具有抗单粒子效应的VDMOS器件的制作方法

文档序号:12888910阅读:962来源:国知局
具有抗单粒子效应的VDMOS器件的制作方法与工艺

本发明属于功率半导体器件技术领域,涉及一种具有抗单粒子效应的vdmos器件。



背景技术:

随着电力电子技术向着高频大功率应用领域的快速发展,功率mosfet(metaloxidesemiconductorfieldeffecttransistor)器件因其具有耐压高、开关速度快、驱动简单、低驱动功率、良好的热稳定性及简单的制造工艺等优点而被广泛应用于开关电源、交流传动、变频电源、计算机设备等领域中。目前由于vdmos耐压高、制造工艺简单和较高的可靠性等特点而成为功率mosfet的主流器件之一。此外,vdmos器件在航天器上也是必不可少的器件,常应用于航天器电源系统的dc/dc开关变换器中。然而,空间辐射环境存在多种高能射线和高能粒子,它们对电子器件的性能造成威胁。功率mosfet长期工作在太空环境中,高能粒子、宇宙射线会对器件电学参数产生巨大影响,辐射产生的单粒子效应会导致功率mosfet烧毁失效;也能产生总剂量电离效应,使器件的电学参数发生退化,甚至可能直接使器件永久性失效。这些影响足以使航天器电源系统功能异常或致使航天器的运行受影响,最终导致航天器寿命下降。宇航用功率mosfet的抗辐射加固研究始于20世纪80年代。迄今为止,功率mosfet总剂量辐射影响机制及加固理论都已相对比较成熟,而其单粒子效应的研究尚且不成熟。

vdmos器件的单粒子效应主要分为单粒子烧毁(seb,singleeventburnout)和单粒子栅穿(segr,singleeventgaterupture)。单粒子烧毁是指由于高能粒子的入射导致器件的寄生三极管导通,产生的正反馈使电流迅速增大并最终使器件烧毁的现象。在n型vdmos器件中,其n+源区、p-body体区和n-外延层构成内在的寄生三极管。器件在正常的关断状态下,源漏电流极小,寄生三极管不会导通;但是,当有高能粒子轰击vdmos,在器件入射径迹周围产生大量电子空穴对,电子空穴对在源漏耗尽层电场作用下形成漂移电流,电流密度较高,这就使得源漏电流大大増加。源漏电流横向穿过p-body体区时会产生一定的电压降,当大于寄生三极管发射结的导通电压时,寄生三极管导通,n+区发射电子到基区使电流继续增大。与此同时,寄生三极管导通后vdmos器件管压降迅速下降,vdmos器件进入负阻阶段,电流持续增长直到发生器件局部过热,器件因发生二次击穿而烧毁。单粒子栅穿主要指由于高能粒子入射导致栅极绝缘介质被击穿短路的现象。当有栅偏电压时,栅介质中高电场导致的局部大电流。当有高能粒子入射到vdmos中时,空穴会沿电场向器件表面运动,瞬时产生的大量空穴无法导出,会在栅介质下方的颈区堆积。这些空穴会在栅介质上增加一个瞬态电场,导致氧化层内电场超过临界击穿电场,引起栅氧介质击穿,栅极泄漏电流增加,功率mosfet失去栅控能力。

现对vdmos器件的单粒子效应加固措施主要围绕避免寄生三极管的开启而展开,如:降低源区的掺杂以减小寄生三极管发射区的效率,p+深注入以减小基区的电阻,p-body区深注入以减小寄生三极管的放大系数;还有在衬底和外延层之间增加缓冲层和源区接触采用沟槽式接触等改善单粒子效应的措施,但现有的加固vdmos器件对单粒子效应改善有限仍不能满足具有高可靠性的航空应用需求,所以需要对抗单粒子加固的vdmos器件作进一步研究。



技术实现要素:

本发明的目的就是针对上述常规vdmos器件在航空航天应用中存在的问题,提出一种具有抗单粒子效应的vdmos器件。

为实现上述发明目的,本发明技术方案如下:

一种具有抗单粒子效应的vdmos器件,其元胞结构包括第一导电类型半导体衬底和位于衬底上方的第一导电类型半导体外延层;所述第一导电类型半导体衬底下表面有漏极接触的金属电极;所述的第一导电类型半导体外延层内部上方两侧具有第二导电类型半导体体区;每个第二导电类型半导体体区内部表面具有相互独立的第一导电类型半导体源区和第二导电类型半导体的体接触区;所述源区和体接触区上表面具有源极金属电极;两侧的源区之间的第一导电类型半导体外延层的上表面有氧化层以及位于氧化层上表面的多晶硅栅;多晶硅栅与源极金属电极之间具有绝缘介质层;所述第一导电类型半导体外延层内部具有第二导电类型半导体埋层,其位置在氧化层下方,且第二导电类型半导体埋层和氧化层及第二导电类型半导体体区不邻接;所述第二导电类型半导体埋层在器件有源区边缘通过体接触区和接触孔与源极金属电极相连接。

作为优选方式,所述第一导电类型为n型,第二导电类型为p型;或者第一导电类型为p型,第二导电类型为n型。

作为优选方式,所述器件的半导体为体硅、碳化硅、氮化镓、磷化铟或锗硅其中的一种。

本发明的有益效果为:极大地提高了vdmos器件的抗单粒子烧毁能力和抗单粒子栅穿能力,同时提出的抗单粒子加固的vdmos结构在保证与常规vdmos相同的耐压条件下,能通过提高漂移区的掺杂浓度而降低器件的导通电阻;此外,由于埋层的屏蔽作用减小了栅电极与漏极的重叠面积,该vdmos结构的米勒电容也大大减低。

附图说明

图1为常规n型vdmos的结构示意图;

图2为本发明一种具有抗单粒子效应的n型vdmos的结构示意图;

图3为处于关态的常规vdmos在重离子入射时产生的电子空穴的流向示意图;

图4为本发明的n型vdmos在重离子入射时产生的电子空穴的流向示意图;

其中,1为金属电极,2为第一导电类型半导体衬底,3为第一导电类型半导体外延层,4为第二导电类型半导体体区,5为源区,6为体接触区,7为源极金属电极,8为氧化层,9为多晶硅栅,10为绝缘介质层,11为第二导电类型半导体埋层。

具体实施方式

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。

如图2所示,一种具有抗单粒子效应的vdmos器件,其元胞结构包括第一导电类型半导体衬底2和位于衬底2上方的第一导电类型半导体外延层3;所述第一导电类型半导体衬底2下表面有漏极接触的金属电极1;所述的第一导电类型半导体外延层3内部上方两侧具有第二导电类型半导体体区4;每个第二导电类型半导体体区4内部表面具有相互独立的第一导电类型半导体源区5和第二导电类型半导体的体接触区6;所述源区5和体接触区6上表面具有源极金属电极7;两侧的源区5之间的第一导电类型半导体外延层3的上表面有氧化层8以及位于氧化层8上表面的多晶硅栅9;多晶硅栅9与源极金属电极7之间具有绝缘介质层10;所述第一导电类型半导体外延层3内部具有第二导电类型半导体埋层11,其位置在氧化层8下方,且第二导电类型半导体埋层11和氧化层8及第二导电类型半导体体区4不邻接;所述第二导电类型半导体埋层11在器件有源区边缘通过体接触区和接触孔与源极金属电极相连接。

所述第一导电类型为n型,第二导电类型为p型;或者第一导电类型为p型,第二导电类型为n型。

优选的,所述器件的半导体为体硅、碳化硅、氮化镓、磷化铟或锗硅其中的一种。

下面以第一导电类型半导体为n型半导体、第二导电类型为p型半导体为例,说明本例vdmos结构改善单粒子能力的原理。

如图3所示,当重离子入射常规vdmos器件时,其栅电极中心位置下方的jfet区是最敏感区域,高能粒子在入射径迹上激发产生电子空穴对,在漏源正向电压的作用下,电子流向漏极,空穴主要有两条流向路径,一方面通过p-body区流到源极,而在p-body区的电压降增加易造成寄生三极管的开启甚至电流过大时发生二次击穿而使器件发生烧毁;另一方面空穴流向栅氧层下表面积聚而引起栅氧两侧电势差增加,最终导致栅穿。如图4所示,本发明提出的具有抗单粒子效应的vdmos结构,由于引入了与源极相连的p埋层11,在p埋层周围与第一导电类型半导体外延层3之间形成空间电荷区而产生指向p埋层的电场,高能粒子激发产生的电子空穴对,在电场的作用下,电子流向漏极,而空穴大部分流向p埋层,最终流向源电极;由于在栅电极下方的漂移区内引入与源极接触的p埋层,其为高能粒子产生的空穴提供了另一便捷流通的路径而有效避免了源区下方寄生晶体管的开启,以及避免栅氧层下方空穴的大量积聚,同时改善了抗单粒子烧毁和抗单粒子栅穿的能力。此外由于p埋层的引入,在器件关断时,p埋层与漂移区形成的反偏pn结也能承担一部分耐压,所以在实现与普通vdmos同样耐压的前提下,可适当提高漂移区的掺杂浓度使器件的导通电阻降低;同时由于p埋层的存在减小了栅漏电极的重叠面积而使栅漏电容减小。而另一方面p埋层的引入会导致器件导通时电流路径变窄而使导通电阻增大,可通过优化设计p埋层的位置参数及掺杂浓度使其在改善抗单粒子能力的同时对器件的导通电阻影响较小。

由于空间辐射环境的复杂性,本发明提出的应用于vdmos的加固结构方案可与vdmos器件现有的其他工艺或结构加固方案相结合使用,不仅可大大提高器件抗辐射能力,而且使器件具有较优的电学参数性能和较高的可靠性。

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1