用于制造一半导体结构的方法与流程

文档序号:12599063阅读:398来源:国知局
用于制造一半导体结构的方法与流程

本发明实施例是有关一种半导体结构的制造方法。



背景技术:

半导体集成电路(integrated circuit,IC)已经历迅速增长。在发展过程中,半导体装置的功能密度增大,同时装置特征尺寸或几何形状减小。微缩制程(scaling down process)一般通过提高生产效率、降低成本,及/或改良装置效能而提供益处。然而,此种微缩制程亦增大集成电路制造制程的复杂性。

在深次微米(deep sub-micron)集成电路技术中,非挥发性记忆体装置因多种优势而变为热门的储存单元。特定而言,当关闭电源时,保存在非挥发性记忆体装置中的数据不会遗失。非挥发性记忆体装置的一个特定例子包含浮动栅极以保留与所保存的数据关连的电荷。然而,随着技术演变,半导体制程节点已针对高密度非挥发性记忆体装置而按比例缩小。在非挥发性记忆体装置的制程中,时时需要进一步改进以满足微缩制程中的效能要求。



技术实现要素:

根据本发明的多个实施方式,是提供一种用于制造一半导体结构的方法,制造方法包含:形成一栅极结构于一基板上;形成一衬里层以覆盖栅极结构及基板;形成一间隔物层于衬里层上;连续提供一蚀刻气体以移除间隔物层的一部分,及蚀刻气体具有一第一压力;以及将基板维持在一第二压力下,第二压力大于第一压力。

根据本发明的多个实施方式,是提供一种用于制造一半导体结构的方法,方法包含:形成两个栅极结构于一基板上;形成一间隔物层以覆盖两个栅极结构,及一间隙位于两个栅极结构之间;根据间隙的一深宽比而移除间隔物层的一部分,以分别在两个栅极结构的侧壁上形成锥形间隔物,及基板与锥形间隔物的一侧表面之间的一夹角相对于间隙的深宽比增大而减少;及形成一层间介电层以完全充填间隙。

根据本发明的多个实施方式,是提供一种用于制造一半导体结构的方法,方法包含:将一基板置于一真空腔室中,基板上具有一栅极结构及覆盖栅极结构的一间隔物层;将一蚀刻气体供应至真空腔室内;将蚀刻气体控制在一第一压力下;及使用一排气装置以将真空腔室维持在大于第一压力的一第二压力下,及通过蚀刻气体移除间隔物层的一部分以形成一锥形间隔物。

附图说明

本发明的实施方式最佳在阅读附图时根据下文的详细说明来进行理解。应注意,依据工业中的标准实务,多个特征并未按比例绘制。实际上,多个特征的比例可任意增大或缩小,以便使论述更加明确。

图1绘示依据多个实施例的制造半导体结构的方法的流程图;

图2A至图2E是依据多个实施例的半导体结构处于中间制造阶段的剖面示意图;

图3绘示依据多个实施例的干式蚀刻设备的剖面示意图;

图4A至图4D是依据多个实施例的半导体结构处于中间制造阶段的剖面示意图。

具体实施方式

以下揭示内容提供众多不同的实施例或例子以用于实施本案提供的标的物的不同特征。下文中描述组件及排列的特定实例以简化本发明。此等组件及排列当然仅为举例及没有意图进行限制。例如,在下文的描述中,第一特征在第二特征上方或之上的形成可包括其中第一特征与第二特征以直接接触方式形成的实施例,及亦可包括其中在第一特征与第二特征之间形成额外特征以使得第一特征与第二特征无法直接接触的实施例。此外,本发明在多个例子中可重复元件符号及/或字母。此重复用于实现简化与明晰的目的,及其自身并不规定所论述的多个实施例及/或配置之间的关系。

此外,本案中可使用诸如“下方(beneath)”、“以下(below)”、“下部(lower)”、“上方(above)”、“上部(upper)”等等的空间相对术语在以便于描述,以描述一个元件或特征与另一或更多个元件或特征的关系,如附图中所图示。空间相对术语意欲包含在使用或操作中的装置除附图中绘示的定向以外的不同定向。或者,设备可经转向(旋转90度或其他方向),及本案中使用的空间相对描述词同样可相应地进行解释。

一般而言,栅极结构形成于基板上,及垂直间隔物分别形成于栅极结构的侧壁上。两个邻接垂直间隔物之间的间隙充填介电材料以隔绝这些栅极结构。然而,随着对于缩小特征尺寸的需求在较大程度上推进集成电路,这些栅极结构之间的距离亦减小。此外,栅极结构高度亦对应于集成电路的需求而增大。因此,间隙深宽比大幅增加,此间隙不易于完全充填,及不可避免地保留空隙,及导致半导体结构中的泄漏。因而,必需改良半导体结构及其制造方法以解决上述问题。

图1绘示依据多个实施例的制造半导体结构的方法的流程图100。流程图100包括以下步骤。在步骤110中,栅极结构形成于基板上。在步骤120中,形成衬里层以覆盖栅极结构及基板。在步骤130中,间隔物层形成于衬里层上。在步骤140中,连续提供蚀刻气体以移除间隔物层的一部分,及此蚀刻气体具有第一压力。在步骤150中,基板维持在大于第一压力的第二压力。

请同时参照图2A至图2E。图2A至图2E是依据多个实施例的半导体结构处于中间制造阶段的剖面示意图。图2A绘示步骤110,在此步骤中,栅极结构220形成于基板210上。栅极结构220可通过使用适合制程而形成,此等制程包括光微影术及蚀刻制程。首先,形成栅极材料以覆盖基板,及形成光阻剂层(未绘于附图)以覆盖栅极材料。然后,光阻剂层经曝光以形成图案,及执行后曝光烘烤制程及显影制程以形成遮罩元件。上述提及的遮罩元件用以在执行蚀刻制程的同时保护栅极材料部分,从而在表面210上留下栅极结构220。

在一些实施例中,基板210是块状硅基板。在一些实施例中,基板210包括元素半导体,此元素半导体包括晶体、多晶体及/或非晶态结构的硅或锗。在一些其他实施例中,基板210包括化合物半导体,此化合物半导体包括碳化硅、砷化镓、磷化镓、磷化铟、砷化铟,及/或锑化铟。在一些替代性实施例中,基板210包括合金半导体,此合金半导体包括SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP及/或GaInAsP;任何其他适合材料;及/或上述各者的组合。

在形成栅极结构220之后,执行离子布植制程以在基板210中形成掺杂区域。掺杂区域分别在栅极结构220的相对侧上包括源极210S及漏极210D,此源极210S与漏极210D相对于栅极结构220侧壁而对齐。在一些实施例中,离子布植制程是通过使用N型掺杂剂或P型掺杂剂的垂直离子布植制程,掺杂剂剂量范围为自约5X1012离子/cm2至约1X1014离子/cm2,及能阶范围为自约0.5keV至约10keV。

在一些实施例中,栅极结构220是记忆体栅极结构,此记忆体栅极结构包括栅极绝缘层221、浮动栅极222、栅极间介电层223及控制栅极224。栅极绝缘层221在基板210上,及浮动栅极222在栅极绝缘层221上。栅极间介电层223在浮动栅极222上,及控制栅极224在栅极间介电层223上。具体而言,诸如电子的电荷以各种数量储存在浮动栅极222中。电荷有利地以非挥发性方式储存,以在不存在电源的情况下使得储存的电荷继续存在。储存在浮动栅极222中的电荷量表示一数值,如二元值,及经由程序(亦即写入)、读取及抹除操作而改变。此等操作经由控制栅极224的选择性偏压而执行。例如,控制栅极224利用高电压而偏压,此举改良载子的Fowler-Nordheim穿隧(Fowler-Nordheim tunneling),自源极210S与漏极210D之间的沟道区域前往控制栅极224。随着载子穿隧前往控制栅极224,载子在浮动栅极222中被截获以表示一数值(如1或0)。

在一些实施例中,栅极绝缘层221是高介电常数层,此层包括诸如二氧化铪(HfO2)、二氧化锆(ZrO2)、氧化硅钽(TaSiOx)、热氧化物、氮化物,或类似物,或上述各者的组合。在一些实施例中,浮动栅极222及控制栅极224由多晶硅形成,但不仅限于此,及栅极间介电层223是例如ONO(氧化物-氮化物-氧化物)介电质。

请继续参照图2B及步骤120,形成衬里层230以覆盖栅极结构220及基板210。衬里层230可通过等形沉积适当的材料层而形成,以便覆盖基板210的顶表面,及栅极结构220的侧壁及顶表面。在一些实施例中,衬里层230由绝缘材料形成,如氧化硅、氮化硅、氮氧化硅、ONO介电质,或上述各者的组合。在一些实施例中,衬里层230通过使用化学气相沉积(chemical vapor deposition,CVD)、物理气相沉积(physical vapor deposition,PVD)、原子层沉积(atomic layer deposition,ALD)或其他适合的沉积制程而形成。

请继续参照图2C及步骤130,形成间隔物层240以覆盖衬里层230。间隔物层240通过等形沉积适当的材料以覆盖衬里层230而形成,及间隔物层240的厚度T1大于衬里层230的厚度。在一些实施例中,间隔物层240由绝缘材料形成,如氧化硅、氮化硅、氮氧化硅,或上述各者的组合。在一些实施例中,间隔物层240通过使用化学气相沉积(chemical vapor deposition,CVD)、物理气相沉积(physical vapor deposition,PVD)、原子层沉积(atomic layer deposition,ALD)或其他适合的沉积制程而形成。

请继续参照图2D,此图绘示步骤140及150。在图2D中,连续提供具有第一压力P1的蚀刻气体250以在将基板维持在第二压力P2下的同时移除间隔物层240的一部分,此第二压力P2大于第一压力P1。请同时参照图3,此图绘示本发明的多个实施例中的干式蚀刻设备300的剖面示意图。干式蚀刻设备300包括经配置以紧固基板210的真空腔室310。在一些实施例中,真空腔室310中的载台312经配置以紧固基板210。供气装置320在真空腔室310上方及经配置以供应蚀刻气体250至真空腔室310内,及排气装置330在真空腔室310下方及经配置以从真空腔室310中排出蚀刻气体250及蚀刻气体250的副产物,以便控制真空腔室310的压力。

首先,在基板210上方具有栅极结构220、衬里层230及间隔物层240并被置于真空腔室310中,及通过连续提供蚀刻气体250至真空腔室310内以移除间隔物层240的部分,来执行干式蚀刻制程。此外,干式蚀刻设备300的控制装置340经配置以控制在第一压力P1下进入真空腔室310的蚀刻气体250。同时,启动排气装置330以将真空腔室310维持在第二压力P2下,此第二压力P2大于蚀刻气体250的第一压力P1。具体而言,蚀刻气体250及副产物的排出速率小于提供蚀刻气体250的速率,因此蚀刻气体250积聚在真空腔室310中以形成大于第一压力P1的第二压力P2。以不同方式描述,排气装置330在真空腔室310下方以产生将真空腔室310中的蚀刻气体250向下拉动的力,力相对于排气速率下降而减小。随着力减少,蚀刻气体250慢慢向下流动及保持在真空腔室310中。在一些实施例中,排气装置330是涡轮帮浦。

干式蚀刻设备300进一步在真空腔室310侧壁处包括天线350,及电浆产生装置360连接至天线350以用于利用蚀刻气体250产生电浆,电浆产生装置360是高频电源。用于电浆产生的高频电源的频率自13.56MHz至60MHz。此外,用于电浆产生的电浆产生装置360亦可以脉冲方法驱动。此外,干式蚀刻设备300进一步包括连接至载台312的4MHz射频偏压电源370,此射频偏压电源的目的是从电浆中将离子吸入基板210以控制离子能。

在一些实施例中,第一压力P1介于自100mtorr至150mtorr的范围中,及第二压力P2介于自200mtorr至300mtorr的范围中。在一些实施例中,蚀刻气体250选自由以下各者组成的群组:C4F2、C4F8、C5F6、C5F8、CF4、CF3、CHF3、CH2F2、SF6、NF3、F2及上述各者的组合。

请返回参照图2D,利用蚀刻气体250产生的电浆将蚀刻间隔物层240。如前所提及,真空腔室310中的基板210维持在大于蚀刻气体250的第一压力P1的第二压力P2下,以便减小向下拉动蚀刻气体250的力。因而,蚀刻气体250慢慢向下流动,及几乎积聚在间隔物层240顶部,及蚀刻气体250的量自间隔物层240顶部向底部逐渐减少。大量蚀刻气体250将导致间隔物层240的横向蚀刻,因为蚀刻气体250几乎积聚在间隔物层240顶部,而间隔物层240顶部的横向蚀刻速率高于间隔物层240底部附近的横向蚀刻速率。

利用间隔物层240不同部分的不同横向蚀刻速率,通过蚀刻气体250移除间隔物层240的一部分以形成邻近于衬里层230的锥形间隔物242,此锥形间隔物242包括顶部厚度TT及底部厚度TB,及顶部厚度TT小于底部厚度TB。此外,锥形间隔物242具有自顶部厚度TT延伸至底部厚度TB的侧表面242S,及锥形间隔物242的基板210与侧表面242S之间的夹角θ介于约40度至约75度的范围中。具体而言,间隔物层240顶部经横向蚀刻以将厚度从T减少至TT,但间隔物层240底部仅经横向蚀刻,因此锥形间隔物242具有大体上与间隔物层240厚度T相同的底部厚度TB。因此,源极210S与漏极210D之间的通道长度可维持在所需值。

在一些实施例中,顶部厚度TT介于约0nm至约37nm的范围中,以确保栅极结构220与其他装置绝缘。在一些实施例中,底部厚度TB介于约38nm至约68nm的范围中以避免短通道效应及热电子效应。

请继续参照图2E,形成层间介电层260以覆盖锥形间隔物242。层间介电层260通过沉积介电材料以覆盖锥形间隔物242而形成,以便隔绝栅极结构220与相邻的半导体装置或金属线以避免短路。在一些实施例中,层间介电层260由无掺杂氧化物(un-doped oxide,USG)、氟化硅酸盐玻璃(fluorinated silicate glass,FSG)、B、P硅酸盐玻璃(BPSG)或低介电常数介电材料形成。在一些实施例中,层间介电层260通过使用化学气相沉积(chemical vapor deposition,CVD)、物理气相沉积(physical vapor deposition,PVD)、原子层沉积(atomic layer deposition,ALD)或其他适合的沉积制程而形成。

图4A至图4D是依据多个实施例的半导体结构处于中间制造阶段的剖面示意图。相对于图2A至图2E的实施例而言,图4A至图4D中的类似元件利用相同元件符号指定,以便于理解。在图4A中,两个栅极结构220形成于基板210上。此两个栅极结构220可通过使用适合制程而形成,此等制程包括微影及蚀刻制程。首先,形成栅极材料以覆盖基板,及形成光阻剂层(未绘示于附图)以覆盖栅极材料。然后,将光阻剂层曝光以形成图案,及执行后曝光烘烤制程及显影制程以形成遮罩元件。上述提及的遮罩元件用以在执行蚀刻制程的同时保护栅极材料部分,从而在基板210上留有两个栅极结构220。

在形成栅极结构220之后,执行离子布植制程以在基板210中形成掺杂区域。掺杂区域分别在栅极结构220的相对侧上包括源极210S及漏极210D,此源极210S与漏极210D相对于栅极结构220侧壁而对齐,及源极210S是由两个栅极结构220共享的共用源极。在一些实施例中,栅极结构220是分别包括栅极绝缘层221、栅极绝缘层221上的浮动栅极222、栅极绝缘层221上的栅极间介电层223及栅极间介电层223上的控制栅极224的记忆体栅极结构。

请继续参照图4B,形成间隔物层240以覆盖两个栅极结构220。间隔物层240通过等形沉积适当的材料以覆盖两个栅极结构220而形成,及间隔物层240具有均匀的厚度T。在一些实施例中,衬里层230形成于间隔物层240与栅极结构220之间。衬里层230可通过等形沉积适当的材料层而形成,以便覆盖基板210及两个栅极结构220。

如图4B所示,具有宽度W及深度D的间隙270保留在两个相邻的栅极结构220之间,及深度D除以宽度W以获得间隙270的深宽比R。应注意,间隙宽度W与形成于随后制程中的层间介电层的间隙充填能力有关,及具有较小宽度W的间隙增大利用层间介电层完全充填间隙270的困难。尽管可能减小间隔物层厚度T以增大间隙270的宽度W,但具有较小厚度T的间隔物层240缩短源极210S与漏极210D之间的通道的长度,及导致热电子效应以影响半导体结构阻抗。

请继续参照图4C,间隔物层240的一部分根据间隙270的深宽比R被移除,以分别在两个栅极结构220的侧壁上形成锥形间隔物242,及锥形间隔物242的基板210与侧表面242S之间的夹角θ随着间隙270的深宽比R增大而减小。如前述图2D中所示,基板210置于干式蚀刻设备300的真空腔室310中,及连续提供具有第一压力P1的蚀刻气体250至真空腔室310内以移除间隔物层240的此部分。此外,真空腔室310中的基板210维持在第二压力P2下以横向蚀刻间隔物层240及确保间隔物层240的此部分被移除以形成锥形间隔物242。

需要注意的是,基板210的第二压力P2与蚀刻气体250的第一压力P1之间的压差与锥形间隔物242的轮廓有关。如前述提及,深度D除以宽度W以获得间隙270的深宽比R,及当间隙270的深度D固定时,深宽比R相对于宽度W的减小而增大。如若两个栅极结构220彼此靠近,则间隙270将具有较小宽度W及较大深宽比R,此情况不利于充填层间介电层。为实现增大间隙270宽度的目的,压差应增大,此意谓着将蚀刻气体250向下拉动的力进一步减小以保留更多积聚在间隔物层240顶部的蚀刻气体250。亦即,间隔物层240顶部的横向蚀刻速率进一步增大,因此形成锥形间隔物242以具有较小顶部厚度TT,此增大间隙270的宽度W以增强形成于随后制程中的层间介电层的间隙充填能力。然而,底部厚度TB仍大体上与间隔物层240厚度T相同,以将源极210S与漏极210D之间的通道长度维持在期望值。因而,顶部厚度TT与底部厚度TB之间的厚度差异增大,因此从顶部厚度TT延伸至底部厚度TB的侧表面242S向栅极结构220倾斜,及由此减小锥形间隔物242的基板210与侧表面242S之间的夹角θ。鉴于上述,锥形间隔物242的基板210与侧表面242S之间的夹角θ相对于间隙270的深宽比R增大而减小。

在一些实施例中,间隙270的深宽比R介于约2至6的范围中。在一些实施例中,锥形间隔物242的基板210与侧表面242S之间的夹角θ介于约40度至75度的范围中。

请继续参照图4D,形成层间介电层260以完全地充填间隙270介电层260通过沉积介电材料而形成,此介电材料覆盖锥形间隔物242与栅极结构220,及此介电材料的一部分进入两个相邻锥形间隔物242之间的空间以完全地充填间隙270,执行化学机械抛光(chemical mechanical polishing,CMP)制程以移除多余介电材料,以便形成具有平面顶表面的层间介电层260。如图4C中所提及,锥形间隔物242增大间隙270W以减小将介电材料充填至间隙270难。因而,间隙充填能力得以改良以使得介电材料易于进入间隙270能形成无隙层间介电层260。

上文论述的本发明实施例比现有方法及结构更具有优势,及此等优势列于下文中。根据一些实施例,提供制造半导体结构的改良方法以改良层间介电层的间隙充填能力。凭借控制间隔物以具有锥形轮廓,间隙宽度增大以使得介电材料易于完全充填间隙,及形成层间介电层而其中没有空隙。因此,泄漏问题得以减轻,以改良半导体结构的产率。另一方面,真空腔室压力维持在大于蚀刻气体压力的一值,此蚀刻气体经积聚以横向蚀刻间隔物层顶部及形成锥形间隔物。此外,基板与锥形间隔物侧表面之间的夹角相对于间隙深宽比而来调节,以便确保具有不同深宽比的间隙可能被完全充填。

依据一些实施例,本发明揭示一种制造半导体结构的方法,及此方法包含以下步骤。栅极结构形成于基板上,及形成衬里层以覆盖栅极结构及基板。间隔物层形成于衬里层上,及连续提供蚀刻气体以在将基板维持在第二压力下而移除间隔物层的一部分,此蚀刻气体具有第一压力。第二压力大于第一压力。

依据一些实施例,本发明揭示制造半导体结构的方法,及此方法包含以下步骤。两个栅极结构形成于基板上,及形成间隔物层以覆盖两个栅极结构,间隙位于此两个栅极结构之间。间隔物层的一部分根据间隙深宽比而被移除以分别在两个栅极结构的侧壁上形成锥形间隔物,及基板与锥形间隔物侧表面之间的夹角相对于间隙深宽比增大而减少。然后,形成层间介电层以完全充填间隙。

依据一些实施例,本发明揭示制造半导体结构的方法,及此方法包含以下步骤。基板被置于真空腔室中,此基板上具有栅极结构及覆盖此栅极结构之间隔物层。蚀刻气体被供应至真空腔室内及被控制在第一压力下。排气装置用以将真空腔室维持在大于第一压力的第二压力下,及通过蚀刻气体移除间隔物层的一部分以形成锥形间隔物。

前述内容概括数个实施例的特征,以便该领域中熟悉此项技术者可更佳地理解本发明的实施方式。熟悉此项技术者应了解,本发明可易于用作设计或修正其他制程及结构的基础,以实现与本案介绍的实施例相同的目的及/或达到与其相同的优势。彼等熟悉此项技术者亦应了解,此种同等构造不脱离本发明的精神及范畴,及可在不脱离本发明精神及范畴的情况下在本案中进行多种变更、取代及更动。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1