一种双金属氧化物与石墨烯复合材料及其制备方法与流程

文档序号:15562855发布日期:2018-09-29 02:39阅读:529来源:国知局

本发明涉及的是一种石墨烯复合材料,本发明也涉及一种石墨烯复合材料的制备方法。



背景技术:

超级电容器是一种介于传统电容器和充电电池之间的新型储能装置,其电极材料分为两类,一类是基于通过活性电极材料表面上的电解质离子的快速吸附/解吸来储存能量的碳材料;另一类是通过电解质和活性材料之间的法拉第反应来储存能量的赝电容材料。双金属氧化物(ab2o4)由于其具有优异的电导率,并具有多种氧化态可进行多种氧化还原反应,以获得更高的比容量。因此,碳材料与双金属氧化物的复合,是一种理想的超级电容器材料。现有双金属氧化物/石墨烯复合材料的合成过程存在以下问题:

问题1:现有技术在合成双金属氧化物ab2o4中,两种金属a与b的摩尔配比难以准确控制:传统的方法是通过尿素分解来与两种可溶金属盐共沉淀生成前驱体,再通过煅烧来获得双金属氧化物。尿素所分解的oh-与两种金属阳离子在共沉淀时,选择与oh-结合的金属阳离子在类型、数量上不易准确控制,故而所生成的前驱体的种类、分子式的配比也难以准确控制,所以产物常常伴随着较多副产物。

问题2:现有技术难以实现通过原位生长方式实现双金属氧化物与石墨烯复合:现有技术主要是在高温有氧煅烧的条件下,获得双金属氧化物,由于石墨烯等碳材料在空气中具有可燃性,因此只能高温煅烧后,生成的双金属氧化物才能与石墨烯复合,两者的复合只能通过将双金属氧化物与碳材料物理的混合,严重影响了材料的性能。

问题3:现有技术难以实现通过化学生长在石墨烯表面形成具有颗粒大小均一的纳米立方体形貌的双金属氧化物。石墨烯表面生长大小均一的纳米立方体复合物可以有效的避免石墨烯的团聚,提高产品性能。



技术实现要素:

本发明的目的在于提供一种具有规整的纳米立方体形貌的双金属氧化物与石墨烯复合材料。本发明的目的还在于提供一种可实现双金属氧化物中两种金属摩尔配比的精确控制的双金属氧化物与石墨烯复合材料的制备方法。

本发明的双金属氧化物与石墨烯复合材料包括石墨烯片层和在石墨烯片层上生长的立方体型的双金属氧化物。

本发明的双金属氧化物与石墨烯复合材料还可以包括:

1.所述的双金属氧化物为nife2o4或cofe2o4或nico2o4。

2.立方体型的双金属氧化物的边长为30~40nm。

本发明的双金属氧化物与石墨烯复合材料的制备方法为:

步骤1,将氧化石墨烯配制成浓度为3mg/ml的分散液,向其中加入金属氯化盐,并控制金属氯化盐的浓度在1~10mmol/l,记作溶液1;将金属氰酸钾盐配制成与金属氯化盐的浓度相同的溶液,记作溶液2;

步骤2,将溶液1和溶液2分别搅拌均匀后,按照体积比2:3的比例,将溶液2滴加到溶液1中,搅拌10min;

步骤3,将步骤2得到的混合溶液转移至高温高压反应釜中,于120℃下水热反应6h;继续调控温度至180~220℃,水热反应18h,自然冷却后,得到双金属氧化物与石墨烯复合材料。

本发明的双金属氧化物与石墨烯复合材料的制备方法还可以包括:

1.步骤2中的滴加速率为1ml/min。

2.溶液1中所述的金属氯化盐为金属fe、co、ni或mn的氯化盐。

3.步骤1中所述的金属氯化盐为nicl2,所述的金属氰酸钾盐为k3[fe(cn)6];步骤3中继续调控温度至180℃。

4.步骤1中所述的金属氯化盐为nicl2,所述的金属氰酸钾盐为k3[co(cn)6];步骤3中继续调控温度至200℃。

5.步骤1中所述的金属氯化盐为cocl2,所述的金属氰酸钾盐为k3[fe(cn)6];步骤3中继续调控温度至220℃。

本发明的技术方法的构思具有如下特点:

特点1:首次提出金属氯化物与金属氰酸钾盐相混合,利用金属阳离子与金属氰酸根阴离子之间的静电吸引,实现双金属氧化物中两种金属摩尔配比地精确控制。改将合成过程中两种金属阳离子的竞争排斥为相互吸引。

特点2:本发明利用氧化石墨烯、金属阳离子和金属氰酸根离子电荷的差异,双金属氧化物前驱体在氧化石墨烯表面的原位生长。氧化石墨烯表面带负电的含氧官能团,先加入金属阳离子,使其吸附在氧化石墨烯表面,在加入带负电的金属氰酸根,静电吸引使其与金属阳离子结合,在氧化石墨烯表面原位生长得到前驱体。

特点3:通过水热方式制备双金属氧化物,避免高温煅烧对于石墨烯的破坏。进一步通过调控水热反应的温度,将前驱体制备成双金属氧化物。前驱体双金属氰化物特殊的微观结构,所制备的双金属氧化物具有规整的纳米立方体形貌。

技术说明

步骤1说明:先向氧化石墨烯分散液中加入阳离子盐,由于静电作用,整体呈负电的氧化石墨烯分散液会静电吸引阳离子与之结合,成为溶液1。若制备铁基双金属氧化物,溶液2为k3[fe(cn)6];若制备钴基双金属氧化物,溶液2则为k3[co(cn)6]。溶液1中的元素a可为fe、co、ni、mn。

步骤2说明:由所合成双金属氧化物的前驱体分子式a3[b(cn)6]2可知,溶液1与溶液2的体积配比为2:3;当溶液2滴入到溶液1中,由于氧化石墨烯表面阳离子盐的静电吸引作用,[b(cn)6]3-会立刻与之结合,所以为了抑制所形成前驱体形貌团聚,控制滴加速率0.5~1ml/min极为重要,搅拌10min是为了让a2+与[b(cn)6]3-充分结合。

步骤3说明:在高温高压反应釜中120℃下水热反应6h,此为前驱体a3[b(cn)6]2在氧化石墨烯表面合成的过程;调控水热条件为180~220℃下水热反应18h,此过程为氧化石墨烯的还原过程。由于持续的高温,氧化石墨烯凭借表面的含氧官能团相互组装并还原,形成石墨烯水凝胶,与此同时,负载在氧化石墨烯片层表面的前驱体a3[b(cn)6]2在高温水热下受热分解,在石墨烯片层上形成ab2o4。

有益效果:

1、所制备的双金属氧化物具有规整的纳米立方体形貌。

2、本发明无需高温煅烧即可获得双金属氧化物,避免高温煅烧对于石墨烯的破坏。通过原位生长方式实现双金属氧化物与石墨烯复合。

3、此方法可实现双金属氧化物中两种金属摩尔配比地精确控制。

附图说明

图1:实施例2制备的nife2o4/石墨烯的xrd图。

图2(a)-图2(c):实施例2制备的nife2o4/石墨烯:图2(a)sem;图2(b)tem;图2(c)粒径分布图。

图3(a)-图3(d):实施例2制备的nife2o4/石墨烯:图3(a)在不同扫描速度下的循环伏安曲线;图3(b)在不同电流密度下的恒电流充放电曲线;图3(c)倍率性能图;图3(d)交流阻抗图谱。

具体实施方式

下面举例对本发明做更详细的描述。

实施例1

一种双金属氧化物/石墨烯复合材料制备方法,具体步骤如下:

步骤1,配制氧化石墨烯分散液,浓度为3mg/ml,向其中加入金属氯化盐,控制浓度在1~10mmol/l,记作溶液1;配制金属氰酸钾盐溶液,浓度与金属氯化盐相同,记作溶液2;

步骤2,将溶液1和溶液2分别搅拌均匀后,按照体积比为2:3的比例,将溶液2滴加到溶液1中,滴加速率为0.5~1ml/min,搅拌10min;

步骤3,将上述混合溶液转移至高温高压反应釜中,于120℃下水热反应6h;继续调控温度至180~220℃,水热反应18h。自然冷却后,得到负载ab2o4的石墨烯水凝胶材料。

实施例2

本实施例与实施例1步骤基本相同,不同之处在于:步骤1中,金属氯化盐为nicl2,金属氰酸钾盐为k3[fe(cn)6];步骤3中继续调控温度至180℃。

图1为所得材料的xrd图,对照对应的峰位可以看出,合成的材料为纯相的nife2o4/石墨烯。图2(a)-图2(c)为本实施例nife2o4/石墨烯的:图2(a)sem,该图的放大倍数为30000倍;图2(b)tem,可看出得到的nife2o4纳米立方块负载在石墨烯表面;图2(c)粒径分布图,可知粒径在30~40nm之间,颗粒大小分布较均匀。

图3(a)为nife2o4/石墨烯材料在扫描速度分别为5、10、20、40mvs-1下的循环伏安曲线,图3(b)为nife2o4/石墨烯在不同电流密度下的恒电流充放电曲线;电化学性能测试显示在电流密度为1、2、3、6ag-1时,放电比容量分别为275、243、227、200fg-1,如图3(c)nife2o4/石墨烯的倍率性能图所示,当电流密度增大到6ag-1时的放电比电容依然是1ag-1时的放电比电容的74%。图3(d)为nife2o4/石墨烯材料的交流阻抗图谱,由图可知溶液扩散电阻为1.8,电荷转移电阻为3.4。

实施例3

本实施例与实施例2步骤基本相同,不同之处在于:步骤1中,将k3[fe(cn)6]换为k3[co(cn)6];步骤3中,“调控温度至180℃”换为“调控温度至200℃”。所合成的材料为nico2o4/石墨烯材料。

所制备的nico2o4/石墨烯材料电化学性能测试显示在电流密度为1、2、3、6ag-1时,放电比容量分别为201、187、171、155fg-1;当电流密度增大到6ag-1时,放电比电容依然是1ag-1时放电比电容的77%。

实施例4

本实施例与实施例1步骤基本相同,不同之处在于:步骤1中,将nicl2换为cocl2;步骤3中,“调控温度至180℃”换为“调控温度至220℃”。所合成的材料为cofe2o4/石墨烯材料。

所制备的cofe2o4/石墨烯材料电化学性能测试显示在电流密度为1、2、3、6ag-1时,放电比容量分别为215、193、177、152fg-1;当电流密度增大到6ag-1时,放电比电容依然是1ag-1时放电比电容的70%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1