一种纳米晶复相钕铁硼永磁体织构化增强的制备方法与流程

文档序号:15077524发布日期:2018-08-01 02:20阅读:321来源:国知局
本发明涉及磁性材料
技术领域
,尤其是指一种纳米晶复相钕铁硼永磁体织构化增强的制备方法。
背景技术
:1993年,skomski和coey从理论上预言了各向异性的纳米复合永磁体具有120mgoe的磁能积,远高于现有粉末烧结ndfeb磁体的理论值64mgoe,并且稀土含量低,这使它有望成为下一代高性能、低成本的永磁体材料。然而,实验上制备这种理想的纳米结构是一个巨大的挑战。热压热变形技术是制备全致密各向异性单相ndfeb永磁体的有效手段,通常认为是富稀土相作为晶界液相促进晶粒转动,使磁体形成片状晶结构,从而获得强烈的磁晶各向异性。为了制备软硬磁性相复合的热变形磁体,研究者们采用了富稀土快淬粉和贫稀土快淬粉混合以及贫稀土快淬粉和低熔点合金混合等方式进行尝试。微观结构表明,对于富稀土快淬粉和贫稀土快淬粉混合的热变形磁体,只有富稀土液相区形成硬磁相织构,贫稀土区域基本没有发生变形取向;对于贫稀土快淬粉和低熔点合金混合的热变形磁体,通过引入低熔点合金作为晶界相提高复合磁体的变形取向能力,能够制备出具有显著各向异性的全致密纳米晶复相永磁材料。但是,传统的热变形温度较高,通常达到700℃以上,使片状晶过分生长,横向尺寸达到数微米,远远超过软硬磁性相所要求的交换耦合尺寸。此外,传统热变形工艺变形时间短,低熔点晶界相分布不匀均,会恶化复合磁体的各向异性。技术实现要素:针对上述技术现状,本发明旨在提供一种纳米晶复相钕铁硼永磁体织构化增强的制备方法,其不仅能在较低温度下实现复合磁体变形,而且能够进一步增强变形磁体的织构化能力。为了实现上述目的,本发明人采用热压热变形法,经过大量实验探索研究后发现在热变形过程中,采用低温低速变形,即,控制温度在550℃~700℃,能够有效抑制晶粒长大,确保软、硬磁性相间的交换耦合作用;采用低速率变形,即,控制沿着压力方向的变形速率v≤4um/s,能够促进低温下的晶界相均匀分布,不仅利于增强硬磁相织构,还能抑制低温变形过程中裂纹的形成与扩展,提高块体的致密化与磁性能。即,本发明的技术方案为:一种纳米晶复相钕铁硼永磁体织构化增强的制备方法,采用热压热变形法,即,包括将钕铁硼双相复合永磁材料的粉体预成型为坯体的热压过程,以及将坯体微观织构化为各向异性块体的热变形过程,其特征是:在热变形过程中,控制沿着压力方向的变形速率v≤4um/s,控制变形温度为550℃~700℃。所述的钕铁硼双相复合永磁材料是以金属间化合物re2fe14b为基础的永磁材料,主要成分为稀土元素钕(nd)、铁(fe)、硼(b),为了获得不同性能,部分钕可用镝(dy)、镨(pr)等其他稀土金属替代。并且,利用该钕铁硼永磁材料的粉体制得的各向异性块体是包含硬磁性相re2fe14b与软磁性相α-fe的钕铁硼双相复合结构。作为优选,在热变形过程中,控制温度为550℃~650℃,进一步优选为600℃~650℃。作为优选,在热变形过程中,控制沿着压力方向的变形速率v为0.02um/s≤v≤4um/s,进一步优选为0.5um/s≤v≤1um/s。所述的热变形过程中使用的热变形装置不限,优选为真空感应热变形装置。作为优选,将所述坯体放入等直径等高的304不锈钢保护套中再进行热变形处理。作为优选,热变形前预保温10min~30min。作为优选,在热变形过程中,首先抽真空至10-4pa,再充入少量ar气作为保护气体。作为优选,所述的钕铁硼双相复合永磁材料中掺杂含稀土元素的低熔点合金相,在本发明的热变形过程,掺杂的稀土液相填充晶界相,促进硬磁晶粒的取向织构。作为优选,该掺杂合金的质量占钕铁硼双相复合永磁材料质量的1%~10%,进一步优选为2%~8%。与现有技术相比,本发明将经热压处理得到的钕铁硼复相坯体在低温下以低速率进行热变形处理,获得了织构增强的全致密re2fe14b复合永磁块体。相比于传统工艺,在低温下变形取向,能有效抑制晶粒长大,同时低速率进行热变形有利于低温下的晶界相均匀分布,增强硬磁相织构,还能抑制变形过程中裂纹的形成与扩展,提高块体的致密化与磁性能。附图说明图1是实施例1制得的块状永磁体沿压力方向的断裂形貌sem图片;图2是对比实施例制得的块状永磁体沿压力方向的断裂形貌sem图片;图3是实施例1、实施例2与对比实施例制得的块状永磁体在室温下的退磁曲线。具体实施方式以下结合附图及实施例对本发明做进一步说明,需要指出的是,以下所述实施例旨在便于对本发明的理解,而不起任何限定作用。实施例1:本实施例中,原料为自麦格昆磁(天津)有限公司购得的商用贫稀土双相磁粉ndfeb(15-7),该原料与低熔点合金粉末nd70cu30混合,该nd-cu合金粉末的掺杂量占该原料质量的8%,得到掺杂原料。该nd-cu合金粉末的制备方法如下:(1)按照ndcu合金成分配料,经真空感应熔炼,制得nd70cu30合金铸锭;(2)在氩气保护下破碎该nd70cu30合金铸锭,经研磨、过筛,得到粒径在90um以下的ndcu合金粉末;采用该掺杂原料,利用热压热变形法制备各向异性的nd2fe14b复相永磁块体材料,具体如下:(1)热压过程:将定量的该掺杂原料装入硬质合金模具内,使用真空感应热压热变形装置,在真空4×10-2pa、压力215mpa、700℃条件下热压预成型,得到坯体;(2)热变形过程:将(1)中得到的坯体先放入等直径等高的304不锈钢包套中,再放入预设好尺寸的硬质合金模具内;使用高真空感应热压热变形装置,抽真空至10-4pa,再充入少量ar作为保护气体;然后600℃条件下控制沿着压力方向的变形速率v=1um/s进行热压变形至预定尺寸,得到双相复合永磁块体材料。实施例2:本实施例中,采用与实施例1中完全相同的掺杂原料。采用该掺杂原料,利用热压热变形法制备各向异性的nd2fe14b复相永磁块体材料,具体如下:(1)与实施例2的步骤(1)完全相同;(2)与实施例2的步骤(2)基本相同,唯一不同的是在600℃条件下控制沿着压力方向的变形速率v=2um/s进行热压变形至所述的预定尺寸,得到双相复合永磁块体材料。对比实施例:本实施例中,采用与实施例1中完全相同的掺杂原料。采用该掺杂原料,利用热压热变形法制备各向异性的nd2fe14b复相永磁块体材料,具体如下:(1)与实施例2的步骤(1)完全相同;(2)与实施例2的步骤(2)基本相同,所不同的是在600℃条件下控制沿着压力方向的变形速率v=8um/s进行热压变形至预定尺寸,得到双相复合永磁块体材料。图1与图2分别是上述实施例1与对比实施例制得的块状永磁体沿压力方向的断裂形貌sem图片。与对比实施例相比,比较图1与图2,显示在慢速变形条件下纳米晶粒的织构化得到增强,形成了良好的取向织构。图3是上述实施例1、实施例2与对比实施例制得的块状永磁体在室温下的退磁曲线,显示控制沿着压力方向进行慢速变形增强了永磁体的各向异性。下表1是实施例1、实施例2与对比实施例制得的块状永磁体的磁性能,显示与对比实施例相比,慢速变形得到的块状永磁体的磁性能得到提高。表1:hci(koe)br(kg)(bh)max(mgoe)实施例18.1412.1531.18实施例27.2311.9128.21对比实施例7.0311.1824.63以上所述的实施例对本发明的技术方案进行了详细说明,应理解的是已上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本声明的原则范围内所做的任何修改、补充或类似方式替代等,均应包含在本发明的保护范围之内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1