基板处理装置、半导体装置的制造方法以及存储介质与流程

文档序号:17295180发布日期:2019-04-03 04:19阅读:126来源:国知局
基板处理装置、半导体装置的制造方法以及存储介质与流程

本发明涉及基板处理装置、半导体装置的制造方法以及存储介质。



背景技术:

在基板处理装置设有用于将收纳于晶盒的基板(晶圆)向基板保持件(晶舟)移载的移载室。移载室例如通过氮气那样的惰性气体净化,抑制在晶圆上生成自然氧化膜。

作为用惰性气体净化基板处理装置的移载室的技术,具有日本特开2003-7802号公报(专利文献1)、日本特开2007-95879号公报(专利文献2)、日本特开2009-65113号公报(专利文献3)等。

在用氮气那样的惰性气体净化移载室的情况下,具有希望削减氮气的消耗量的需求。

现有技术文献

专利文献

专利文献1:日本特开2003-7802号公报

专利文献2:日本特开2007-95879号公报

专利文献3:日本特开2009-65113号公报



技术实现要素:

发明所要解决的课题

本发明的课题在于提供能够降低净化基板处理装置的移载室的氮气那样的惰性气体的消耗量的技术。

其它的课题和新的特征根据本说明书的记载及附图将变得明了。

用于解决课题的方案

若简单地说明本发明中的代表性的技术的概要,则如下所述。

根据本发明的一方案,提供以下技术及使用该技术的方法,该技术具有:反应室,其将基板以载置于基板支撑件的状态进行处理;移载室,其与上述反应室连接,且配置从上述反应室取出的上述基板支撑件;闸门,其对为了使上述基板在上述移载室的内外移动而设于上述移载室的开口进行开闭;缓冲架,其在上述移载室的外侧以面向上述开口的方式设置,且保持基板容纳器;移载机,其在上述缓冲架的上述基板容纳器与上述基板支撑件之间搬送上述基板;清洁单元,其向上述移载室供给清洁的环境气体;以及惰性气体供给器,其向上述移载室供给惰性气体,在完成了上述移载机进行的从上述基板容纳器至上述基板支撑件的上述基板的搬入而上述闸门被关闭起,直至为了将处理完毕的上述基板从上述基板支撑件搬出至上述基板容纳器而上述闸门再次被打开之间的至少一部分期间内,上述惰性气体供给器供给上述惰性气体,在上述期间外,上述惰性气体供给器不供给上述惰性气体,而且上述清洁单元构成为能够切换单通模式和循环模式,在上述闸门打开的期间,通过作为空气的环境气体将上述移载室保持为正压,并且使空气从上述移载室中向外流出,其中,上述单通模式是将从装置外获取到的空气清洁化并供给至上述移载室,并且将剩余的空气排出至装置外的模式,上述循环模式是将上述移载室内的环境气体吸引并清洁化而供给至上述移载室的模式。

发明效果

根据本发明,能够降低净化移载室的氮气那样的惰性气体的消耗量。

附图说明

图1是用于说明实施方式的基板处理装置的图。

图2是用于说明实施方式的基板处理装置的移载室与晶盒保持室之间的结构的图。

图3是用于说明实施方式的基板处理装置的反应管的纵剖视图。

图4是实施方式的基板处理装置的控制器的概略结构图,是用框图表示控制器的控制系统的图。

图5是表示处理流程的图,该处理流程表示实施方式的基板处理方法。

图6(a)至(f)是用于说明移载室和晶盒保持室的状态的图。

图7(a)至(d)是用于说明移载室和晶盒保持室的状态的图。

图8是用于说明通向移载室的氮气的流量的图。

图9是用于说明实施方式的基板处理装置的大气环境气体的概念性的图。

图10是概念性地表示移载室的环境气体的控制结构的图。

图11是用于说明移载室的环境气体的控制的图。

图12是概念性地表示大气环境气体的循环模式下的移载室内的大气的流动的图。

图13是概念性地表示大气环境气体的单通模式下的移载室内的大气的流动的图。

图14是概念性地表示n2净化的循环模式下的移载室内的氮气的流动的图。

图15是概念性地表示从n2环境气体向大气环境气体恢复时的气体的流动的图。

图中:

2—基板容纳器(开放式晶盒),10—基板处理装置,15—缓冲架,19—移载机,25—基板支撑件(晶舟),31—反应管,32—反应室,50—移载室,60—晶盒保管室,50a—清洁单元,71—开口,72—闸门,507—散热器(热交换器),601—惰性气体供给器。

具体实施方式

以下,使用附图,对实施方式进行说明。其中,在以下的说明中,有时对相同结构单元标注相同符号,并省略反复的说明。此外,为了更明确地进行说明,相比实际形态,附图有时示意性地表现各部分的宽度、厚度、形状等,毕竟只是一例,并不限定本发明的解释。

<实施方式>

(1)基板处理装置

以下,参照附图,对本发明的实施方式的基板处理装置进行说明。本实施方式中,基板处理装置(以下,简称为处理装置)作为一例,构成为实施半导体设备的制造方法中的处理工序的半导体制造装置。在以下的实施方式中,对作为基板处理装置,应用了对基板进行cvd等成膜处理的分批式立式热处理装置的情况进行叙述。

以下,使用图1、图2以及图3,对处理装置的结构进行说明。

如图1所示,实施方式的处理装置10具备箱体11,在箱体11的前表面设有晶盒交接单元12。晶盒交接单元12具备能够通过晶圆1的搬送器载置两台基板容纳器(开放式晶盒,以下称为晶盒。)2的晶盒平台13,在晶盒平台13的下方设有两组晶圆姿势矫正装置14。此外,基板容纳器不限于开放式晶盒,也可以使用smif(standardmechanicalinterface:标准机械接口)、foup(frontopenunifiedpod:前开式晶圆盒)。

当通过外部搬送装置(未图示)搬送来的晶盒2以垂直姿势(收纳于晶盒2的晶圆1处于垂直的状态)载置于晶盒平台13时,晶圆姿势矫正装置14以使收纳于晶盒2的晶圆1的槽口、定向平面相同的方式矫正晶圆1的姿势。晶盒平台13旋转90度,从而使晶盒2成为水平姿势。在箱体11的内部与晶盒交接单元12对置地设有晶盒架15,在晶盒交接单元12的上方设有预备晶盒架16。

在晶盒交接单元12与晶盒架15中间设有晶盒移载装置17。晶盒移载装置17具备能够沿前后方向进退的机械臂18,机械臂18构成为能够横向移动及升降。机械臂18通过进退(前后)、升降以及横向移动的运动,将晶盒平台13上的成为水平姿势的晶盒2搬送移载至晶盒架15或预备晶盒架16。晶盒架15及预备晶盒架16也能够视作多个晶盒2的缓冲架。

在晶盒架15的后方,能够旋转及升降地设有晶圆移载装置(移载机)19,该晶圆移载装置19能够将晶盒2内的晶圆1以多张一起或者每一张的方式移载至基板支撑件(以下,称为晶舟。)25。晶圆移载装置19具备能够进退的晶圆保持部20,在晶圆保持部20水平地安装有多张晶圆保持板21。在晶圆移载装置19的后方设有晶舟升降机22,在晶舟升降机22的臂23水平地设置有能够旋转地保持晶舟25的密封盖24。

(1-2)晶盒保持室和移载室

如图1所示,处理装置10具有移载室50和晶盒保持室60。在移载室50设置有晶圆移载装置19、晶圆保持部20、晶圆保持板21以及晶舟升降机22等。在晶盒保持室60设置有晶盒架15、预备晶盒架16以及晶盒移载装置17等。在移载室50与晶盒保持室60之间设有壁部70。虽然在图1中为了简化附图而未记载,但是如图2所示,壁部70具有开口71,而且设有能够开闭开口71的闸门72。开口71设置为与位于晶圆移载装置19能够移载晶圆的位置(通常是最靠近晶圆移载装置19的位置)的一个至多个晶盒对应,其上端及下端的高度能够与下降后的晶舟25的上端及下端大致相等。例如,相对于搭载150张产品晶圆的晶舟,成为三层架的量的高度的开口。闸门72具有板及其驱动机构,例如,板在从开口浮起的状态下向左右或前后滑动,从而进行打开/关闭。也就是,板在打开使,只要收纳于与晶盒移载装置17的运动范围不干涉的位置即可。另外,虽然能与各个晶盒对应地独立设置多个开口,但是闸门72只要具备一个将它们统一地开闭的闸门即可。壁部70及闸门72的板与其耐得住压力差的强度,倒不如以不与晶盒移载装置17接触的方式设计为薄型。晶圆移载装置(移载机)19在闸门72打开的状态(72a)下,经由开口71从晶盒保持室60内的晶盒2将晶圆1移载至晶舟25。在闸门72关闭的状态下,开口71闭合,移载室50和晶盒保持室60成为隔离的状态。因此,移载室50内的环境气体能够设置为与晶盒保持室60不同的环境气体。关于移载室50内的环境气体和晶盒保持室60的环境气体,将在后面详细说明。

(1-3)处理炉

如图3所示,处理装置10具备使用石英玻璃等耐热性高的材料形成为一端开口且另一端堵塞的圆筒形状的反应管(处理管)31,反应管31以中心线垂直的方式纵向排列并固定地被支撑。反应管31的筒中空部形成容纳多张晶圆1的处理室32,反应管31的下端开口形成用于使晶圆1出入的炉口33。炉口33相对于移载室50开口,处理室32和移载室50相连。在反应管31的外部,用于对处理室32以遍及整体的方式均匀地进行加热的加热器34以包围反应管31的周围的方式呈同心圆地设置,加热器34支撑于处理装置10的箱体11,成为垂直安装的状态。

在反应管31的炉口33的附近的侧面的一部分连接有用于供给处理气体的气体供给管35的一端,气体供给管35的另一端连接于供给处理气体的气体供给源(未图示)。在反应管31的炉口33的附近的侧壁的与气体供给管35的相反侧连接有排气管36的一端,排气管36的另一端连接于排气装置(未图示),能对处理室32排气。堵塞炉口33的密封盖24从垂直方向下侧夹着密封圈38抵接于反应管31的下端面。密封盖24形成为圆盘形状,且构成为通过设于反应管31的外部的晶舟升降机22沿垂直方向升降。另外,可以设置当密封盖24移动至下端的位置时封闭炉口33的炉口挡板28(未图示)。在密封盖24的中心线上,插通有旋转轴39,旋转轴39与密封盖24一同升降,而且通过旋转驱动装置40而旋转。

用于保持作为被处理基板的晶圆1的晶舟25经由隔热帽部37而垂直地竖立支撑于旋转轴39的上端。晶舟25具备上下一对端板26、27和架设于两端板26、27间且垂直配设的多个(本实施方式中为三个)保持部件(柱),在各保持部件,多个保持槽沿长边方向等间隔配置,且以相互对置开口的方式没入设置。于是,通过将晶圆1的外周边缘分别插入于各保持部件的多个保持槽间,多张晶圆1水平且相互对齐中心地排列保持于晶舟25。在晶舟25的下侧端板27的下表面形成有隔热帽部37,隔热帽部37的下端面支撑于旋转轴39。

(1-4)控制器

图4表示处理装置10具备的控制器121的框图。控制器121构成为具备cpu(centralprocessingunit:中央处理器)121a、ram(randomaccessmemory:随机存取存储器)121b、存储装置121c、i/o端口121d的计算机。ram121b、存储装置121c、i/o端口121d构成为能够经由内部总线与cpu121a通信。在控制器121连接有例如构成为触控面板等的输入输出装置122、外部存储装置123。

存储装置121c例如由闪存、hdd(harddiskdrive:硬盘驱动器)等构成。在存储装置121c内可读取地存储有记载了控制基板处理装置的动作的控制程序、后述的基板处理的次序、条件等的工艺配方等。此外,配方是以能够使控制器121执行后述的基板处理工序的各次序而得到预定的结果的方式组合而成的,若与控制程序比较,则为高级语言。将控制程序和配方总称为程序。另外,存储装置121c依次存储了记录有装置的动作、状态的日志信息。ram121b构成为临时保持由cpu121a读出的程序、数据等的存储器区域(工作区)。

i/o端口121d连接于晶盒交接单元12、晶盒平台13、晶圆姿势矫正装置14、晶盒移载装置17、晶圆移载装置19、加热器34、温度传感器、旋转机构40、晶舟升降机22等。

cpu121a构成为,从存储装置121c读出并执行控制程序,并且根据来自输入输出装置122的操作指令的输入等从存储装置121c读出基板的配方。cpu121a构成为,按照读出的配方的内容控制晶盒交接单元12的姿势矫正动作、晶盒平台13的旋转动作、晶圆姿势矫正装置14、晶盒移载装置17的机械臂18的动作控制、晶圆移载装置19的旋转及升降控制、加热器34的温度控制、闸门72的开闭动作控制、移载室50的环境气体控制、晶盒保持室60的环境气体控制、以及晶舟升降机22的升降动作等。

控制器121能够通过将存储于外部存储装置(例如,硬盘等磁盘、usb存储器等半导体存储器)123的上述的程序、配方安装于计算机而构成。存储装置121c、外部存储装置123构成为计算机可读取的有形记录介质。

以下,将它们总称地简称为记录介质。在本说明书中使用记录介质这一术语的情况下,存在仅包含存储装置121c单体的情况、仅包含外部存储装置123单体的情况、以及包含它们双方的情况。此外,就对计算机提供程序而言,也可以不使用外部存储装置123而使用网络、专用线路等通信方案。

(2)基板处理工序

接下来,参照图5、图6(a)至(f)以及图7(a)至(d),对使用了处理装置10的反应管31的基板处理方法进行说明。在此说明的基板处理方法中,使用上述的处理装置10的反应管31,以半导体装置(设备)的制造工序的一工序、例如在基板上形成含硅膜的成膜处理为例进行说明。以下的说明中,构成基板处理装置10的各部的动作由控制器121控制。

(晶盒搬入工序(c.chg):s10)

通过外部搬送装置(未图示)搬送来的晶盒2以垂直姿势载置于晶盒交接单元(装载口转移工具)12的晶盒平台13时,通过晶圆姿势矫正装置14与晶盒2内的晶圆1朝向对齐,然后形成水平姿势,通过机械臂18搬入缓冲架(15、16)。向架的搬入可与成膜处理不同步地进行。然后,成为接下来的成膜处理的批次的对象的晶盒2移至晶盒架15的面对开口71的位置。此时,如图6(a)所示地,闸门72为打开的状态,晶盒保持室60和移载室50为通过开口71相连的状态。然后,向晶盒保持室60和移载室50供给作为被过滤后的大气的清洁空气。在全部的闸门72为打开的状态的工序中,原则上,移载室50相比晶盒保持室60为正压,清洁空气如箭头ar所示地从移载室50经由开口71向晶盒保持室60缓慢流动。此外,在s10,闸门72也可以为关闭的状态。

(晶圆填装工序(w.chg):s20)

如图6(b)所示,移载室50内的晶圆移载装置(移载机)19经由开口71将晶盒架15内的晶盒2内的晶圆1以多张一起或每一张的方式移载至晶舟25。该期间,充满移载室50的洁净的空气从开口71向晶盒保持室60流出。在图6(b)所示的状态下,炉口挡板28关闭,晶圆1的周围(晶舟25等)的温度增高,因此在晶圆1上不会产生多余的氧化膜(较厚的自然氧化膜、或热氧化膜)。也就是,虽然在被开放式晶盒处理的晶圆起初可能形成较薄的自然氧化膜,但是该工序中的氧化的进行能够忽略不计。此外,已知在硅晶圆中,通过氢氟酸处理进行了氢终止的表面只要在常温下,即使暴露于大气,也基本不会形成自然氧化。

(晶舟插入工序(bload):s30)

当向晶舟25移载多个晶圆1完成时,如图6(c)所示,利用闸门72封闭开口71,从而移载室50成为大致封闭状态。然后,利用来自惰性气体供给器(未图示)的氮气(n2气)净化移载室50。即,向移载室50的空间内送入氮气,充满移载室50的空间的大气被置换成氮气。在打开炉口挡板28前,反应管31内也同样地被大致大气压的氮气充满。利用氮气净化移载室50,直至氧浓度小于预定,然后打开炉口挡板28,层叠有多个晶圆1的晶舟25通过晶舟升降机22插入(装载)于反应管31内(参照图6(d))。

(成膜工序(depo):s40)

然后,如图6(e)所示地向反应管31内搬入晶舟25完成后,以反应室32内成为预定的压力的方式控制反应室32内的环境气体。另外,通过加热器34,以反应室32内成为预定的温度(例如,小于800℃)的方式进行控制,从气体供给管35向反应室32内供给原料气体(乙硅烷),在晶圆1上形成单晶或多晶硅膜。或者,供给反应气体(氨(nh3)气体)及原料气体(六氯乙硅烷(si2cl6)气体),生成氮化硅层(sin层)等薄膜。此时,从排气管36排出反应室32内的未反应的原料气体、反应气体等。此外,在成膜的期间,向移载室50供给预定量的氮气,维持正压。因为反应室32内小于800℃,所以不能期待自然氧化膜通过蒸发而去除。

(晶舟取出工序(bunload):s50)

在晶圆1上生成期望的膜厚的薄膜后,如图6(f)所示地,通过晶舟升降机22从反应管31取出(卸载)晶舟25。此时,由于正在利用氮气(n2气)净化移载室50,因此不会在晶圆1上生成氧化膜。刚卸载后的期间,为了冷却晶圆,进行待机。在s50的最后,进行排除移载室50内的氮气并导入空气的大气恢复。此外,成膜后的氧化膜根据需要能够通过蚀刻等去除,因此,相比成膜前在晶圆基层生成的氧化膜,并不严重。因此,可以在比常温高的温度下开始进行大气恢复。

(晶圆卸载工序(wdcg):s60)

在晶圆1的温度降低至可移载的温度,并且移载室50内的环境气体成为与空气大致相同的组成后,如图7(a)所示,移载室50成为大气环境气体,打开闸门72,露出移载室50与晶盒保持室60之间的开口71。

然后,如图7(b)所示,设置于移载室50内的晶圆移载装置(移载机)19经由开口71将层叠于晶舟25的多个晶圆1移载至晶盒保持室60的晶盒2。

(晶盒搬出工序(cdcg):s70)

然后,如图7(c)所示,收纳有处理完毕的多个晶圆1的晶盒2通过晶盒移载装置17载置于晶盒交接单元12的晶盒平台13,通过外部搬送装置(未图示)从晶盒保持室60搬出。

(空转状态(idol))

图7(d)表示基板处理装置10的空转状态或者待机状态。闸门72为打开的状态,晶盒保持室60和移载室50为通过开口71连结的状态。

(通向移载室50的氮气的流量)

图8是用于说明步骤s10-s70、空转状态idol下的通向移载室50的氮气的流量的状态的图。图8中,横轴表示各步骤及空转状态idol的状态,纵轴表示氮气的流量。通向移载室50的氮气的流量的控制作为移载室50的环境气体控制而通过控制器121来控制。移载室50的环境气体控制是氮气的供给阀(未图示)的开闭控制、氮气的质量流量控制器(未图示)的流量控制等。

在步骤s10(cchg)、s20(wchg)中,移载室50为大气环境气体,氮气的流量为0(零)l/min(升/分)。氮气的消耗为0(零)。

在步骤s30(bload)中,关闭闸门72,移载室50从大气环境气体变更为氮气环境气体,氮气的流量例如对于400l的容积的移载室,设定为800l/min(升/分)左右,从而利用氮气迅速净化移载室50。然后,氮气的流量例如变化到200l/min左右。在移载室50被氮气净化后的状态下,晶舟25被插入(装载)至反应管31内。

在步骤s40(成膜工序),例如,在一小时左右的处理时间的期间,保持移载室50被氮气净化的状态。氮气的流量可以是固定值,也可以基于移载室50内的氧浓度计的测量以将氧浓度保持为20ppm以下的方式进行可变控制。进一步地,在进行长时间的成膜的情况下,也可以停止净化,再临时恢复大气,形成与s10同样的状态。该情况下,需要以在开始s50时之前成为所期望的氧浓度的氮环境气体的方式重启大流量(800l/min)的净化。

在步骤s50(bunload),通向移载室50的氮气的流量设置为200l/min左右。该状态下,利用晶舟升降机22从反应管31向移载室50取出(卸载)晶舟25。在成为能够忽略不计自然氧化膜的生成的温度的时刻,将氮气的流量设为0,排出移载室50内的氮气,置换成大气。

在步骤s60、s70、以及空转状态idol下,闸门72为打开的状态,移载室50为大气环境气体,通向移载室50的氮气的流量为0l/min。氮气的消耗为0(零)。

(晶盒保持室60及移载室50的大气环境气体的控制结构)

图9表示实施方式的处理装置10的大气环境气体的流动。

处理装置10在其周边例如具有用于从清洁室获取大气的空气吸气孔10a。从空气吸气孔10a获取到的大气向移载室50侧和晶盒保持室60侧流动。

通向移载室50侧的大气流动向设于移载室50的清洁单元50a供给,被洁净单元50a清洁化,然后供给至移载室50。供给至移载室50的大气通过设于移载室50的三个背面排气风扇50b排出。

通向晶盒保持室60侧的大气流动向清洁单元60a供给,在此被清洁化后,供给至晶盒平台13及缓冲架15、16。清洁单元60a设于晶盒保持室60的顶棚的大致整个面。从清洁单元60a供给至晶盒保持室60的大气从架下排气风扇60c经由移载室50的底板下而向基板处理装置10的背面侧的外部排出。

如上所述,在移载室50与晶盒保持室60之间设有图9中用虚线表示的开口71。以使移载室50相比晶盒保持室60稍微成为正压的方式控制清洁单元50a和60a的风量、或者背面排气风扇50b和架下排气风扇60c的风量的平衡。因此,在闸门72打开着的期间,清洁空气(大气)如箭头ar所示地从移载室50经由开口71向晶盒保持室60流出。另外,在晶盒交接单元12具有通向外部的开口的情况下,架下排气风扇60c以不会从晶盒交接单元12的开口获取外部空气的方式抑制风量。

(移载室50的环境气体的控制结构)

图10是概念性地表示移载室50的环境气体的控制结构的图。图11是用于说明移载室50的环境气体的控制的图。

移载室50具有清洁单元50a、向清洁单元50a供给来自空气吸气孔10a的大气的进气口501、以及供给来自惰性气体供给器601的氮气的惰性气体吸气孔600。

另外,移载室50还具有背面排气风扇50b、排气风门502、后排气风门503、带压力调整板的排气盒504、排气管505、循环风门506、作为热交换器的散热器507、局部排气管508、循环管509、以及设于清洁单元50a的横侧的侧风扇511。局部排气管508和循环管509经由循环风门506与散热器507的吸气侧结合,散热器507的排气侧与清洁单元50a结合。散热器507用于冷却移载室50的环境气体、或者大气。局部排气管508和循环管509是为了排出例如因移载机19、晶舟升降机22、旋转机构40等的动作而引起的颗粒而设置的。

如图11所示,就移载室50而言,作为模式,具有大气环境气体和氮气净化(n2净化)。

就大气环境气体而言,作为动作模式,具有第一模式(chg/dchgprocess)和第二模式(dooropen)。

就氮气净化(n2净化)而言,作为动作模式,具有第一模式(chg/dchgprocess)、第二模式(stanby、bunload)、以及第三模式(大气恢复)。

大气环境气体的第一模式(chg/dchgprocess)下,将进气口501设为open(开),将排气风门502设为open(开),将后排气风门503设为open(开),将循环风门506设为open(开),将局部排气管508和循环管509设为on(动作),将后风扇50b设为on(动作),将侧风扇511设为on(动作)。该动作模式下,能够称为循环模式。循环模式下,通过散热器507冷却经由局部排气管508、循环管509从循环风门506供给来的移载室50内的大气,清洁单元50a将来自散热器507的冷却后的大气清洁化,然后供给至移载室50,并且剩余的大气排出至装置10的外部。图12概念性地表示大气环境气体的循环模式下的移载室50内的大气的流动。

在大气环境气体的第二模式(dooropen)下,将进气口501设为open(开),将排气风门502设为open(开),将后排气风门503设为open(开),将循环风门506设为close(关),将局部排气管508和循环管509设为off(不动作),将后风扇50b设为off(不动作),将侧风扇511设为on(以max功率动作)。该动作模式能够称为单通模式。单通模式下,清洁单元50a将从装置10的外部获取的大气(空气)清洁化,然后供给至移载室50,并且将剩余的空气排出至装置10的外部。图13表示大气环境气体的单通模式下的移载室50内的大气的流动。

n2净化的第一模式(chg/dchgprocess)下,将进气口501设为close(关),将排气风门502设为close(关),将后排气风门503设为close(关),将循环风门506设为open(开),将局部排气管508和循环管509设为on(动作),将后风扇50b设为off(不动作),将侧风扇511设为on(动作)。该动作模式能够称为循环模式。循环模式下,通过散热器507冷却经由局部排气管508和循环管509从循环风门506供给来的移载室50内的氮气,清洁单元50a将来自散热器507的氮气清洁化,然后供给至移载室50,并且剩余的氮气排出至装置10的外部。图14概念性地表示n2净化的循环模式下的移载室50内的氮气的流动。

n2净化的第二模式(stanby、bunload)下,将进气口501设为open(开),将排气风门502设为open(开),将后排气风门503设为close(关),将循环风门506设为close(关),将局部排气管508和循环管509设为off(不动作),将后风扇50b设为off(不动作),将侧风扇511设为on(动作)。该动作模式能够称为单通模式。

n2净化的第三模式(大气恢复)下,如图15所示,将进气口501设为open(开),将排气风门502设为open(开),将后排气风门503设为close(关),将循环风门506设为open(开),将局部排气管508和循环管509设为on(动作),将后风扇50b设为off(不动作),将侧风扇511设为on(动作)。

(3)本实施方式的效果

根据本实施方式,能够得到以下所述的一个或多个效果。

1)在移载室50与晶盒保持室60之间设有壁部70。壁部70具有开口71,且设有能够开闭开口71的闸门72。当开口71被闸门72封闭时,移载室50和晶盒保持室60成为隔离的状态。因此,能够对移载室50内利用氮气进行净化。移载室50的利用氮气进行的净化仅为闸门关闭的期间。因此,能够降低氮气的消耗量。

2)相比于具备多个装载锁定室并始终净化移载室的方式,无需净化装载锁定室,能够在短时间内进行晶盒搬入工序s10、晶圆填装工序s20。由此,一次的批量基板处理工序的时间也能够相应缩短,因此能够提高基板处理的生产率。

3)在闸门72打开而开口71被打开的状态下,移载室50和晶盒保持室60通过开口71连结。该状态下,移载室50和晶盒保持室60为大气环境气体。因此,能够降低氮气的消耗量,另外,能够防止有机气体积存于移载室50内。

4)上述2)中,相比于晶盒保持室60,移载室50为正压,因此从移载室50向晶盒保持室60侧流动清洁大气。由此,能够洁净地保持移载室50的环境气体。

5)移载室50的大气环境气体能够切换为单通模式和循环模式。因此,能够对移载室50内进行清洁。

6)移载室50的氮气环境气体能够切换为单通模式和循环模式。因此,能够对移载室50内进行清洁,并且能够抑制氮气的消耗量。

以上,基于实施例对本发明者做成的发明具体地进行了说明,但本发明不限定于上述实施方式及实施例,不言而喻,能够进行多种变更。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1