AgPd纳米合金甲酸盐氧化催化剂及提高催化活性的无表面活性剂的处理方法与流程

文档序号:15564099发布日期:2018-09-29 02:55阅读:491来源:国知局

本发明属于燃料电池技术领域,涉及agpd纳米合金甲酸盐氧化催化剂的制备及改善其活性的方法,具体涉及一种agpd纳米合金甲酸盐氧化催化剂及提高催化活性的无表面活性剂的处理方法。



背景技术:

直接甲酸燃料电池由于具有高的电动势、令人满意的功率密度等优点受到了越来越多学者的重视。相比于酸性工作条件(甲酸),碱性条件下(甲酸盐溶液为碱性溶液)的氧化反应动力学更快,中毒现象更弱,避免了醇和甲酸氧化一直以来所面临的难题。人们对于甲酸盐燃料电池体系进行了大量的研究,但对于甲酸盐氧化(for)过程催化剂的研究较为稀少,因此有必要开发高效、实用的for催化剂。

贵金属pd、pt被认为是较好的for催化剂,但仍存在一定的缺陷,pd基催化剂的稳定性较差,催化活性有待提高;pt基催化剂展现出较好的稳定性但for催化性能较差。一般提高for催化剂的活性和稳定性有两种方法,一类是合金化,例如,shu-hehan(platinum-silveralloynanoballoonnanoassemblieswithsupercatalyticactivityfortheformateelectrooxidation,appliedenergymaterials,2018)等人制备出pt-ag合金有效地改善了pt基催化剂for活性不足的问题,shaofangfu(facileone-stepsynthesisofthree-dimensionalpd-agbimetallicalloynetworksandtheirelectrocatalyticactivitytowardethanoloxidation,appl.mater.interfaces.2015,7,13842-13848)等人制备出网状pd-ag纳米合金用于乙醇氧化催化,结果表明eor催化性能提高的同时,稳定性也提高了。但是,目前合金化改善pd基for催化剂催化性能问题仍有待解决,ag的合金化改善pd基催化剂的for催化性能的效果还不明显。

除了合金化作用,还可以调整合金表面结构来提高材料催化性能,通常使用有机表面活性剂来调整纳米催化剂的表面结构。例如,nailiangyang(synthesisofultrathinpdcualloynanosheetsusedasahighlyefficientelectrocatalystforformicacidoxidation,adv.mater.2017,1700769)报道了应用乙二胺处理pdcu合金后可以提高甲酸氧化催化活性,但残留的活性剂与催化剂之间的结合较强,占据催化位点,极大地抑制了材料的催化活性,如何有效地除去表面活性剂以及提高具有表面活性剂残留催化剂催化活性是一个难题。



技术实现要素:

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种agpd纳米合金甲酸盐氧化催化剂及提高催化活性的无表面活性剂的处理方法,解决ag合金化改善pd基催化剂for性能不明显,和残留的有机表面活性剂会抑制催化活性等两个难题。

技术方案

一种agpd纳米合金甲酸盐氧化催化剂,其特征在于组份为:34-66w%的pd和34-66w%的ag,相组成为单相固溶体合金,纳米合金经过循环伏安扫描处理后,甲酸盐氧化峰值电流从0.23-8.25ma变为7.87-14.48ma,电极面积为0.196cm2

一种提高agpd纳米合金甲酸盐氧化催化活性的无表面活性剂的处理方法,其特征在于步骤如下:

步骤1:在室温下将pd(no3)2水溶液与agno3水溶液搅拌得到混合水溶液;所述pd(no3)2水溶液浓度为0.01-0.1mol/l;所述agno3水溶液浓度为0.01-0.1mol/l;所述混合水溶液中pd的质量分数为34-66w%,ag的质量分数为66-34w%;

步骤2:将混合水溶液逐滴加入还原剂中混合搅拌;所述还原剂与ag-pd的摩尔比为2∶1~5∶1;

步骤3:对步骤2的溶液进行离心处理,然后水洗,冷冻干燥研磨后得到ag-pd催化剂;

步骤4:将ag-pd催化剂分散于去离子水和无水乙醇的混合溶液中,滴加质量分数5%的膜溶液,超声30min后涂于玻碳电极上,室温下晾干;

步骤5:在甲酸盐碱性溶液里,采用hg/hgo作为参比电极,将玻碳电极上的ag-pd催化剂膜进行循环伏安处理,电极电势区间为0.2到0.5v,循环次数大于等于2;

步骤6:得到甲酸盐氧化催化活性提高的ag-pd纳米合金催化剂膜。

所述还原剂为硼氢化钠或柠檬酸钠。

所述步骤3的离心处理参数为4000rpm,3min。

所述步骤3的水洗等离子水洗多次。

所述步骤3的冷冻干燥时间为12-24h。

所述去离子水和无水乙醇的混合溶液中的摩尔比为1∶1。

所述加入膜溶液的以能够成膜即可。

有益效果

本发明提出的一种agpd纳米合金甲酸盐氧化催化剂及提高催化活性的无表面活性剂的处理方法,在合金化的pd基纳米结构for催化性能基础上,提出了应用原位电化学电位循环方法来提高ag-pd纳米合金甲酸盐氧化催化活性。电化学电位循环可以引起金属电极表面的重构,起到修饰催化剂的表面化学和催化作用,同时不会引入活性剂,从而二次提升了纳米合金for催化性能。

与现有的技术相比,本发明的优势是:仅仅通过在0.2-0.5v电极电势区间循环伏安扫描,就可实现对催化剂表面结构的修饰,极大地提高了ag-pd催化剂的for催化性能,无需额外的有机表面活性添加剂。

相比较于纯pd、pdcu合金,制备出的3种ag-pd纳米合金经过0.2-0.5v电极电势区间循环伏安扫描,for正扫峰的峰值电流均明显增大,说明经过循环伏安扫描处理后的ag-pd催化剂催化性能得到了极大地改善。这可能是由于在较高电极电势区间循环伏安扫描后,经过氧化还原过程后ag-pd纳米合金表面原子结构重排,使得性能提高。同时在高电极电势区间进行扫描会造成金属的部分氧化,形成金属/氧化态界面作为活性中心,其催化活性优于纯金属活性,这也可能提高催化性能。

对比了同样电极电势区间循环伏安扫描后的纯pd、pdcu催化剂,发现其催化性能并没有改变,说明这种表面处理可能与ag有关。可以发现,ag-pd合金中ag的含量越多,催化效果改善越明显,与ag的氧化还原过程有关。

附图说明

图1是pd0.34ag0.66、pd0.5ag0.5、pd0.66ag0.34以及纯pd、pd0.5cu0.5催化剂的制备工艺及循环伏安扫描处理流程图。

图2是实例实施1制备的pd0.34ag0.66催化剂的在n2饱和的1mkoh+0.5mhcook溶液中for催化性能测试结果。曲线一为扫描速率为50mv/s室温下测得的-0.8-0.2v电极电势区间循环伏安曲线,曲线二在曲线一测试的基础上,将电极电势区间扩大至0.5v的测得的循环伏安曲线。

图3是实例实施2制备的pd0.5ag0.5催化剂的在n2饱和的1mkoh+0.5mhcook溶液中for催化性能测试结果。曲线一为扫描速率为50mv/s室温下测得的-0.8-0.2v电极电势区间循环伏安曲线,曲线二在曲线一测试的基础上,将电极电势区间扩大至0.5v的测得的循环伏安曲线。

图4是实例实施3制备的pd0.66ag0.34催化剂的在n2饱和的1mkoh+0.5mhcook溶液中for催化性能测试结果。曲线一为扫描速率为50mv/s室温下测得的-0.8-0.2v电极电势区间循环伏安曲线,曲线二在曲线一测试的基础上,将电极电势区间扩大至0.5v的测得的循环伏安曲线。

图5是实例实施4制备的纯pd催化剂的在n2饱和的1mkoh+0.5mhcook溶液中for催化性能测试结果。曲线一为扫描速率为50mv/s室温下测得的-0.8-0.2v电极电势区间循环伏安曲线,曲线二在曲线一测试的基础上,将电极电势区间扩大至0.5v的测得的循环伏安曲线。

图6是实例实施5制备的pd0.5cu0.5催化剂的在n2饱和的1mkoh+0.5mhcook溶液中for催化性能测试结果。曲线一为扫描速率为50mv/s室温下测得的-0.8-0.2v电极电势区间循环伏安曲线,曲线二在曲线一测试的基础上,将电极电势区间扩大至0.5v的测得的循环伏安曲线。

具体实施方式

现结合实施例、附图对本发明作进一步描述:

本发明的甲酸盐氧化反应电催化剂的主要成分是pd和ag,成分范围为pd:34-66w%,ag:34-66w%,同时在相同条件下制备出纯pd、pdcu(成分为pd63w%,cu37wt%)作为对比实验,电催化剂的相组成为单相固溶体合金。经过电极电势区间(0.2-0.5v相对于hg/hgo电极)循环伏安扫描处理后,pd0.5ag0.5纳米合金的电催化甲酸盐氧化活性提高了4倍,经过类似电化学循环伏安处理后,纯pd和pdcu合金活性没有提高。

上述可通过循环伏安处理提高甲酸盐氧化反应电催化活性的ag-pd纳米合金制备方法通过以下技术方案实现:

步骤1:在室温下将pd(no3)2水溶液与agno3水溶液搅拌得到混合水溶液;所述pd(no3)2水溶液浓度为0.01-0.1mol/l;所述agno3水溶液浓度为0.01-0.1mol/l;所述混合水溶液中pd的质量分数为34-66w%,相对应ag的质量分数为66-34w%。

步骤2:将混合水溶液逐滴加入还原剂中混合搅拌;所述还原剂与ag-pd的摩尔比为2∶1~5∶1

步骤3:离心步骤2的溶液,水洗,冷冻干燥研磨后得到ag-pd催化剂。

步骤4:称取2mg催化剂,分散于0.5ml去离子水、0.5ml无水乙醇溶液中,滴加20微升5%的膜溶液,超声30min后涂于玻碳电极上,室温下晾干。

步骤5:在较高电极电势区间(-0.8-0.5v相对于hg/hgo电极)进行循环伏安扫描,扫描速率50mv/s,循环次数≥2。

步骤6:得到ag-pd纳米合金催化剂,测量for催化性能。

具体实施例:

实例1

将1g99%的agno3溶于58.9ml去离子水中,配制成0.1mol/l的水溶液,将1g99%的pd(no3)2溶于43.1ml去离子水中,配制成0.1mol/l的水溶液,将0.25g99%的nabh4溶于66ml去离子水中,配制成0.1mol/l的水溶液。取上述agno3水溶液、pd(no3)2水溶液混合搅拌10min后(体积比3:1)逐滴加入到nabh4水溶液中,室温下搅拌2h至反应完全。然后将溶液进行离心(4000rpm,3min),等离子水洗三次,冷冻干燥12h,研磨后得到pd0.34ag0.66催化剂。称取2mgpd0.34ag0.66催化剂,分散于去离子水、无水乙醇混合溶液中,滴加20微升5%的膜溶液,超声30min后涂于玻碳电极上,室温下晾干。在较低电极电势区间-0.8-0.2v(相对于hg/hgo电极)进行循环伏安扫,扫描速率50mv/s,测量for性能(参见图2曲线一)。在此基础上将电极电势区间扩大至-0.8-0.5v(相对于hg/hgo电极)进行循环伏安扫描,扫描速率50mv/s,循环次数≥2,测量for性能(参见图2曲线二)。n2饱和的1mkoh+0.5mhcook溶液中电化学测试结果显示循环伏安扫描处理后,电催化甲酸盐氧化活性可以提高十几倍。

实例2

取上述agno3水溶液、pd(no3)2水溶液混合搅拌10min后(体积比1:1)逐滴加入到nabh4水溶液中,室温下搅拌2h至反应完全。然后将溶液进行离心(4000rpm,3min),等离子水洗三次,冷冻干燥12h,研磨后得到pd0.5ag0.5催化剂。称取2mgpd0.5ag0.5催化剂,分散于去离子水、无水乙醇混合溶液中,滴加20微升5%的膜溶液,超声30min后涂于玻碳电极上,室温下晾干。在较低电极电势区间-0.8-0.2v(相对于hg/hgo电极)进行循环伏安扫,扫描速率50mv/s,测量for性能(参见图3曲线一)。在此基础上将电极电势区间扩大至-0.8-0.5v(相对于hg/hgo电极)进行循环伏安扫描,扫描速率50mv/s,循环次数≥2,测量for性能(参见图3曲线二)。n2饱和的1mkoh+0.5mhcook溶液中电化学测试结果显示循环伏安扫描处理后,电催化甲酸盐氧化活性可以提高4倍。

实例3

取上述agno3水溶液、pd(no3)2水溶液混合搅拌10min后(体积比3:1)逐滴加入到nabh4水溶液中,室温下搅拌2h至反应完全。然后将溶液进行离心(4000rpm,3min),等离子水洗三次,冷冻干燥12h,研磨后得到pd0.66ag0.34催化剂。称取2mgpd0.66ag0.34催化剂,分散于去离子水、无水乙醇混合溶液中,滴加20微升5%的膜溶液,超声30min后涂于玻碳电极上,室温下晾干。在较低电极电势区间-0.8-0.2v(相对于hg/hgo电极)进行循环伏安扫,扫描速率50mv/s,测量for性能(参见图4曲线一)。在此基础上将电极电势区间扩大至-0.8-0.5v(相对于hg/hgo电极)进行循环伏安扫描,扫描速率50mv/s,循环次数≥2,测量for性能(参见图4曲线二)。n2饱和的1mkoh+0.5mhcook溶液中电化学测试结果显示循环伏安扫描处理后,电催化甲酸盐氧化活性可以提高1.7倍。

实例4

取上述pd(no3)2水溶液逐滴加入到nabh4水溶液中,室温下搅拌2h至反应完全。然后将溶液进行离心(4000rpm,3min),等离子水洗三次,冷冻干燥12h,研磨后得到纯pd催化剂。称取2mg纯pd催化剂,分散于去离子水、无水乙醇混合溶液中,滴加20微升5%的膜溶液,超声30min后涂于玻碳电极上,室温下晾干。在较低电极电势区间-0.8-0.2v(相对于hg/hgo电极)进行循环伏安扫,扫描速率50mv/s,测量for性能(参见图5曲线一)。在此基础上将电极电势区间扩大至-0.8-0.5v(相对于hg/hgo电极)进行循环伏安扫描,扫描速率50mv/s,循环次数≥2,测量for性能(参见图5曲线二)。n2饱和的1mkoh+0.5mhcook溶液中电化学测试结果显示循环伏安扫描处理后,电催化甲酸盐氧化活性没有提高。

实例5

1g99%的cu(no3)2溶于41.4ml去离子水中,配制成0.1mol/l的水溶液,取上述pd(no3)2水溶液、cu(no3)2水溶液混合搅拌10min后(体积比1:1)逐滴加入到nabh4水溶液中,室温下搅拌2h至反应完全。然后将溶液进行离心(4000rpm,3min),等离子水洗三次,冷冻干燥12h,研磨后得到pd0.5cu0.5催化剂。称取2mgpd0.5cu0.5催化剂,分散于去离子水、无水乙醇混合溶液中,滴加20微升5%的膜溶液,超声30min后涂于玻碳电极上,室温下晾干。在较低电极电势区间-0.8-0.2v(相对于hg/hgo电极)进行循环伏安扫,扫描速率50mv/s,测量for性能(参见图6曲线一)。在此基础上将电极电势区间扩大至-0.8-0.5v(相对于hg/hgo电极)进行循环伏安扫描,扫描速率50mv/s,循环次数≥2,测量for性能(参见图6曲线二)。n2饱和的1mkoh+0.5mhcook溶液中电化学测试结果显示循环伏安扫描处理后,电催化甲酸盐氧化活性没有提高。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1