基座支撑部及包含基座支撑部的外延生长设备的制作方法

文档序号:13448441阅读:177来源:国知局
基座支撑部及包含基座支撑部的外延生长设备的制作方法

本申请是申请日为2014年3月13日、申请号为201480010655.5、发明名称为“基座支撑部及包含基座支撑部的外延生长设备”的发明专利申请的分案申请。

本发明涉及基座支撑部及包括所述基座支撑部的外延生长设备,所述基座支撑部用于支撑在半导体晶片表面上形成外延膜时所使用的基座的。



背景技术:

通常,通过利用外延生长设备在半导体晶片上生长外延膜来制造外延晶片。外延膜厚度的均匀性是外延晶片品质中之一,且高品质外延晶片的条件在于晶片表面内的膜厚度分布处于预定范围中。

通常,外延膜厚度受位于膜下方的半导体晶片的温度影响。通过基座而加热半导体晶片,但基座支撑部存在于基座的后表面处。由于基座支撑部的存在,基座的基座支撑部的遮蔽部分(从向下设置的加热设备看)的温度与其他部分的温度之间产生差异,从而导致基座整体的温度不均匀的问题。

就此而言,例如,jp-a-10-335435及jp-a-2011-108765揭示一种技术,在所述技术中,基座支撑部由诸如石英玻璃之类的透明材料形成。然而,即使在基座支撑部由透明材料形成的情况下,亦难以解决上述问题。

再者,亦存在一问题,亦即基座因暴露于高温环境而变形,及基座整体的温度不均匀。就此而言,jp-a-2011-108765揭示一种技术,在所述技术中,通过将基座支撑部的臂的数目设定为四个或更多来加强用于支撑基座的力,从而防止基座变形。

然而,基座支撑部的臂的数目的增大导致由基座支撑部遮蔽的部分增多。



技术实现要素:

本发明的目的是解决上述问题,及提供能够降低对加热基座的影响及足够支撑基座的基座支撑部,及提供能够通过包括所述基座支撑部来制造高品质外延晶片的外延生长设备。

根据本发明的一实施方式,外延生长设备内提供有从下方支撑基座的基座支撑部,所述外延生长设备在放置于具有通孔的基座上的半导体晶片的表面上形成外延膜,所述基座支撑部包括:支撑基座的基座轴;及支撑半导体晶片的基板升降部,其中基座轴包括支撑柱及从所述支撑柱径向延伸的多个臂,基板升降部包括支撑柱及从所述支撑柱径向延伸的多个臂,基座轴的臂从基座支撑部的支撑柱侧起包括第一臂、耦接至第一臂的第二臂及耦接至第二臂的第三臂,第二臂提供有通孔,所述通孔沿垂直方向穿过第二臂,基板升降部的臂从基板升降部的支撑柱侧起包括第一臂、耦接至第一臂的第二臂及耦接至第二臂的台座部,台座部与半导体晶片之间提供有能够穿过基座轴的通孔及基座的通孔的升降销,且基座轴的第一臂的宽度小于基座轴的第二臂的宽度。

基座轴的第一臂的宽度较佳等于或小于基座轴的通孔的直径。

基座轴的第三臂的宽度较佳小于基座轴的第二臂的宽度。

基座轴的第三臂的宽度较佳等于或小于基座轴的通孔的直径。

基板升降部的第二臂的宽度较佳小于基板升降部的第一臂的宽度。

基板升降部的第二臂的宽度较佳与基座轴的第一臂的宽度相同。

基座轴的支撑柱较佳提供有能支撑基座的帽。

台座部较佳提供有能够支撑升降销的下端的凹部。

根据本发明的另一实施方式,提供外延生长设备,所述外延生长设备在放置于具有通孔的基座上的半导体晶片的表面上形成外延膜,所述外延生长设备包括:从下方支撑基座的基座支撑部,其中基座支撑部包括支撑所述基座的基座轴及支撑所述半导体晶片的基板升降部,其中基座轴包括支撑柱及从所述支撑柱径向延伸的多个臂,基板升降部包括支撑柱及从所述支撑柱径向延伸的多个臂,基座轴的臂从基座轴的支撑柱侧起包括第一臂、耦接至第一臂的第二臂及耦接至第二臂的第三臂,第二臂提供有通孔,所述通孔沿垂直方向穿过第二臂,基板升降部的臂从基板升降部的支撑柱侧起包括第一臂、耦接至第一臂的第二臂及耦接至第二臂的台座部,台座部与半导体晶片之间提供有能够穿过基座轴的通孔及基座的通孔的升降销,且基座轴的第一臂的宽度小于基座轴的第二臂的宽度。

根据本发明的基座支撑部能够降低对加热基座的影响,及足够支撑基座。此外,根据本发明的外延生长设备能够通过包括基座支撑部来制造高品质的外延晶片

附图说明

图1是根据本发明的一实施方式的外延生长设备的截面示意图。

图2是根据本发明的实施方式的基座轴的示意图。

图3是根据本发明的实施方式的基板升降部的示意图。

图4a及图4b是图示根据本发明的实施方式的基座支撑部的操作的示意图。

图5是根据本发明的另一实施方式的外延生长设备的截面示意图。

图6是图示本发明的实施方式中的反应腔室的配置的分解透视图。

图7是图示本发明的实施方式中的反应腔室的外部配置的分解透视图。

图8是图示本发明的实施方式中的顶板部的配置的截面图。

图9是,图示本发明的实施方式中的侧壁部的内部配置的示意图。

图10是图示本发明的实施方式中的反应气体供给通道的截面视图。

图11a及图11b是图示本发明的实施方式中的反应气体供给通道的示意图。

图12a及图12b是图示本发明的实施方式中的流矫直板的实例的透视图。

图13是图示本发明的实施方式中的基座环的实例的部分截面视图。

图14是图示本发明的实施方式中的基座环的另一实例的部分截面视图。

图15是图示本发明的实施方式中的基座的实例的平面图。

图16是图示本发明的实施方式中的基座的另一实例的平面图。

图17是图示本发明的实施方式中的排气管的实例的截面图。

图18是图示本发明的实施方式中的上反射体的实例的透视图。

图19是图示本发明的实施方式中的下反射体的实例的透视图。

图20是图示现有技术的外延生长设备中的顶板部的配置的截面图。

图21是图示现有技术的外延生长设备中的反应腔室的外部配置的分解透视图。

图22是图示现有技术的外延生长设备中的上反射体的实例的透视图。

图23是图示现有技术的外延生长设备中的下反射体的实例的透视图。

图24a及图24b是图示根据实验性实例1及对照实例1的外延膜的膜厚度分布的图。

具体实施方式

将参考附图描述根据本发明的基座支撑部的实施方式。

如图1中所示,作为实例,在外延生长设备200内,根据本发明的基座支撑部100从下方支撑基座20,外延生长设备200在放置于具有通孔10的基座20上的半导体晶片w的表面上形成外延膜。基座支撑部100包括支撑基座20的基座轴110及支撑半导体晶片w的基板升降部120。外延生长设备200包括位于其上部及下部处的加热装置210,比如卤素灯。

如图2中所示,基座轴110包括支撑柱111及从支撑柱111径向延伸的多个臂112。基座轴110的臂112从支撑柱111侧起包括第一臂113、耦接至第一臂113的第二臂114及耦接至第二臂114的第三臂115。第二臂114提供有通孔116,通孔116沿垂直方向穿过第二臂114。

此外,如图3中所示,基板升降部120包括支撑柱121及从所述支撑柱径向延伸的多个臂122。基板升降部120的臂122从支撑柱121侧起包括第一臂123、耦接至第一臂123的第二臂124及耦接至第二臂124的台座部125。

如图1至图3中所示,基座轴110的柄111插入到基板升降部120的柄121,且柄111被配置成能够进行垂直运动及旋转。

如图1中所示,台座部125与半导体晶片w之间提供有能够穿过基座轴110的通孔116和基座20的通孔10的升降销130。

此外,如图3中所示,较佳在基板升降部120的台座部125中提供凹部126。提供凹部126,由此可防止升降销因未对准而倾斜,且可将多个升降销升举至同一水平面。此外,亦可防止升降销折叠。

可通过上述升降销130而相对向上及向下移动半导体晶片w。具体而言,通过将基座轴110从图4a的状态向下移至图4b的状态来使基座20下降。升降销130穿过基座20的通孔10,由此将半导体晶片w相对向上升举。

相反,通过将基座轴110从图4b的状态向上移至图4a的状态来使基座20上升。半导体晶片w相对下降,并且半导体晶片w被放置于基座20上。此时,基座20的通孔10可形成为锥形或t形以具有向下减小的直径以便升降销130不掉落,且升降销130的前端可以与所述通孔对应的形状形成。

如图2中所示,本发明的基座支撑部100被配置以使得基座轴110的第一臂113的宽度小于第二臂114的宽度,从而容许基座支撑部100降低对加热基座的影响。此外,不减少臂的数目,因而与具有相同数目的臂的基座支撑部相比,支撑基座的力未劣化。

此外,为进一步降低对加热基座的影响,较佳将基座轴110的第一臂113的宽度设定为等于或小于通孔116的直径。

具体而言,较佳将基座轴110的第一臂113的宽度设定为等于或大于3.0mm并小于6.3mm。此设定的原因是:当宽度小于3.0mm时,存在基座无法被充分支撑的问题,而当宽度等于或大于6.3mm时,存在对加热基座的影响可能增大的问题。

类似地,较佳将基座轴110的第三臂115的宽度设定为小于基座轴110的第二臂114的宽度。

类似地,较佳将基座轴110的第三臂115的宽度设定为等于或小于基座轴110的通孔116的直径。

此外,如图3中所示,为进一步降低对加热基座的影响,较佳将基板升降部120的第二臂124的宽度设定为小于基板升降部120的第一臂123的宽度。

具体而言,较佳将基板升降部120的第二臂124的宽度设定为等于或大于2.0mm且小于4.8mm。此设定的原因是:当宽度小于2.0mm时,存在升降销无法被充分支撑的问题,而当宽度等于或大于4.8mm时,存在对加热基座的影响可能增大的问题。

此外,可将基板升降部120的第二臂124的宽度设定为与基座轴110的第一臂113的宽度相同。

此外,如图2中所示,基座轴110较佳在支撑柱111与第一臂113之间在支撑柱侧面上包括臂117以用于将这些构件彼此耦接,及较佳将支撑柱侧面上的臂117的宽度设定为大于基座轴110的第一臂113的宽度。此设定的原因是加强了基座轴110的支撑柱111与基座轴110的臂112的耦接。

此外,基座轴110及基板升降部120较佳由透明石英形成。这是因为来自加热设备210的辐射热能充分地传输至基座20。

再者,亦可在基座轴110的支撑柱111的上部上提供用于增大支撑基座20的力的帽。

同时,在附图中,将臂的数目设定为三,但所述数目可依需要而增加。

随后,将参考附图描述根据本发明的外延生长设备的实施方式。

如图1中所示,作为一实例,根据本发明的外延生长设备200在放置于具有通孔10的基座20上的半导体晶片w的表面上形成外延膜。

外延生长设备200包括反应腔室2。反应腔室2由在其上放置有基板w的基座20、侧壁部4及顶板部5构成。

基座20是板状构件,从顶表面看时基座20为圆形,且基座20被配置成略大于基板w。基座20提供有用于基板的凹部3a以用于放置基板w。基座20由具有多个臂的基座支撑部100支撑。

基座20被配置以使得环形基座环7被设置在膜形成位置p1处的基座的周边。基座环7由反应腔室2的侧壁部4中提供的凸缘部13支撑。

顶板部5由顶板21及支撑顶板21的支撑部22组成。顶板21具有渗透性,且被配置以能够通过传递来自在顶板21的外部上方提供的加热装置210(例如卤素灯)及上反射体26的热来加热反应腔室2的内部。换言之,本实施方式中的外延生长设备200是冷壁类型的外延生长设备。在本实施方式中,将石英用作顶板21。

支撑顶板21的支撑部22为环形。顶板21被固定至基板w侧的通孔24的端部,顶板21被定位成比支撑部22的内边缘更靠内。固定方法包括焊接。

侧壁部4由环形的上侧壁部31及环形的下侧壁部32组成。上述凸缘部13被提供在下侧壁部32的内圆周侧上。支撑部22设置在上侧壁部31上。

下侧壁部32的第一凹部34与上侧壁部31的第一凸部36之间的间隙35充当反应气体供给通道41(供给通道)。

类似地,下侧壁部32的第一凹部37与上侧壁部31的第一凸部39之间的间隙38充当排气通道42。

以此方式,反应气体供给通道41与排气通道42在反应腔室2中彼此相面对,且反应气体在反应腔室2中在基板w上沿水平方向流动。

侧壁部4的下侧壁部32的下表面侧提供有环形放置台45,且侧壁部4放置于放置台45上。

顶板部5、侧壁部4及放置台45的外圆周侧上提供有环形夹持部51,且环形夹持部51夹持并支撑顶板部5、侧壁部4及放置台45。夹持部51在供给侧提供有连通通道52及在排放侧提供有连通通道53,连通通道52与反应气体供给通道41连通,连通通道53与排气通道42连通。气体引入管55被插入到供给侧的连通通道52。此外,排气管58被插入到排放侧的连通通道53。

夹持部51的外侧提供有反应气体引入部54,且反应气体引入部54与供给侧的连通通道52彼此连通。在本实施方式中,从反应气体引入部54引入第一原料气体及第二原料气体。同时,第二原料气体亦充当载气。亦可使用通过混合三种或更多种气体所获得的气体作为反应气体。供给侧的连通通道52与反应气体引入部54之间的连接部提供有流矫直板56以便垂直于气体通道。流矫直板56提供有沿圆周方向排列在较低位置的多个孔部56a,且反应气体穿过孔部56a。因此,第一原料气体与第二原料气体被混合并矫直。此外,夹持部51的外侧进一步提供有排气部57。在与反应气体引入部54相面对的位置处配备有排气部57,其中反应腔室2的中心设置在反应气体引入部54与排气部57之间。排气部57与排气侧的连通通道53相互连通。换言之,反应气体引入部54通过供给侧的连通通道52连接至反应气体供给通道41。此外,排气部57通过排气侧的连通通道53连接至排气通道42。排气通道42被提供以便与反应气体供给通道41相面对,其中反应腔室2的中心设置在排气通道42与反应气体供给通道41之间。

此外,放置台45的内圆周侧的下部上提供有设备的底部61。设备的底部61的外部提供有另一加热装置62及下反射体65,加热装置62及下反射体65可从下方加热基板w。基座支撑部100的柄63被插入设备的底部61的中心,且在柄63中提供净化气体引入部(未图示),净化气体被引入所述净化气体引入部。从净化气体引入部中提供的净化气体引入装置(未图示)将净化气体引入到反应腔室的下部64,下部64由设备的底部61、下侧壁部32及放置台45组成。

上文描述了从下方支撑基座20的基座支撑部100。

将参考图5、图6及图7详细描述根据本发明的另一实施方式的外延生长设备200的配置。图5是图示外延生长设备200整体的截面视图。此外,图6是图示根据外延生长设备200的反应腔室2的配置的分解透视图,及图7是图示根据外延生长设备200的反应腔室2的外部配置的分解透视图。

外延生长设备200是用于在基板w上外延生长诸如例如硅之类的膜的膜形成设备。

外延生长设备200包括反应腔室2。反应腔室2由放置基板w的基座20、侧壁部4及顶板部5组成。

基座20是板状构件,从顶表面看时基座20为圆形,且基座20被配置成略大于基板w。基座20提供有用于基板的凹部3a以用于放置基板w。基座20由具有多个臂的基座支撑部100支撑。

基座支撑部100在支撑基座20的同时升高基座20。其上放置有基板w的基座20的表面的升高范围是从膜形成位置p1至基板运送位置p2的范围,在p1处在基板w上实施膜形成,基板w在基板运送位置p2处被移送出入外延生长设备200。基座支撑部100被配置以使用基座支撑部100的轴作为旋转中心而在膜形成位置p1处旋转,从而容许基座20及基板w旋转。

基座20被配置以使得环形基座环7被设置在膜形成位置p1处的基座周边。基座环7由第一环11及放置于第一环11上的第二环12构成,基座环7的细节将描述于后。基座环7由反应腔室2的侧壁部4中提供的凸缘部13支撑。

顶板部5由顶板21及支撑顶板21的支撑部22构成。顶板21具有渗透性,且被配置成能够通过传递来自在顶板21的外部上方提供的加热装置210(例如卤素灯)和上反射体26的热来加热反应腔室2的内部。换言之,在本实施方式中,外延生长设备200是冷壁式外延生长设备。在本实施方式中,石英用作顶板21。

支撑顶板21的支撑部22为环形。顶板21被固定至基板w侧的通孔24的端部,基板w侧的通孔24的端部定位在比支撑部22的内边缘更靠内的位置处。固定方法包括焊接。

侧壁部4由环形上侧壁部31和环形下侧壁部32构成。上文提及的凸缘部13被提供在下侧壁部32的内圆周侧上。在位置比凸缘部13更靠下的侧部处提供有基板运送端口30。上侧壁部31在其上表面上具有斜面,此斜面对应于支撑部22的突出部25的外斜面。支撑部22被设置在上侧壁部31的斜面上。

下侧壁部32的上表面被配置以使得外圆周部分的一部分有凹口,且提供凹口的区域形成为放置表面33,放置表面33上放置有上侧壁部31。第一凹部34通过下侧壁部32的凹口而形成于下侧壁部32中。换言之,第一凹部34是在未形成下侧壁部32的上表面上的放置表面33的部分中形成的凹部。上侧壁部31提供有第一凸部36,从而使得在下侧壁部32上进行放置期间,凸部在对应于第一凹部34的位置处对应于第一凹部34的形状,且凸部与第一凹部34之间形成间隙35。第一凸部36与第一凹部34之间的间隙35充当反应气体供给通道41(供给通道)。反应气体供给通道41的细节将描述于下。

此外,在与下侧壁部32的第一凹部34相面对的区域中,下侧壁部32的上表面被配置以使得其外圆周部分中的一部分出现凹口且形成第二凹部37。上侧壁部31提供有第二凸部39,使得在下侧壁部32上进行放置期间,凸部在对应于第二凹部37的位置处对应于第二凹部37的形状,且凸部与第二凹部37之间形成间隙38。排气通道42形成在上侧壁部31的第二凸部39与第二凹部37之间。

以此方式,反应气体供给通道41与排气通道42在反应腔室2中彼此相面对,且反应气体在反应腔室2中在基板w上沿水平方向流动。

此外,壁表面43中形成有净化孔44,净化气体通过所述净化孔排出,壁表面43构成下侧壁部32的第二凹部37。净化孔44被提供在凸缘部13之下。净化孔44被提供在构成第二凹部37的壁表面43中,由此,净化孔44面向排气通道42。因此,反应气体及净化气体皆从排气通道42排出。

侧壁部4的下侧壁部32的下表面侧上提供有环形放置台45,侧壁部4放置于放置台45上。

顶板部5、侧壁部4及放置台45的外圆周侧上提供有环形夹持部51,且环形夹持部51夹持并支撑顶板部5、侧壁部4及放置台45。夹持部51在供给侧配备有与反应气体供给通道41连通的连通通道52,且在排气侧配备有与排气通道42连通的连通通道53。气体引入管55被插入供给侧的连通通道52。此外,排气管58被插入排气侧上的连通通道53。

夹持部51的外部提供有反应气体引入部54,且反应气体引入部54与供给侧的连通通道52彼此连通。在本实施方式中,从反应气体引入部54引入第一原料气体及第二原料气体。同时,第二原料气体亦充当载气。亦可使用通过混合三种或更多种气体所获得的气体作为反应气体。供给侧的连通通道52与反应气体引入部54之间的连接部分提供有流矫直板56,以便垂直于气体通道。流矫直板56提供有沿圆周方向排列在低位置的多个孔部56a,且反应气体穿过孔部56a。因此,第一原料气体及第二原料气体被混合且矫直。此外,夹持部51的外部上进一步提供有排气部57。排气部57被提供在面对反应气体引入部54的位置处,其中反应腔室2的中心设置在反应气体引入部54与排气部57之间。排气部57与排气侧上的连通通道53彼此连通。换言之,反应气体引入部54通过供给侧上的连通通道52连接至反应气体供给通道41。此外,排气部57通过排气侧上的连通通道53连接至排气通道42。排气通道42被提供以便与反应气体供给通道41相面对,其中反应腔室2的中心设置在排气通道42与反应气体供给通道41之间。

此外,在放置台45的内圆周侧的下部上提供有设备的底部61。在设备的底部61的外部提供有另一加热装置62及下反射体65,且加热装置62及下反射体65可从下方加热基板w。

基座支撑部100的柄63被插入设备的底部61的中心,且在设备中提供净化气体引入部(未图示),净化气体被引入至所述净化气体引入部中。从净化气体引入部中提供的净化气体引入装置(未图示)将净化气体引入反应腔室的下部64,下部64由设备底部61、下侧壁部32及放置台45组成。此外,净化孔44与反应腔室的下部64连通。

使用外延生长的生长方法概述

接着,将描述使用根据本实施方式的外延生长设备的生长方法。

首先,将基座20上移至基板运送位置p2,从基板运送端口30载入基板w,并将基座20上移至膜形成位置p1。使用直径为例如200mm的硅基板作为基板w。接下来,通过加热装置210将基板从备用(standby)温度(例如800℃)加热至生长温度(例如1100℃)。从净化气体引入部将净化气体(例如氢)引入反应腔室的下部64。此外,从反应气体引入部54将反应气体(例如,三氯硅烷作为第一原料气体,且氢作为第二原料气体)经由反应气体供给通道41引入反应腔室2。反应气体供给通道41进入反应腔室2。反应气体在基板w的表面上形成边界层,且在边界层中发生反应。由此,在基板w上形成硅膜。从面向反应腔室2的排气通道42排出反应气体。此外,经由净化孔44将净化气体排出至排气通道42。以此方式,在外延生长结束之后,温度下降至备用温度。然后,载出基板w,并将基板w移至半导体制造设备的另一腔室。

外延生长设备及方法的细节

接下来,将描述根据本实施方式的外延生长设备200的部件的细节,亦将描述根据本实施方式的生长方法的细节。

图8是图示本实施方式中的顶板部5的配置的分解截面图。如图中所示,支撑顶板21的支撑部22的内边缘的直径向基板侧逐渐减小。顶板21固定至基板w侧上的内边缘的端部。此外,当从后表面侧(下表面侧)看支撑部22时,内圆周部突出且形成为突出部25。突出部25亦形成为其直径向突出方向逐渐减小。以此方式,支撑部22由两个斜面构成。即,在顶板21的周边部分中,支撑部22从周边部分的上侧及外侧支撑顶板21。另一方面,图20是图示现有技术的设备的顶板部5'的实例的分解截面图。支撑部22'从与顶板21'相同的平面、在顶板21'的周边部分支撑顶板21',且支撑部22'形成为具有大体为直角的角25'的形状。

以此方式,在本实施方式中,支撑部22形成一形状,与现有技术的形状相比,支撑部22形成的形状不会集中应力,且由此能将基板w与顶板21之间的距离h设成短的,亦即小于10mm。

具体而言,来自加热装置210的大部分红外射线穿过顶板21(21'),但顶板21(21')自身吸收来自基座20或基板w的辐射热。此种所吸收的热从顶板21(21')通过与支撑部22(22')的接合面而被输入到支撑部22(22')。此处,当基板w与顶板21(21')之间的距离h缩短时,所吸收的辐射热的量增大,并产生大量的输入到支撑部22(22')的热。因此,如现有技术的顶板部5'中所示,当支撑部22'具有大体为直角的角25'时,由此存在可能产生裂痕或类似物的问题。

另一方面,在本实施方式中,支撑部22配备有突出部25,且在顶板21的周边部分中,顶板21从周边部分的上侧及外侧得以支撑。因此,在可能的情况下,顶板21能在基板侧得以支撑,而不提供具有集中应力趋势的角(25')。

此外,在本实施方式中,顶板21与基板w之间的距离h缩短以便使如上文提及的边界层变窄,且由此,反应气体具有逸出基板w的外侧的倾向。此外,由于考虑到难以使基板中的膜厚度分布均匀的情况,因此较佳防止发生此情况。为此,在本实施方式中,反应气体供给通道41配备有导向部分以便使气流均匀,如下文所述。

将参考图9至图11a及图11b详细描述反应气体供给通道41中所提供的导向部分。如上文中所提及,反应气体供给通道41由下侧壁部32的第一凹部34形成,且通过供给侧的连通通道52内的气体引入管55向上游连通至反应气体引入部54。此外,反应气体供给通道41包括沿与来自反应气体引入部54的气体的引入方向一致的方向(水平方向)延伸的第一供给通道71、与第一供给通道71连通且沿垂直于气体引入方向的方向(垂直方向)延伸的第二供给通道72、及与第二供给通道72连通且沿与气体引入方向一致的方向(水平方向)延伸的第三供给通道73。第三供给通道73与反应腔室2连通。换言之,反应气体供给通道41形成向出口逐步上升的形状,所述出口从供给侧的作为反应气体入口的连通通道52连接至作为反应气体出口的反应腔室2。

此处,第二供给通道72沿如上所提及的垂直方向延伸,且由此,从反应气体引入部引入的气体接触与第二供给通道72的反应气体引入部54相面对的壁表面74。由此,使反应气体扩散,且反应气体的溶混性增大。换言之,第二供给通道72充当反应气体的混合腔室。在此情况下,在本实施方式中,沿垂直方向延伸的沟槽部75形成在第二供给通道72的壁表面74中,以使得反应气体不在第二供给通道72中停滞,且沟槽部75充当导向部。以此方式,提供沟槽部75,且由此,通过接触第二供给通道72的壁表面74而扩散的气体亦具有流入第三供给通道73的倾向。而且,气体沿沟槽部75被矫直,且由此可改良反应气体的直度及在气体流入反应腔室2时抑制反应气体的散布。

将详细描述沟槽部75。多个沟槽部75连续形成作为第二供给通道72的整个壁表面74中的凹部。如图11a中所示,沟槽部75是凹部,沟槽部75在沟槽部75的宽度方向上弯曲。在本实施方式中,沟槽部75在顶表面视图中为弧形。当反应气体由于沟槽部75在宽度方向上的曲率而接触壁表面74的沟槽部75的底部时,反应气体不易于扩散(易于集中)。即使当反应气体流入反应腔室2内时,反应气体亦不易于散布至基板w外侧。同时,当沟槽部75的深度过大时,能抑制反应气体扩散,但难以混合第一原料气体与第二原料气体。在本发明的一实施方式中,较佳将沟槽部75的深度设定为1mm至5mm。再者,更佳将所述深度设定为3mm。

此外,沟槽部75中的每一沟槽部被提供成使得沟槽部在平面内方向(in-planedirection)中指向下侧壁部32的中心c。换言之,沿下侧壁部32的圆周方向提供沟槽部75。通过以此方式提供沟槽部,矫直性质得以改良,使得在水平方向中朝向由沟槽部75中的每一沟槽部引导并被引入反应腔室2的反应气体流的分量与在水平方向中从反应腔室2侧的反应气体供给通道41的中心朝向反应腔室2的中心的分量一致,且进入到反应腔室2中的反应气体的扩散得以抑制。

再者,将每一沟槽部75提供在一位置处,在所述位置中,每一沟槽部75的在宽度方向上的中心与在反应气体引入部54中提供的流矫直板56的孔部56a的中心大体上彼此一致(对应)。换言之,在本实施方式中,沟槽部75的数目与壁表面74中的孔部56a的数目彼此一致。由此,由于通过流矫直板56矫直的反应气体事实上流至每一沟槽部75,因此流矫直作用进一步增强,且由此能改良反应气体的直度。

同时,在本实施方式中,虽然在第二供给通道72的整个壁表面74中提供沟槽部75,但也可至少在第二供给通道72的壁表面74的端部提供这些沟槽部。所述端部意指与流矫直板56的孔部所分隔成的多个区域的最末端区域对应的部分。例如,在图11b的情况下,流矫直板56分隔为三个区域81,沟槽部75可被提供成对应于这些区域中的最末端区域82及83的孔部。如上文中所提及,反应气体具有逸出至基板w外侧的倾向,由此较佳提供沟槽部75以便改良反应气体的直度,特别是在反应气体供给通道41的端部中反应气体的直度。在此情况中,充当导向部的沟槽部75形成为凹部,从而容许容易地获得这种效果。例如,当在第二供给通道72中单独提供矫直构件时,产生诸如反应气体溶混性及制造成本的问题。然而,如本实施方式中所示,沟槽部75形成为凹部,由此解决了这些问题。

图12a及图12b是图示流矫直板56的实例的透视图。如图中所示,可将与沟槽部75的图案对应的板制作为流矫直板56。较佳将流矫直板56的数值孔径确定为最佳值,所述最佳值不仅算入(include)生长速率的观点(viewpoint),亦算入诸如洗涤器之类的附带配件或外部管道的形状及长度。

在本实施方式中,顶板21与基板w之间的距离被缩小以便于使如上文提及的边界层变窄,由此考虑到倾向于发生反应气体环绕反应腔室2的下部,且基板w的温度分布可能不均匀的情况。因此,在厚膜形成期间,亦虑及膜厚度分布或膜品质劣化(例如,电阻率分布、晶体缺陷的产生或类似物)。在本实施方式中,基座环7由两个构件构成以便防止发生此情况。下文将描述此点内容。

如图13中的放大图所示,构成基座环7的第一环11与基座的外圆周分隔,具有低上表面的台阶部91形成在第一环的内圆周侧。第二环12位于台阶部91上。第二环12面向第一环11与基座20之间形成的间隔部92,亦即第二环12被提供以便突出至间隔部92。第二环12的上表面被提供以便与基座20的上表面等面。以此方式,第二环12的上表面被提供以便与基座20的上表面等面,且由此,可将反应气体供给通道41或类似物中维持混合并矫直的状态的反应气体平滑地供给至基板w,而尽可能地不降低所述反应气体的速度。同时,本文中所使用的术语“基座20的上表面”意指一区域的上表面,在所述区域中未形成基座20的用于基板的凹部3a(参看图5、图6、图15及图16)。在本实施方式的第二环12中,鉴于对热传导性的考虑,使用碳化硅作为材料。

以此方式,第二环12与第一环11形成为不同构件,且由此,基座环7可形成为具有更高精确度。换言之,基座环7与基座20之间的距离可接近极限。由此,可减少反应气体环绕基板w后表面侧(亦即反应腔室的下部64)的情况,及使基板w的温度分布均匀。由此,在本实施方式中,所形成的膜的厚度分布或膜品质的分布得以变得均匀。

此外,形成第一环11及第二环12两个构件,由此,与第一环11和第二环12形成为一个构件的情况相比,第一环11与第二环12之间的热传递可被进一步抑制。

再者,以此方式,第二环12形成为面向间隔部92,由此可在膜形成期间减少反应气体从基座环7与基座20之间向下泄漏的情况。因此,反应气体流不易被干扰,且可减少反应气体向下泄漏,从而减少颗粒数目。

在此情况中,第二环12形成为比第一环11薄。由此,可抑制由于来自基座20的辐射而发生的热损失。此外,第二环12形成为薄的,由此可减少用于将第二环12维持(预加热)在预定高温所需的加热量。作为另一实施方式,当第一环11由具有低热传导性的材料形成时,第一环11充当隔热材料,由此可进一步改良上文提及的效果。

同时,在本实施方式中,第二环12被形成以便面向间隔部92,但并非仅限于此。当第二环12被形成以便至少位于第一环11的台阶部91上时,基座环7可形成为具有高精确度,由此,基座环7与基座20之间的距离能接近极限。由此,可减少反应气体环绕基板w的后表面侧的情况,及使基板的温度分布均匀。

此外,在本实施方式中,由于顶板21与基板w之间的距离被缩小以便使边界层变窄,因此顶板21的顶板表面亦易于由反应气体覆盖。当顶板表面被覆盖时,顶板表面变暗,由此存在膜无法在冷壁式外延生长设备中充分形成的问题,所述外延生长设备由加热装置210通过顶板21执行加热。另一方面,在本实施方式中,如上文所提及的,在反应气体供给通道41的壁表面中提供沟槽部75,且基座环7由两个构件构成。因此,反应气体不会停滞在反应腔室2中,因此,能抑制涂覆材料的粘附。由此,可持续执行充分的膜形成。

图14是图示基座环7的修改实例的图。修改实例不同于图13中显示的实施方式,因为第二环12a被提供以便覆盖间隔部92a。在修改实例中,第一环11a亦位于侧壁部32a的凸缘部13a上。第二环12a放置于第一环11a的台阶部91a上,且第二环12a的内圆周侧面向基座20a的外圆周。

在修改实例中,第二环12a被提供以便覆盖间隔部92a,由此可进一步抑制流至反应腔室2a的反应气体进入反应腔室的下部64a。然而,为阻止第二环12a阻挡从加热装置210(图14中未图示)到基座20a的热,第二环12a与基座20a的重叠量较佳较小。

在修改实例中,较佳将第二环12a的厚度设定为例如0.5mm至2mm。再者,更佳将所述厚度设定为约0.8mm。第二环形成为具有这样的厚度,由此可尽可能抑制从基座20a至第二环12a的热损失辐射。

图15及图16是图示本发明的实施方式中的基座20的实例的平面图。如图中所示,基座20提供有用于升降销的通孔10a及10b,升降销130穿过所述通孔。此外,如图16中所示,可包括大量通孔11b。在将基板放置于基座上时介于基板与基座之间的气体可通过通孔11b排出,由此能解决基板w在水平方向滑动的问题。此外,就基板w的膜厚度分布均匀性或电阻率分布的均匀性而言,使用此种基座20b的情况相对于使用基座20a的情况具有优势。通孔11b直径越小及通孔11b数目越大,此优势越显著。此外,较佳将数值孔径设定为超过4%,且更佳地不仅在基座的用于基板的凹部3ba中提供通孔11b,而是亦在基座周边提供通孔11b。

图17是图示本实施方式中的排气管58的实例的分解截面视图。如图中所示,排气管58形成为使得在管从反应腔室2侧移向排气部57时孔隙向中心变窄。由此,在中心处矫直排出的气体,且由此实现排气效率的提高。

此外,图21是现有技术的外延生长设备中反应腔室2的外部配置的分解透视图。如图中所示,气体引入管55及排气管58分别与气体引入管55’及排气管58'相比,在本实施方式中移除了每一中心部分中的隔挡部分。由此,影响膜厚度分布的气流变得平滑。

同时,当净化孔44及排气通道42的数值孔径过大时,反应气体进入反应腔室的下部64,而当净化孔44及排气通道42的数值孔径过小时,净化气体影响反应腔室2内的膜形成工艺。因此,孔径被形成以具有最佳值。

图18是图示本发明的实施方式中上反射体26的实例的透视图。如图中所示,上反射体26包括倾斜部分26a和扁平部分26b,倾斜部分26a朝向反应腔室2的中心反射来自加热装置210的加热射线,扁平部分26b沿垂直向下方向反射来自加热装置210的加热射线。另一方面,图22是图示现有技术的外延生长设备中的上反射体26'的实例的透视图。如图中所示,现有技术的上反射体26'亦包括倾斜部分26a'及扁平部分26b',但现有技术的上反射体26'与根据本发明的实施方式的上反射体26在倾斜部分26a的布置上是不同的。具体而言,根据本发明的实施方式的上反射体26的布置中,将一个倾斜部分增添至现有技术的上反射体26'的扁平部分26b'的中央。以此方式,倾斜部分26a和扁平部分26b经布置以使得倾斜部分26a与扁平部分26b的面积比成为预定比,及使得倾斜部分26a和扁平部分26b的分布不偏移,由此达成基板w的温度分布均匀性。

图19是图示本发明的实施方式中的下反射体65的实例的透视图。图23是图示现有技术的外延生长设备中的下反射体65'的实例的透视图。与上反射体26类似,下反射体65亦包括倾斜部分65a和扁平部分65b,倾斜部分65a朝向反应腔室2的中心反射自加热装置62的加热射线,扁平部分65b沿垂直向上方向反射来自加热装置62的加热射线;且下反射体65的布置中,将一个倾斜部分增添至现有技术的下反射体65'的扁平部分65b'的中央。以此方式,倾斜部分65a和扁平部分65b经布置以使得倾斜部分65a与扁平部分65b的面积比变为预定比,及使得倾斜部分65a和扁平部分65b的分布不偏移,由此达成基板w的温度分布均匀性。

根据本实施方式的这种外延生长设备,支撑部22支撑顶板21,从而容许将反应腔室侧的顶板21的中心部分的顶板表面与基板w之间的距离h设定为小于10mm。由此,本实施方式中的外延生长设备200能抑制由在顶板21与基座20之间流动的反应气体形成的边界层散布至顶板侧,边界层因此而变窄。随后,由于边界层内的气体速度上升,因此气体密度得以改良,由此可提高基板w的表面中的反应效率。由此,可增大外延生长设备200中的生长速率。

同时,在本发明的一实施方式中,顶板21与基板w之间的距离h小于10mm,顶板21与基板w之间的距离h较佳小于10mm,且在基板w上生长的膜表面与顶板21之间的距离等于或大于1mm。将所述距离设定为此范围,由此,在形成边界层时,也能使反应气体的气流平滑。

换言之,在本实施方式的反应腔室2中,基板w与顶板21之间的距离比现有技术中的所述距离(现有技术中所述距离为约20mm)短。因此,通过使边界层变窄提高了基板表面中的反应效率,及因此而增大生长速率。

实例1

使用包括具有以下尺寸的基座轴及基板升降部的基座支撑部,在预定条件下在半导体晶片上生长了外延膜。

注解

基座轴

第一臂宽度:3.3mm

第二臂宽度:6.3mm

第三臂宽度:3.2mm

通孔直径:3.5mm

基板升降部

第一臂宽度:4.8mm

第二臂宽度:3.0mm

对照实例1

在与实例1相同的条件下执行实验,但除了使用包括具有以下尺寸的基座轴及基板升降部的基座支撑部。

注解

基座轴

第一臂宽度:6.3mm

第二臂宽度:6.3mm.

第三臂宽度:6.3mm

通孔直径:3.5mm

基板升降部

第一臂宽度:4.8mm

第二臂宽度:4.8mm

图24a是图示实例1的外延膜的厚度分布地图的图,及图24b是图示对照实例1的外延膜的厚度分布地图的图。这两个图中都在561个测量点(除距外边缘3mm的范围)测量膜厚度,且显示膜厚度分布。图24a中所示的实例1的外延膜厚度变化为0.67%,图24b中所示的对照实例1的外延膜厚度变化为1.31%。因此,已知由使用实例1的本发明的基座轴的外延生长设备形成的外延膜比对照实例1中的膜具有更为均匀的膜厚度分布。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1