图8为本实施例提供的另一种阵列基板的截面结构示意图,如图8所示,该阵列基板包括实施例一中的任一薄膜晶体管和第一电极113,该第一电极113为阳极,该阳极113通过设置在绝缘层107中的第二过孔结构119与漏极106电连接。该阵列基板还包括位于阳极113上方的像素界定层115、有机材料功能层116和阴极114。

该像素界定层115可以用于隔离相邻两个子像素单元。

例如,该有机材料功能层可以包括:空穴传输层、发光层和电子传输层;为了能够提高电子和空穴注入发光层的效率,该有机材料功能层还可以包括设置在阴极与电子传输层之间的电子注入层,以及设置在阳极与空穴传输层之间的空穴注入层。进一步的,由于有机材料功能层的特殊性,有机电致发光二极管显示器还包括封装层。

基于此,根据阳极和阴极的材料的不同,可以分为单面出光型阵列基板和双面出光型阵列基板,即当阳极和阴极中一个电极的材料为不透明或半透明材料时,阵列基板为单面出光型,当阳极和阴极的材料均为透明材料和/或半透明材料时,该阵列基板为双面出光型。

对于单面出光型阵列基板,根据阳极和阴极的材料的不同,又可以分为顶出光型和底出光型。当阳极靠近衬底基板设置,阴极远离衬底基板设置,且阳极的材料为透明导电材料,阴极的材料为不透明导电材料时,由于光从阳极、再经衬底基板一侧出射,可以称为底出光型;当阳极的材料为不透明导电材料,阴极的材料为透明或半透明导电材料时,由于光从阴极远离衬底基板一侧出射,可以称为顶出光型。也可以将上述两种阳极和阴极的相对位置进行替换,在此不再赘述。

对于双面出光型柔性显示基板,当阳极靠近衬底基板设置,阴极远离衬底基板设置,且阳极和阴极的材料均为透明导电和/或半透明材料时,由于光一方面从阳极、再经衬底基板一侧出射,另一方面从阴极远离衬底基板一侧出射,因此可以称为双面出光型。这里,也可以是阳极远离衬底基板设置,阴极靠近衬底基板设置。

实施例三

本实施例提供一种显示装置,包括实施例二中任意一种阵列基板。该显示装置可以为:液晶面板、电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。

实施例四

本实施例提供一种薄膜晶体管的制备方法,该制备方法包括:在衬底基板上形成栅极、栅绝缘层、有源层、源极和漏极,其中,有源层包括源极区、漏极区和源极区和漏极区之间的沟道区,沟道区具有折曲式图案。

例如,该折曲式图案包括弧线形图案、折线形图案以及弧线形图案和折线形图案的组合。该折曲式图案可以包括多个弯折结构或者多个弯曲结构,或者多个弯折结构和多个弯曲结构的组合。

例如,该弧线形图案包括半圆环形图案、非闭合的圆环形图案、S形图案以及螺旋的弧线形图案。

例如,该折线形图案包括半方形图案、非闭合的长方形图案、Z字形图案以及螺旋的“回”字形图案。

例如,以底栅型薄膜晶体管为例加以说明,薄膜晶体管的制备方法包括:

提供衬底基板,采用标准清洗方法清洗衬底基板,例如,该衬底基板的材料包括透明玻璃、陶瓷或者金属;

采用化学气相沉积的方法沉积硅的氧化物(SiOx)或硅的氮化物(SiNx)以形成缓冲层,该缓冲层的厚度可以为200nm;

采用磁控溅射的方法在缓冲层上沉积栅极金属薄膜,并在栅极金属薄膜上涂覆光刻胶,并进行曝光、显影、刻蚀等工序以形成栅极图案,形成栅极的材料包括钼、钛、铜和铬等金属材料或者由上述金属形成的合金材料,例如,铜基合金材料包括铜钼合金(CuMo)、铜钛合金(CuTi)、铜钼钛合金(CuMoTi)、铜钼钨合金(CuMoW)、铜钼铌合金(CuMoNb)等,铬基合金材料包括铬钼合金(CrMo)、铬钛合金(CrTi)、铬钼钛合金(CrMoTi)等。例如,栅极的厚度可以为1~500nm,进一步地,栅极的厚度可以为200~300nm,进一步地,栅极的厚度可以为250nm;

采用化学气相沉积的方法在栅极金属层上沉积栅绝缘层薄膜,该化学气相沉积的温度为200~400℃,例如为370℃,被用作栅绝缘层的材料包括氮化硅(SiNx)、氧化硅(SiOx)、氧化铝(Al2O3)、氮化铝(AlN)或其他适合的材料。例如,栅绝缘层的厚度可以为1~100nm,进一步地,栅绝缘层的厚度可以为50nm;

例如,采用旋涂法涂布工艺在栅绝缘层上涂布半导体性薄膜,例如,该半导体性薄膜为一维半导体性纳米材料,例如,该一维半导体性纳米材料为半导体性碳纳米管,再采用具有折曲式图案的掩膜板对半导体性碳纳米管进行曝光,之后用氧气对半导体性薄膜进行干法刻蚀,并剥离光刻胶得到折曲式图案化的半导体性碳纳米管有源层图案;

例如,采用磁控溅射的方法在半导体性碳纳米管有源层图案上沉积源漏极金属薄膜,并在栅极金属薄膜上涂覆光刻胶,并进行曝光、显影、刻蚀等工序以形成源极和漏极的图案,形成源极和漏极的材料包括钼、钛、铜和铬等金属材料或者由上述金属形成的合金材料,例如,铜基合金材料包括铜钼合金(CuMo)、铜钛合金(CuTi)、铜钼钛合金(CuMoTi)、铜钼钨合金(CuMoW)、铜钼铌合金(CuMoNb)等,铬基合金材料包括铬钼合金(CrMo)、铬钛合金(CrTi)、铬钼钛合金(CrMoTi)等。例如,源极和漏极的厚度可以为1~500nm,进一步地,源极和漏极的厚度可以为200~300nm,进一步地,源极和漏极的厚度可以为250nm。

当薄膜晶体管为顶栅型结构时,其制备方法和底栅型薄膜晶体管类似,只是在衬底基板上先形成有源层,再形成栅绝缘层和栅极,制备各层结构的过程可参见上述底栅型薄膜晶体管形成过程的相关描述,在此不再赘述。

本发明的实施例提供一种薄膜晶体管及其制备方法、阵列基板和显示装置,该薄膜晶体管包括衬底基板以及设置在衬底基板上的栅极、栅绝缘层、有源层、源极和漏极,有源层包括源极区、漏极区和源极区和漏极区之间的沟道区,沟道区具有折曲式图案。

本发明的实施例通过将沟道区设置成具有折曲式图案的结构,可以在不大幅度增加薄膜晶体管区域面积的情况下有效提高显示器件的长宽比,从而有效降低显示器件的关态电流,制备出高性能的显示装置。当有源层的材料为一维半导体性纳米材料时,将沟道区设置成具有折曲式图案的结构,降低显示器件的关态电流的效果尤其显著。

有以下几点需要说明:

(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。

(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。

(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1