一种IGBT封装模块及其连接桥的制作方法

文档序号:15972528发布日期:2018-11-16 23:34阅读:513来源:国知局

本发明涉及一种芯片封装模块,具体涉及一种igbt封装模块及其连接桥。

背景技术

传统工艺的igbt封装模块,其基本结构为芯片焊接在散热板上,散热板焊接在底板上,通过散热板的排布区分出igbt芯片的栅极(gate)、集电极(collector)和发射极(emitter),其中集电极通过锡膏和散热板直接焊接,栅极和发射极均通过铝线或铝带与散热板相连接,这种封装结构工艺有如下缺点和难点。

第一,铝线的导热能力有限,芯片产生热量时,并不能及时的通过铝线传递到散热板、底板与散热器上,造成芯片温度过高,继而造成模块失效。

第二,铝线的电导率较小,且与芯片的接触面积有限,造成接触电阻较小,造成相关电性能低下。

第三,铝线键合工艺是igbt模块制造的最重要的环节,也是最难最复杂的环节,对键合设备及工艺技术要求均非常高,从一定程度上增加了工艺难度和产品成本。



技术实现要素:

本发明要解决的问题是提供一种便于安装,便于散热的连接桥;

为了提供此种连接桥,本发明提供了一种连接桥,包括:

散热金属制成的呈桥状的连接片,所述连接片的两端分别具有一个第一连接部和第二连接部,其中

所述第一连接部适于与电极焊接固定,以使锡点从所述连接片的上端面穿过所述连接片至所述连接片的下端面;

所述第二连接部适于与电极焊接固定,以使锡点从所述连接片的上端面穿过所述连接片至所述连接片的下端面。

作为优选,所述连接片的材料为铜。

作为优选,所述第一连接部与所述第二连接部的底面之间具有与芯片厚度适配的高度差。

作为优选,所述第一连接部为贯穿所述连接片的通孔;

所述第二连接部为开设在所述连接片的端部的u型开口;以及

所述u型开口方向为所述连接片的端部方向。

本发明进一步地提供了一种igbt封装模块,包括:封装壳体,固定在所述封装壳体内的散热板,背部焊接在所述散热板上的芯片结构,与所述芯片结构电性连接的信号端子,焊接在所述散热板上并伸出所述封装壳体的上端面的端子,以及

所述信号端子的上端伸出所述封装壳体的上端面;

所述芯片结构通过如上所述的连接桥与所述散热板电性连接。

作为优选,所述芯片结构包括igbt模块和fwd模块;以及

所述igbt模块的背部与所述散热板的集电极电性连接;所述igbt模块通过所述连接桥与所述散热板的发射极电性连接;

所述fwd模块的背部与所述散热板的集电极电性连接;所述fwd模块通过所述连接桥与所述散热板的发射极电性连接;

所述信号端子与所述igbt模块的栅极电性连接。

作为优选,所述散热板为陶瓷散热基板。

作为优选,所述连接桥的个数为多个。

作为优选,所述连接桥的个数为三个,并且三个所述连接桥与所述芯片结构的表面的焊接位分别位于所述芯片表面上的左下方,上方和右下方。

本发明的有益效果是,本发明的连接桥,通过第一连接部和第二连接部,加强连接片与散热板的焊接牢固度,使每个锡点从连接片底部至贯穿连接片再至其上端面,将连接片牢牢焊接在其表面,并且通过采用散热金属,加强连接片自身的散热能力;

进一步地,在本发明的igbt封装模块中,其中,通过在芯片结构上焊接连接桥,使其能够快速的吸收热量,并将该热量迅速散失,降低芯片产生的尖峰温升,芯片温度能及时有效的得到控制,提高了模块的散热能力,继而增强模块的正向电流的抗冲击能力,保护模块,提高模块可靠性和延长模块使用寿命等。

附图说明

下面结合附图和实施例对本发明进一步说明。

图1是本发明的一种连接桥的优选实施例的结构示意图;

图2是本发明的一种igbt封装模块的优选实施例的结构示意图;

图3是本发明的一种igbt封装模块的现有技术中的剖视图;

图4是本发明的一种igbt封装模块的优选实施例的剖视图;

图5是现有技术中采用铝线连接的优选实施例的结构示意图;

图中:

栅极1,集电极2,发射极3,散热板4;

连接桥5,第一连接部5a,通孔501,第二连接部5b,u型开口502;

栅极键合线6,igbt模块7,fwd模块8,铝线9,铜线10,底板11,端子12,外壳13,支架14,信号端子15。

具体实施方式

现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。

图1是本发明的一种连接桥的优选实施例的结构示意图;

如图1所示,一种连接桥,包括:散热金属制成的呈桥状的连接片,所述连接片的两端分别具有一个第一连接部5a和第二连接部5b,其中,所述第一连接部5a适于与电极焊接固定,以使锡点从所述连接片的上端面穿过所述连接片至所述连接片的下端面;所述第二连接部5b适于与电极焊接固定,以使锡点从所述连接片的上端面穿过所述连接片至所述连接片的下端面。

在本发明的igbt封装模块中,通过在芯片结构上焊接连接桥5,使其能够快速的吸收热量,并将该热量迅速散失,降低芯片产生的尖峰温升,芯片温度能及时有效的得到控制,提高了模块的散热能力,继而增强模块的正向电流的抗冲击能力,保护模块,提高模块可靠性和延长模块使用寿命等。

所述连接片的材料为铜。通过铜的选择,其本身的散热效果较好。导电导热效果稳定。

所述第一连接部5a与所述第二连接部5b的底面之间具有与芯片厚度适配的高度差。所述第一连接部5a为贯穿所述连接片的通孔501;所述第二连接部5b为开设在所述连接片的端部的u型开口502;以及所述u型开口502方向为所述连接片的端部方向。并且,正因为高度差的存在,两端能够通过使用相同量的锡膏来保证其焊接质量。此处高度差与被焊接的芯片厚度相同。

当设置通孔501时,在焊接的过程中,锡膏不仅存在于连接片的底面,同时贯穿连接片,而且其端面同时存在锡膏,形成锡膏柱,该锡膏柱将连接片卡设其中,增大了与芯片之间的接触面积,从而促进散热的效果。

虽然第一连接部5a与第二连接部5b存在高度差,但是该高度差肉眼并不容易直接辨别,从而无法使操作人员将正确的一端焊接在正确的一头,(较矮的一头焊接在散热板4上,较高的一头焊接在芯片的上表面),因此,为了便于区分,采用了如下的技术方案:

所述第二连接部5b为开设在所述连接片的端部的u型开口502;以及所述u型开口502方向为所述连接片的端部方向。正因为u型开口502主要起到标识作用,因此,在圆孔与u型开口502之间,其本身的形状可以多种多样。

如果连接桥的放置方向错误,会造成锡膏分布不均匀,影响散热,还会造成连桥边角不能充分与芯片连接,也影响散热,影响焊接质量。

实施例二:实施例二是基于实施例一的进一步拓展。

图2是本发明的一种igbt封装模块的优选实施例的结构示意图;

图3是本发明的一种igbt封装模块的现有技术中的剖视图;

图4是本发明的一种igbt封装模块的优选实施例的剖视图;

图5是现有技术中采用铝线9连接的优选实施例的结构示意图;

如图5所示,现有技术中的igbt封装模块,在芯片与散热板4电性连接的过程中,有的芯片的表面为涂覆有铝层,因此采用铝线9来电性连接,能够使铝线9与铝层的接触效果更佳,但是还有的芯片的表面需要镀镍或者镀金,因此,铝线9的优势便不再存在,并且,铝线9较细,其焊接形成的为焊接点,固定效果一般,再而,铝线9整体表面积小,不便于将芯片的热量散出。

本发明采用了如下技术方案:

如图2~4所示,一种igbt封装模块,包括:封装壳体,固定在所述封装壳体内的散热板4,背部焊接在所述散热板4上的芯片结构,与所述芯片结构电性连接的信号端子15,焊接在所述散热板4上并伸出所述封装壳体的上端面的端子12,以及所述信号端子15的上端伸出所述封装壳体的上端面;所述芯片结构通过实施例一中所述的连接桥5与所述散热板4电性连接。

其中,封装壳体包括封装一体的外壳13和底板11,外壳13与底板11之间形成腔室,该腔室内设置其他元件。散热板4为陶瓷覆铜板,其具有栅极1、发射极3和集电极2,芯片结构的背部通过锡膏焊接在其集电极2处并电性连接,芯片结构的上表面则通过连接桥5以及锡膏与发射极3电性连接,芯片结构上的栅极通过栅极键合线6与陶瓷覆铜板的栅极1电性连接。

信号端子15的底部通过支架14支撑然后固定在底板11上,并且通过铜线10与芯片结构的栅极电性连接。

在本实施例中,所述芯片结构包括igbt模块7和fwd模块8;以及

所述igbt模块7的背部与所述散热板4的集电极2电性连接,igbt模块7通过所述连接桥5与所述散热板4的发射极3电性连接;igbt模块7的栅极通过栅极键合线6与陶瓷覆铜板的栅极1电性连接,所述fwd模块8的背部与所述散热板4的集电极2电性连接,所述fwd模块8通过所述连接桥5与所述散热板4的发射极3电性连接;所述信号端子15与所述igbt模块7的栅极1电性连接。

所述散热板4为陶瓷散热基板。便于帮助igbt模块7与fwd模块8散热。

所述连接桥5的个数为多个。也可以为1个连接桥5。

如图2所示,所述连接桥5的个数为三个,并且三个所述连接桥5与所述芯片结构的表面的焊接位分别位于所述芯片结构表面上的左下方,上方和右下方,此处是指,与igbt模块7电性连接的三个连接桥5的焊接位置,分别在该igbt模块7的上表面上的左下方,上方和右下方(见图2),同样的与fwd模块8电性连接的连接桥5个数同样可以为三个,该三个连接桥5与fwd模板8的焊接位置同igbt模块7,将三个连接桥5,焊接并电性连接在三个不同的位置,能够使芯片结构(及igbt模块7和fwd模块8)的表面的热量充分的散失。

综上,本发明与传统工艺的igbt封装结构相比,有下列优点:

一、在igbt和fwd芯片正面焊接一个或多个连接桥5,能快速吸收并传导芯片所产生的热量,降低芯片产生的尖峰温升,芯片温度能及时有效的得到控制,提高了模块的散热能力,继而增强模块的正向电流的抗冲击能力,保护模块,提高模块可靠性和延长模块使用寿命等。

二、独特的散热板4设计,减小了电路回路中的耦合、杂散的电感与电容,提高了模块的可靠性。

三、传统的铝线9键合工艺的igbt封装模块,导热能力有限,电导率低,接触电阻小,且工艺复杂,封装扇热效果差,封装良率和效率低,本申请的连接桥5设计以及igbt模块7的封装设计从多方面优化了制造工艺,很大程度上提高了封装效率和良率,一定程度上降低了产品成本。从应用的角度,此igbt模块7的封装的可靠性也大大提高。

四、连接桥5上通孔501及u型开口502的设计,加强了与芯片和散热板4的焊接牢固性。

五、igbt芯片正面焊接了三个连接桥5,其焊接面分布在芯片的上方、左下和右下区域,此设计不仅增加了连接桥5与芯片的接触面积,减小了接触电阻,而且在芯片发热时有助于热量的均匀分布,避免芯片因某区域温度过高而失效。

以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1