基于液气相变蓄热的电动汽车电池散热控温系统及方法与流程

文档序号:15889405发布日期:2018-11-09 20:05阅读:208来源:国知局
基于液气相变蓄热的电动汽车电池散热控温系统及方法与流程

本发明涉及电动汽车动力电池均匀散热系统技术领域,具体而言,涉及一种基于液气相变蓄热的电动汽车电池散热控温系统及方法。

背景技术

据统计,机动车尾气排放成为环境污染的主要来源,2016年全国机动车保有量达2.95亿辆,机动车排放污染物初步核算为4472.5万吨,机动车尾气排污已成为pm2.5最主要来源。因此,发展低污染新能源汽车替代传统燃油汽车,成为解决汽车尾气污染的重要途径,是汽车行业未来发展的新趋势。其中电动汽车更是目前新能源汽车工业发展的主流趋势。

电动汽车最主要能量元件是动力电池包,动力电池包的使用寿命和安全性直接影响整车的使用成本和安全性。动力电池包的使用寿命和安全性取决于动力电池工作温度、电池单体间温差和电池单体不同部位间温差;动力电池工作温度过高、电池单体间温差和电池单体不同部位间温差过大,将导致动力电池热管理失控,从而影响动力电池工作寿命,缩短行车里程,增加运输成本,甚至引发安全事故。以磷酸铁锂电池示例,其工作在温度18℃~43℃之间,电池单体间温差和电池单体不同部位间温差低于5℃时,电池工作寿命明显提高。因此,对动力电池包进行热管理,使动力电池工作在理想的温度范围,保持电池组件间的温度均匀性,是提高动力电池包工作性能的关键技术。

目前,动力电池主要散热方式有:空气冷却、液体冷却和相变材料冷却。空气冷却方式相对于液体冷却方式的优势在于结构简单、成本低,应用程度高,但其换热系数和传热速度低于液体冷却方式。相变材料冷却方式的优势在于相变潜能大,劣势在于导热系数低,温度主动调控性能差,设计难度大。为确保动力电池工作在理想温度范围,并保持电池组件间温度均匀,有必要开发动力电池高效热管理系统。



技术实现要素:

为解决上述问题,本发明的目的在于一种提供基于液气相变蓄热的电动汽车电池散热控温系统及方法,实现动力电池的均匀恒温吸热,使电池形成均匀的外侧面冷却和较均匀的轴向温度分布,有效的控制动力电池的工作温度和电池组件间的温差。

本发明提供了一种基于液气相变蓄热的电动汽车电池散热控温系统及方法,该系统包括:相变蒸发冷却循环系统、加热系统、控制系统三部分。

相变蒸发冷却循环系统包括:依次连接的储液器、单向阀、汽包、电磁阀、电动节流阀、冷凝器以及位于储液器内部的吸附相变蒸发冷却装置;

加热系统包括:吸附相变蒸发冷却装置和包裹在吸附相变蒸发冷却装置外侧的加热器;

控制系统包括:设置在吸附相变蒸发冷却装置上的温度传感器和热流密度传感器,设置在汽包上的压力传感器,以及与温度传感器、热流密度传感器和压力传感器电连接的控制器。

作为本发明进一步的改进,吸附相变蒸发冷却装置包括下部置于储液器内部的金属烧结材料蒸发冷却器、位于金属烧结材料蒸发冷却器内部的若干金属隔离腔体、位于金属烧结材料蒸发冷却器上面的密封盖板以及环绕设置在若干金属隔离腔体周围的若干集气管。

作为本发明进一步的改进,储液器依次连接连通管、送气管道和汽包的进口,若干集气管均接至连通管上,构成汽包蓄热回路;汽包的出口依次连接冷凝管道、冷凝器、回流管路和储液器,构成汽包散热回路。

作为本发明进一步的改进,在送气管道上设置单向阀。

作为本发明进一步的改进,电磁阀、电动节流阀设置在冷凝管道上且与控制器电连接。

作为本发明进一步的改进,加热器包括隔热箱、位于隔热箱内侧且与控制器电连接的加热层以及位于加热层内侧的绝缘层。

作为本发明进一步的改进,冷凝器外部设置冷却风扇。

本发明还提供了一种基于液气相变蓄热的电动汽车电池散热控温方法,该方法控制过程是,当电动汽车电池温度低于预先设定的低温度值时,控制器控制开启加热层加热电池;当电动汽车电池工作温度升高到冷却器相变温度时,吸附相变蒸发冷却装置内的金属烧结材料蒸发冷却器中液态冷却剂受热液汽相为蒸汽,冷却剂蒸汽在集气管聚集,经过单向阀流至所述汽包中,控制器接收并分析温度传感器、热流密度传感器和压力传感器反馈的信息,控制电磁阀和电动节流阀开启,冷却剂蒸汽进入冷凝器冷凝成液态,液态冷却剂受重力作用流回储液器中,再由金属烧结材料蒸发冷却器毛细吸附上升,进入下次循环。

该控温方法包括以下步骤:

步骤1:控制器分析热流密度传感器的监测值,根据监测值,控制是否开启电磁阀和调节电动节流阀;

步骤2:控制器分析温度传感器的监测值,根据监测值,控制是否开启加热层、电磁阀和调节电动节流阀;

步骤3:控制器分析压力传感器的监测值,根据监测值,控制是否开启所述电磁阀和调节电动节流阀。

作为本发明进一步的改进,步骤1中,当热流密度传感器监测值不小于热流密度设定值,控制器控制电磁阀开启,电控节流阀调整至大流量值;当热流密度传感器监测值小于热流密度设定值,进入步骤2;

作为本发明进一步的改进,步骤2中,温度传感器监测值小于最小理想工作温度时,控制器控制接通加热层电路,利用加热层对动力电池加热;温度传感器监测值不小于最小理想工作温度时,进入步骤3;

作为本发明进一步的改进,步骤3中,温度传感器监测值不小于最小理想工作温度且小于最大理想工作温度时,

压力传感器监测的汽包蒸汽压力值小于低压设定值时:电磁阀关闭,所述电控节流阀关闭;压力传感器监测的汽包蒸汽压力值不小于低压设定值且小于中压设定值时:电磁阀开启,电控节流阀开启小流量值;压力传感器监测的汽包蒸汽压力值不小于中压设定值且小于高压设定值时:电磁阀开启,电控节流阀开启中流量值;压力传感器监测的汽包蒸汽压力值不小于高压设定值时:电磁阀开启,电控节流阀开启大流量值;

温度传感器监测值不小于最大理想工作温度时,

压力传感器监测的汽包蒸汽压力值小于低压设定值时:电磁阀开启,电控节流阀开启小流量;压力传感器监测的汽包蒸汽压力值不小于低压设定值且小于中压设定值时:电磁阀开启,电控节流阀开启中流量值;压力传感器监测的汽包蒸汽压力值不小于中压设定值且小于高压设定值时:电磁阀开启,电控节流阀开启大流量值;压力传感器监测的汽包蒸汽压力值不小于高压设定值时:高温提示。

本发明的有益效果为:通过吸附相变蒸发冷却装置不仅实现了对液态冷却剂的吸附,还完成了对动力电池热量的快速传递和扩散,并使液态冷却剂处于液/气相变状态,从而实现动力电池外侧面均匀冷却,形成较均匀的轴向温度分布;汽包实时收集冷却剂蒸汽,实现了动力电池热量的快速转移,并稳定冷却剂蒸汽压力和温度;同时汽包蓄热和散热过程的分离,有效地控制了汽包内蒸汽压力波动,保证了蒸汽温度的稳定性;另外的,当动力电池工作温度低于最低理想工作温度时,可通过加热器加热动力电池;整个过程控制系统实时监测吸附相变蒸发冷却装置的温度、热流密度和汽包的压力,主动调控汽包内冷却剂蒸汽压力和温度,从而确保动力电池均压恒温吸热,有效的控制了动力电池工作温度和温差。

附图说明

图1为本发明实施例所述的一种基于液气相变蓄热的电动汽车电池散热控温系统及方法的工作过程流程简图。

图2为本发明实施例所述的一种基于液气相变蓄热的电动汽车电池散热控温系统及方法的系统装配示意图。

图3为图2俯视图。

图4为图2的a-a截面图。

图5为本发明实施例所述的一种基于液气相变蓄热的电动汽车电池散热控温系统及方法的控制系统控制过程流程图。

图中:

1、储液器;2、隔热箱;3、加热层;4、绝缘层;5、金属烧结材料蒸发冷却器;6、金属隔离腔体;7、密封盖板;8、连通管;9、集气管;10、送气管道;11、单向阀;12、汽包;13、冷凝管道;14、电磁阀;15、电动节流阀;16、冷凝器;17、回流管道;18、温度传感器;19、热流密度传感器;20、压力传感器;101、吸附相变蒸发冷却装置;102、加热器;103、控制器;105、动力电池组;106、冷却风扇。

具体实施方式

下面通过具体的实施例并结合附图对本发明做进一步的详细描述。

如图1所示,本发明实施例所述的一种基于液气相变蓄热的电动车动力电池散热温控系统,本发明主要用来对电动车动力电池105进行热管理,该系统包括:相变蒸发冷却循环系统a、加热系统b、控制系统c三部分。

相变蒸发冷却循环系统a包括:依次连接的储液器1、单向阀11、汽包12、电磁阀14、电动节流阀15、冷凝器16以及位于储液器1内部的吸附相变蒸发冷却装置101;

加热系统b包括:吸附相变蒸发冷却装置101和包裹在吸附相变蒸发冷却装置101外侧的加热器102;加热系统主要用来对电动车动力电池105加热。

控制系统c包括:设置在吸附相变蒸发冷却装置101上的温度传感器18和热流密度传感器19,设置在汽包12上的压力传感器20,以及与温度传感器18、热流密度传感器19和压力传感器20电连接的控制器103;控制器103通过传感器实时监测的吸附相变蒸发冷却装置101的温度和热流密度以及汽包12的压力,进而通过控制电磁阀14和电动节流阀15来主动调控汽包12内冷却剂蒸汽的压力和温度。

进一步的,吸附相变蒸发冷却装置101包括下部置于储液器1内部的金属烧结材料蒸发冷却器5、位于金属烧结材料蒸发冷却器5内部的若干金属隔离腔体6、位于金属烧结材料蒸发冷却器5上面的密封盖板7以及环绕设置在若干金属隔离腔体周围6的若干集气管9;动力电池105置于金属隔离腔体6内部,金属烧结材料蒸发冷却器5有毛细作用和高效传递热量并扩散的作用,更有利于冷却剂的相变循环和动力电池散热。

进一步的,储液器1依次连接连通管8、送气管道10和汽包12的进口,若干集气管9均接至连通管8上,构成汽包蓄热回路;汽包12的出口依次连接冷凝管道13、冷凝器16、回流管路17和储液器1,构成汽包散热回路;实现了汽包蓄热和散热过程的分离,有效地控制了汽包12内蒸汽压力波动,保证了蒸汽温度的稳定性。

进一步的,在送气管道10上设置单向阀11;集气管9收集的冷却剂蒸汽通过单向阀11转移到汽包12中,实现了动力电池105热量的快速转移,并稳定冷却剂蒸汽压力和温度。

进一步的,电磁阀14、电动节流阀15设置在冷凝管道13上且与控制器103电连接;控制器103通过分析传感器反馈的信息从而调节电磁阀14和电动节流阀15,有效地控制了汽包12内蒸汽压力波动,保证了蒸汽温度的稳定性。

进一步的,加热器102包括隔热箱2、位于隔热箱2内侧且与控制器103电连接的加热层3以及位于加热层3内侧的绝缘层4;隔热箱2防止了加热层3加热时的温度散失,绝缘层4将加热层3和吸附相变蒸发冷却装置101分开,提高了装置的安全性。

进一步的,冷凝器16外部设置冷却风扇106,加速冷却剂蒸汽的液化和回流。

本发明还提供了一种基于液气相变蓄热的电动汽车电池散热控温方法,该方法的具体工作过程:

动力电池105工作前,首先把汽包12内压力值调节至30kpa,动力电池105工作温度升至30℃时,由于金属烧结材料蒸发冷却器5的毛细作用和高效传递热量并扩散作用,液态冷却剂液气相为蒸汽,冷却剂蒸汽由集汽管9集聚,经由连通管8和送气管道10,经过单向阀11流至汽包12中,随着冷却剂蒸汽的流入,汽包12内压力逐渐升高,压力值达到一定程度后,控制系统开启电磁阀14和电动节流阀15,蒸汽经由冷凝管道13进入冷凝器16,在冷却风扇106冷风的作用下将热量传至大气,冷却剂蒸汽冷凝成液态,液态冷却剂在重力作用下经由回流管道17流入储液器1中,再次被金属烧结材料蒸发冷却器5毛细吸附上升,进入下次循环。

基于液气相变蓄热的电动车动力电池散热温控系统的控制器可采用电动汽车主控制器,温度传感器18、热流密度传感器19、压力传感器20、电磁阀14、电动节流阀15和加热器103的加热层3均连接在电动车的控制器上。本实施案例以锂电池热管理为例,理想工作温度为10℃~40℃,冷却剂采用r365mfc。

如图1和图5所示,车辆主控器通过监测动力电池的温度,热流密度信号和汽包蒸汽压力信号,控制相变蒸发冷却循环系统和加热系统工作,对动力电池进行热管理,使其适应不同工作状态下的均匀散热要求。

该控温方法包括以下步骤:

步骤1:控制器103分析热流密度传感器19的监测值,根据监测值,控制是否开启电磁阀和调节电动节流阀;

步骤2:控制器103分析温度传感器18的监测值,根据监测值,控制是否开启加热层3、电磁阀14和调节电动节流阀15;

步骤3:控制器103分析压力传感器20的监测值,根据监测值,控制是否开启所述电磁阀14和调节电动节流阀15。

具体控制过程主要有以下几种情况:

(一)当热流密度传感器19监测值不小于热流密度设定值:控制器103控制电磁阀14开启,电控节流阀15调整至大流量值;

(二)当热流密度传感器19监测值小于热流密度设定值:

(1)温度传感器18监测值小于最小理想工作温度时:控制器103控制接通加热层3电路,利用加热层3对动力电池加热;

(2)温度传感器18监测值不小于最小理想工作温度且小于最大理想工作温度时:分析汽包12压力值,

(a)压力传感器20监测的汽包12蒸汽压力值小于低压设定值时:电磁阀14关闭,电控节流阀15关闭;

(b)压力传感器20监测的汽包12蒸汽压力值不小于低压设定值且小于中压设定值时:电磁阀14开启,电控节流阀15开启小流量值;

(c)压力传感器20监测的汽包12蒸汽压力值不小于中压设定值且小于高压设定值时:电磁阀14开启,电控节流阀15开启中流量值;

(d)压力传感器20监测的汽包12蒸汽压力值不小于高压设定值时:电磁阀14开启,电控节流阀15开启大流量值;

(3)温度传感器18监测值不小于最大理想工作温度时:分析汽包12压力值,

(a)压力传感器20监测的汽包12蒸汽压力值小于低压设定值时:电磁阀14开启,电控节流阀15开启小流量;

(b)压力传感器20监测的汽包12蒸汽压力值不小于低压设定值且小于中压设定值时:电磁阀14开启,电控节流阀15开启中流量值;

(c)压力传感器20监测的汽包12蒸汽压力值不小于中压设定值且小于高压设定值时:电磁阀14开启,电控节流阀15开启大流量值;

(d)压力传感器20监测的汽包12蒸汽压力值不小于高压设定值时:高温提示;

通过基于液气相变蓄热的电动汽车电池散热控温系统及方法,控制系统实时监测相变蒸发冷却循环系统的吸附相变蒸发冷却装置的温度、热流密度和汽包的压力,准确的控制电磁阀和电控节流阀,同时配合加热系统,有效控制了动力电池的工作温度和温差,提高了动力电池的热可靠性和工作寿命。

以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1