半导体电源转换器件的具有正电阻温度系数(PTC)的栅极网络的制作方法

文档序号:19878168发布日期:2020-02-08 06:39阅读:401来源:国知局
半导体电源转换器件的具有正电阻温度系数(PTC)的栅极网络的制作方法

本文公开的主题总体上涉及半导体功率转换器件,而更具体而言,涉及碳化硅(sic)功率转换器件。



背景技术:

功率转换系统被广泛用于整个现代电力系统中而将电力从一种形式转换成另一种形式以供负载消耗。许多电力电子系统在此功率转换过程中会利用各种半导体器件和组件,如晶闸管、二极管和各种类型的晶体管(例如,金属-氧化物-半导体场效应晶体管(mosfet)、绝缘栅极双极晶体管(igbt)和其他合适的晶体管)。较大的功率转换系统能够包括多个协同运行而转换电功率的功率转换器件(例如,排布设置成功率模块)。

栅极电阻能够极大地影响sic功率转换器件的性能,如sicmosfet和sicigbt功率转换器件。通常而言,此类器件经过设计而具有低栅极电阻,才能实现快速开关时间和低开关损耗。此外,当所述器件关闭时,sic功率转换器件的峰值漏源电压可能会过冲并暂时超过该器件的额定或最大电压(v最大),这能够给所述功率转换器件以及功率模块的其它组件引起应力。尽管能够使用外部电阻器(例如,独立的、表面安装的或通过芯片的电阻器)修改电源转换器件的外部栅极电阻而减少电压过冲并避免或抑制振荡,但此类外部电阻器通常会增加所述功率模块的成本和复杂性,增加器件的开关损耗,并消耗所述器件包装内宝贵的有限空间。

另外,与sic功率转换器件的si对应物不同,sic功率转换器件通常在器件工作期间随着半导体管芯表面的温度(也称为结温(tj))升高而呈现跨导增加。当sic功率转换器件进行开关时,这种增加的跨导会导致相对更快的开关瞬变(例如,更快的导通时间)以及每单位时间电压和电流的更大变化。因此,在比其他功率转换器件更高的温度下操作的功率转换器件趋向于在开关瞬变期间处理并传导更多的电流,当模块动态失衡时,这会导致功率转换器件产生应力。



技术实现要素:

在一个实施方式中,碳化硅(sic)功率转换器件包括栅极网络,该栅极网络具有多个设置于所述sic功率转换器件的有源区域中的sic金属-氧化物-半导体-基(mos-基)晶体管器件单元的栅极电极;和栅极焊盘,设置于sic功率转换器件的栅极焊盘总线区域中。该栅极网络还包括设置于sic功率转换器件的栅极焊盘总线区域中的栅极总线,其中该栅极总线延伸并电连接于栅极焊盘和sic功率转换器件的有源区域中的至少一部分的多个栅极电极之间。该栅极网络的栅极焊盘、栅极总线、多个栅极电极或它们的组合中的至少一部分具有的正电阻温度系数大于约每摄氏度百万分之2000(ppm/℃)。

在另一个实施方式中,一种方法包括在碳化硅(sic)功率转换器件的半导体层的表面上形成栅极网络,其中该栅极网络具有多个sic金属-氧化物-半导体晶体管-基(mos-基)晶体管器件单元的多个栅极电极,设置于sic功率转换器件的有源区域中;栅极焊盘,设置于sic功率转换器件的栅极焊盘总线区域中,电连接至多个栅极电极中的每一个。至少一部分栅极网络具有大于约每摄氏度百万分之2000(ppm/℃)的正电阻温度系数。

在另一个实施方式中,一种碳化硅(sic)功率转换器件,包括有源区域,该有源区域具有设置于有源区域不同部分中的各自多个sic金属-氧化物-半导体-基(mos-基)晶体管器件单元的多个栅极电极。该器件包括栅极焊盘总线区域,其具有包括与集成电阻器网络相邻设置的栅极金属接触区的栅极焊盘;和第一栅极总线,延伸于栅极焊盘和器件的有源区域的第一部分中的多个栅极电极的第一部分之间。多个栅极电极的第一部分经由集成电阻器网络的第一部分和第一栅总线电连接至栅极金属接触区,而器件的有源区域的第二部分中的多个栅极电极的第二部分经由集成电阻器网络的第二部分电连接至栅金属接触区。集成电阻器网络的第一部分的电阻值与集成电阻器网络的第二部分的电阻值实质上不同。另外,多个栅极电极、栅极焊盘、第一栅极总线或它们的组合中的至少一部分具有大于约每摄氏度百万分之2000(ppm/℃)的正电阻温度系数。

附图说明

当参考附图阅读以下详细描述时,将会更好地理解本公开的这些和其他特征、方面和优点,其中在整个附图中,相同的字符表示相同的部件,其中:

图1是根据本方法的实施方式的功率转换器件一部分的俯视图,该功率转换器件包括具有多个mosfet器件单元的有源区域,并包括具有在其有源区域中电连接至器件单元的栅极电极的栅极焊盘的栅极网络,其中至少一部分栅极网络具有正的电阻温度系数(ptc);

图2是根据本技术的实施方式用于制作图1的功率转换器件的一部分工艺过程的流程图;

图3是根据本方法的实施方式在图2的制作工艺过程开始时的示例性功率转换器件的表面的俯视图;

图4是根据本方法的实施方式在器件的有源区域和栅极焊盘总线区域的各部分之上沉积介电层之后的图3所示的功率转换器件的表面的俯视图;

图5是根据本方法的实施方式在形成具有ptc的栅极网络之后的图4所示的功率转换器件的表面的俯视图;

图6是根据本方法的实施方式在器件表面上方形成电介质层,并随后选择性地蚀刻器件的表面而在栅极焊盘总线区域中形成栅极总线区,以及暴露有源区域内的多个器件单元的体/源接触区之后的图5所示的功率转换器件的表面的俯视图;

图7是根据本方法的实施方式在器件的栅极焊盘总线区域中沉积栅极焊盘金属栅极总线金属之后,以及在器件的有源区域中沉积源极金属之后的图6所示的功率转换器件的表面的俯视图;

图8a和图8b是根据本方法的实施方式的图7所示的功率转换器件分别沿线1-1和2-2截取的截面图;

图9a是根据本方法的实施方式包括二极管和具有具有ptc的栅极网络的功率转换器件(即,sicmosfet功率转换器件)的功率转换模块的一部分电路的示意图,其中功率转换器件正在关闭;

图9b是根据本方法的实施方式对应于图9a所示电路的功率转换器件关断的栅极电压相对于时间的曲线图;

图10a和10b是根据本方法的实施方式图示说明图9所示具有在特定(恒定)温度下能够实现不同的总等效串联栅极电阻(rg)的具有不同栅极网络的功率转换器件的电路的实施方式的mosfet关断波形的曲线图。

图11a是根据本方法的实施方式的图9a电路的功率转换器件接通的部分的示意图。

图11b是根据本方法的实施方式的图9a所示电路的功率转换器件导通时的栅极电压相对于时间的曲线图;

图12a和12b是根据本方法的实施方式图示说明图11中所示具有在特定(恒定)温度下能够实现不同的总等效串联栅极电阻(rg)的具有不同栅极网络的功率转换器件的电路的实施方式的二极管关断波形的曲线图;

图13是根据本方法的实施方式图示说明具有栅极网络的功率转换器件作为温度的函数的rg(在25℃下归一化为rg)的曲线图;

图14是根据本方法的实施方式同时指示都作为rg(以任意单位)的函数的电压过冲(%)和开关损耗(以任意单位)的曲线图;和

图15是根据本方法的实施方式包含具有ptc的栅极网络的功率转换器件的俯视图,其中栅极网络的栅极焊盘还包括具有多个具有至少两个不同的各自的电阻值的集成电阻器的集成电阻器网络。

具体实施方式

以下将描述一个或多个具体实施方式。在致力于提供对这些实施方式的简要描述时,本说明书中并未描述实际实施方式的所有特征。应当理解的是,在任何此类实际实施方式的开发中,正如在任何工程或设计项目中,都必须做出许多专门对于实施方式的决策,才能实现开发人员的特定目标,如遵守系统相关和业务相关的约束,这可能因一个实施方式与另一实施方式而异。此外,应当理解的是,这种开发努力可能是复杂而耗时的,但对于受益于本公开的普通技术人员而言,这仍将是设计、制作和制造的例行工作。

除非另有定义,否则本文中使用的技术和科学术语具有与本公开所属领域的普通技术人员通常所理解的相同含义。正如本文中所用,术语“第一”、“第二”等不表示任何顺序,数量或重要性,而是用于将一个要素与另一个要素区分开。同样,当介绍本公开的各种实施方式的要素时,冠词“一”、“一个”和“该个”旨在表示存在一个或多个要素。术语“包括”、“包含”和“具有”旨在是包括性的,并且是指除所列要素之外,可能还有其他要素。如果公开范围,则涉及相同组分或属性的所有范围的端点均包括在内并能够独立组合。与数量结合使用的修饰语“约”包括所陈述的值,并具有上下文所指示的含义(例如,包括过程变化的程度或与具体数量的测量相关的误差)。

正如本文所用,术语“层”是指以连续或不连续的方式设置于至少一部分下层表面之上的材料。此外,术语“层”并不一定意味着所设置的材料的厚度均匀,并且所设置的材料可以具有均匀或可变的厚度,除非另有说明。此外,除非上下文另外明确指出,否则本文所用的术语“一层”是指单层或多层。此外,正如本文所用,除非另外专门指出,否则短语“设置于...上”是指直接彼此接触或通过在其间具有中间层而间接接触的层。正如本文所用,术语“相邻”,“直接在...上”,“直接在…上方”,“直接在…下”是指连续设置并彼此直接接触的两个层或特征。相对而言,术语“在……上”,“在……上方”,“在……下方”描述了层/区域彼此之间的相对位置而不一定要求两个层或特征连续设置或彼此直接接触。正如本文所用,术语“顶部”或“上部”是指距基底层相对最远的具体特征。

正如本文中所用,“栅极网络”是指功率转换器件在栅极焊盘金属和多个有源器件单元之间的电路径的部分的组件。因此,栅极网络可以包括,例如,功率转换器件的栅极焊盘(可以具有集成电阻器网络,如下)、栅极总线和栅极点击。术语“正电阻温度系数(ptc)”在本文中也称为正电阻温度系数(正tcr),在本文中用于描述在特定温度范围内电阻率随温度升高而升高并随温度降低而降低的器件组件和材料。材料的电阻温度系数具有的单位为每摄氏度百万分之一(ppm/℃),并根据以下方程计算:

方程1.

其中r(t)是材料在特定温度(t)下的电阻,而thigh和tlow代表材料改变电阻的温度范围。正如本文所用,“rg”表示并是指功率转换器件的晶体管栅极的总等效串联电阻。应当理解的是,在某些实施方式中,也可能存在与rg不同并且其值可以为零或更大的外部电阻分量(即,rg-外)。

正如上所述,sic功率转换器件(例如,sicmosfet和sicigbt)通常设计成具有低栅极电阻而实现快速开关和低开关损耗。然而,目前人们认识到,对于sic功率转换器件,随着栅极电阻的减小,电压过冲会变得更加明显,并且这可能不期望地增加开关损耗,引起的振荡和过冲会导致半导体模块或其他系统元件故障。此外,正如上所述,与si功率转换器件不同,sic功率转换器件通常会随着结温(tj)的增加而呈现出跨导增加,从而产生相对更快的开关瞬变(例如,更快的导通时间)以及当sic功率转换器件在相对较高的温度下开关时每单位时间更显著的电压和电流变化。

考虑到前述内容,本实施方式涉及包括具有正电阻温度系数(ptc)的栅极网络的半导体功率转换器件(例如,sicmosfet和sicigbt)。所公开的栅极网络使功率转换器件能够在功率转换器件的典型操作温度范围内(例如,在约25℃~约150℃之间)具有可变的总等效串联栅极电阻(rg)。正如以下详细描述,在某些实施方式中,所公开的栅极网络通常与附近的器件单元热接近,并能够响应于这些单元的结温的变化而改变电阻率。正如下所述,栅极网络的实施方式设计成具有合适的电阻率,才能确保器件单元的峰值电压保持低于最大额定电压(v最大),避免振铃、芯片间振荡,并降低器件单元在普通工作温度范围内的开关损耗。此外,相对于不具有正电阻温度系数的栅极网络,所公开的栅极网络不需要额外的加工处理步骤进行实施。

考虑到前述内容,图1图示说明了功率转换器件12(例如,具有sic外延半导体层10的sic功率转换器件)的实施方式的一部分的俯视图。器件12包括的栅极焊盘总线区域14(由虚线轮廓表示)具有栅极焊盘16和栅极总线18(例如,栅极总线18a和18b)。所示的器件12还包括有源区域20,该有源区域20是栅极焊盘总线区域14的虚线轮廓之外的区域。所示的有源区域20包括的多个器件单元22(例如,条带化的mosfet器件单元22)设置于栅极焊盘总线区域14的相对侧上。应当理解的是,尽管本文在示出的条带化mosfet器件单元22的上下文中讨论了本技术,但本技术可以适用于其他类型的半导体器件结构,如二极管、晶闸管、晶体管(例如,绝缘栅极双极晶体管(igbt),结型场效应晶体管(jfet),金属半导体场效应晶体管(mesfet)等)或任何其他利用使用任何类型的有源单元几何形状(例如,正方形,条带,六边形等)的栅极电极的合适器件。另外,本方法能够适用于其他类型的材料系统(例如,硅(si),锗(ge),氮化铝(aln),氮化镓(gan),砷化镓(gaas),金刚石(c),或任何其他合适的宽带隙半导体)。本领域技术人员将认识到,出于举例说明性目的,图1省略了包括于本公开技术的实际实施方式中的器件12的某些特征(例如,某些栅极电极,栅极电介质,层间电介质,源金属,终端,封装),下面将更详细地讨论其中的一些。

图1所示的条带化mosfet器件单元22包括体/源极接触区24(例如,公共接触)、源极区26、沟道区28和与半导体层10的表面32相邻设置的结场效应晶体管(jfet)区30。而且,尽管图1中仅一部分mosfet单元22显示出包括栅极电极34而允许更好地观察半导体层10,但在功率转换器件12的实际实施方式中,所有器件单元22通常将包括至少部分设置于半导体层10的表面32上的基本上所有源极区域26、沟道区域28和结型场效应晶体管(jfet)区域30之上的各自栅极电极34。可以注意到,关于图8a和8b,以下讨论了示例性功率转换器件12的截面视图,并提供了关于这些器件单元22的结构的附加细节。

如图1所示,所示功率转换器件12的栅极网络33包括栅极焊盘16,栅极总线18和栅极电极34,其中至少一部分栅极网络33具有的ptc在特定温度范围(例如,25~150℃)内大于特定量(例如,大于2000ppm/℃)。所示的栅极焊盘16包括栅极金属接触区36。正如以下参照图15的讨论,在其他实施方式中,栅极焊盘16还可以包括与栅极金属接触区域36相邻设置的集成电阻器网络。栅极焊盘金属(图1中未示出)直接设置于栅极金属接触区域36上方,并且经由或通过栅极焊盘16和栅极总线18将其压焊(例如,经由线焊38)于外部栅极连接40,外部栅极连接40提供合适的栅极偏置而操作功率转换器件12的栅极电极34。因此,当通过外部栅极连接40将合适的栅极电压脉冲施加到栅极金属接触区域36时,瞬态电流通常流过栅极网络33(例如,流过栅极焊盘16、栅极总线18并沿着器件单元22的栅极电极34),如箭头37所示。

正如所述,至少一部分所示的栅极网络33具有正电阻温度系数(ptc)。更具体而言,对于所示的实施方式,栅焊盘16和栅极电极34均由ptc材料制成并表现出ptc特性。在其他实施方式中,功率转换器件12可以包括栅极网络33,其中栅极焊盘16、栅极总线18或栅极电极34中的仅一个由ptc材料制成和/或显示出ptc特性。可以理解的是,在某些实施方式中,虽然栅极网络33的其他部分(例如,栅极金属接触区36,总线18)通常可以由与栅极网络33的其余部分相同的材料制成,但ptc特性当将金属(例如,栅极焊盘金属,栅极总线金属)直接沉积于这些区域上时,可能大大抑制这些区域中的ptc性能。在其他实施方式中,总线18可以不包括这样的金属层,而因此,除了栅极焊盘16和栅极电极34之外(或作为其替代),可以具有ptc。

考虑到前述内容,图2是根据本技术的实施方式图示说明用于制作如图1所示的包含具有ptc的栅极网络33的功率转换器件12的工艺过程50的一部分或子集的实施方式的流程图。而且,所举例说明的工艺过程50的整个描述参考图3-7而提供在不同制作阶段的示例性半导体功率转换器件12的俯视表面视图。所示工艺过程50开始于制作(框52)半导体功率转换器件12的半导体层10。例如,图3图示说明了功率转换器件12的一个实施方式的半导体层10(例如,sic外延层)的表面32。所示器件10的有源区域20包括体/源接触区24、源区26、沟道区28和多个部分形成的器件单元22的jfet区30,所有都与半导体层10的表面32相邻设置。正如可以理解的是,器件单元22的这些区域通常经由半导体层10的连续掩模和掺杂而形成和限定。此外,可以注意到,jfet区域30和源极区域26具有第一电导率类型(例如,n-型或p-型),而体/源极接触区域24和阱/沟道区28具有与第一电导率类型相反的第二导电类型(例如,n-型或p-型)。另外,像区域24和28一样,栅极焊盘总线区域14包括第二电导率类型的植入区域46,如图3所示。

图2中所示的工艺过程50以在半导体层10的表面32上(例如,在其之上或上方)形成(框54)介电层而继续。图4图示说明了图3的功率转换器件12的顶表面68。在图3中,有源区域20基本上被栅极电介质层70覆盖。另外,器件12的栅极焊盘总线区域14包括的栅极焊盘区域72和栅极总线区域74(例如,栅极总线区域74a和74b)具有比栅极电介质层70基本上更厚(例如,沿z轴厚5x-20x)的场氧化物层76。例如,在单独氧化物生长或沉积步骤期间可以形成栅极电介质层70和场氧化物层76。

返回参照图2,所示的工艺过程50继续于使用ptc材料形成(框56)功率转换器件12的栅极网络33。例如,这可以包括在功率转换器件的有源区域20中形成栅极电极34,并在器件12的栅极焊盘总线区域14中形成栅极焊盘16和栅极总线18。在某些实施方式中,栅极网络33的一些或全部(例如,栅极焊盘16、栅极总线18和栅极电极34的一些或全部)可以由相同的ptc材料形成。例如,图5图示说明了在形成包括栅极电极34、栅极焊盘16和栅极总线18(例如,栅极总线18a和18b)的栅极网络33之后的功率转换器件12的表面80。更具体而言,栅极电极34直接沉积于器件12的有源区域20中的栅极介电层70上,并且栅焊盘16和栅极总线18(例如,栅总线18a和18b)直接沉积于器件12的部分栅极焊盘总线区域14内的场氧化物层76(如图4所示)。

对于图5所示的实施方式,包括栅极电极34、栅焊盘16和栅总线18的栅极网络33由至少一种低阻抗栅极材料82制成,该低阻抗栅极材料82具有的正温度系数电阻(ptc)大于约2000ppm/℃。例如,栅极材料82可以是高掺杂多晶硅,其直接设置于金属硅化物(例如,硅化钼(mosi2),硅化钽(tasi2),硅化钨(wsi2),硅化钴(cosi2),硅化镍(nisi2),硅化钛(tisi2))层之下。即,在某些实施方式中,栅极网络33(例如,栅极电极34,栅极焊盘16和栅极总线18)全部由相同的栅极材料82制成,该栅极材料包括的多晶硅层(例如,n-掺杂多晶si)设置于金属硅化物层(例如,tasi2)之下(例如,在下方或直接之下)。在某些实施方式中,仅一部分栅极焊盘16可以具有大于约2000ppm/℃的ptc,并且栅极总线18和/或栅极电极34可以具有基本更低的ptc(例如,小于2000ppm/℃,小于1500ppm/℃,小于1000ppm/℃),或可能无法验证ptc特性。在某些实施方式中,形成具有上述ptc的栅极焊盘16、栅极总线18和/或栅极电极34的栅极材料82也可以在25℃下具有约2欧姆/平方(ohm/square)~约50欧姆/平方(例如,约3欧姆/平方~约6欧姆/平方)的薄层电阻。此外,在某些实施方式中,栅焊盘16和栅极电极34可以具有基本相同的薄层电阻。

在某些实施方式中,首先可以在图4所示的器件12的表面68的大部分上沉积栅极材料82,而随后可以进行选择性蚀刻而在器件的表面80上形成栅极网络33,如图5所示。在图5中,栅极网络33的ptc(例如,栅极焊盘16、栅极总线18、栅极电极34的ptc)由电阻器符号81示意性地表示。对于栅极电极34表现出ptc特性的实施方式,由于栅极网络33位于半导体层的绝大部分表面积的上方,则栅极网络33基本位于所有器件单元22附近(例如,在其附近,与之热近邻)。因此,所公开的栅极网络33的各个部分(例如,各个栅极电极34)能够响应于附近器件单元22的结温变化而独立地改变电阻率。另外,正如以下关于图15的陈述,在某些实施方式中,栅极焊盘16可以另外包括由栅极材料82连同栅极网络33的其余部分一起制成的集成电阻器网络。

通常使用掩模/光刻/植入/蚀刻工艺方法制成栅极网络33。在某些实施方式中,这可能涉及两步沉积工艺方法,在这种工艺方法中首先将高掺杂多晶硅(例如,n+或p+掺杂)沉积于表面80上(例如,至厚度约2500~约4000埃),然后沉积硅化物层(例如,至约1500~4000埃的厚度)而形成硅化物多晶si层,随后对其进行图案化并蚀刻而形成器件12的栅极网络33(例如,栅极焊盘16,栅极总线18和栅极电极34)。如所述,所公开的栅极网络33确保器件峰值电压保持于最大电压(v最大)以下,并在一定范围的典型结温(例如,20~150℃或175℃)内降低器件的开关损耗,而无需额外的制造步骤,也无需使用外部芯片电阻器。

返回参照图2,所示的工艺过程50以在功率转换器件12的绝大部分表面上形成(框60)电介质层而继续。在某些实施方式中,在框60中沉积的电介质层可以被称为层间电介质层(ild)。随后,可以选择性蚀刻功率转换器件12的表面(框62)而暴露出栅极焊盘16的栅极金属接触区域36和器件的栅极焊盘总线区域14内的栅极总线18的栅极总线金属接触区91,并暴露出器件12的有源区域20中的器件单元22的体/源极接触区24。例如,图6图示说明了在执行框60和62中阐述的步骤之后功率转换器件12的表面83的实例。图6所示的器件12的表面83包括的ild92设置于器件12的绝大部分表面上(例如,栅极电极34,栅极总线18,栅极焊盘16)。此外,在图6中,已经选择性地去除了部分电介质(例如,栅极电介质层70)而暴露器件12的有源区域20中的器件单元22的体/源接触区域24,以用于后续源金属化。另外,部分ild92在器件12的栅极焊盘总线区域14中进行蚀刻而形成暴露出栅极焊盘16的栅极金属接触区域36的栅极通孔86,并形成暴露出栅极总线18的栅极总线金属接触区域91的总线通孔88,用于随后的金属化。

返回参照图2,所示的工艺过程50以在有源区域中的多个条带化器件单元22的体/源极接触区24上方沉积(框64)源极金属,和在栅极焊盘16的金属接触区38上方直接沉积栅极焊盘金属78以及在功率转换器件12的栅极焊盘总线区域14中,在栅极焊盘16的栅极总线金属接触区域91上方沉积栅极总线金属79而结束。例如,在某些实施方式中,一种或多种金属(例如,铝)可以沉积(例如,蒸发,溅射,通过化学气相沉积法沉积)于图6所示的器件12的绝大部分表面83上,而使框62中暴露的器件12的表面83的部分与沉积的金属直接接触。随后,正如图7中的设备12的表面93所示,沉积的金属层94进行选择性蚀刻而形成设置于器件的栅极焊盘总线区域14内的栅极焊盘金属78并使其电绝缘于设置于器件12的有源区域20中的源极金属98。另外,沉积的金属层94进行选择性蚀刻而将设置于栅极焊盘16上方的栅极焊盘金属78电绝缘于设置于栅极总线18上方的栅极总线金属79。可以理解的是,栅极总线金属79降低了栅极总线18的阻抗。正如图7所示,栅极焊盘金属78经由线焊38电连接于外部栅极连接40,而源极金属98经由线焊102电连接至外部源极连接100,而有助于功率转换器件12运行。

图8a图示说明了功率转换器件12的实施方式沿1-1线截取的截面视图。更具体而言,图8a中的器件12的横截面视图图示说明的多个器件单元22包括体/源极接触区24、源极区26、沟道区28(部分阱区104)和jfet区30,如以上所述。另外,所示的器件12包括的栅极电极34通过栅介电层70与部分源极区26、沟道区28和jfet区30分隔开,并且通过ild92与源极金属98分隔开。所示的源极金属98包括直接处于体/源极接触区域24上方的第一部分98a(例如,接触部分98a)和直接设置于第一部分98a上方的第二部分98b。图8a进一步图示说明了半导体层10设置于基底层110上方(例如,直接处于基底层110上)。所示的器件12还包括沉积于基底层110的表面上以与半导体层10相对的漏极金属112。应该注意的是,存在与通过ild92连接至源极金属98的栅极电极34和通过栅电介质70连接至下层半导体区相关的电容,并且这充当开关瞬变期间进行充电和放电的电容负载。

图8b图示说明了图7的功率转换器件12的实施方式取而代之地沿2-2线截取的另一横截面视图。更具体而言,图8b的截面视图图示说明了有源区域20和器件的栅极焊盘总线区14之间的一部分边界。因此,图8b图示说明了器件单元22从有源区域20延伸并物理电连接至栅极焊盘16的栅极电极34(未示出),全部由具有ptc(例如,大于约2000ppm/℃)的相同栅极材料82形成。另外,栅极通孔86在ild92中提供开口,使栅极焊盘金属78能够直接接触栅极焊盘16的栅极金属接触区36。因此,所示的栅极网络33的瞬态栅极电流(或栅极电荷)流路包括栅极焊盘金属78、栅极焊盘16和栅极电极34。可以注意到,在某些实施方式的器件12中,许多(例如,数十或数百)mosfet单元22可以具有的栅极电极34如图8b所示直接电连接至栅极焊盘16。

正如上所述,目前人们公认的是,对于sic功率转换器件,随着rg的减小和结温(tj)增大,电压过冲会变得更加明显,这会不良增加开关损耗,并给功率转换器件和其他系统组件带来应力,这可能会导致早期破坏性故障。正如上所述,栅极网络33具有ptc,而因此设计成提供随tj适当变化的电阻,以确保器件单元峰值电压在器件的预期工作结温的整个范围内保持低于预定的最大电压值(即v最大)。例如,基于功率转换器件12的正常(例如,额定)运行期间观察到的温度,从预定的t低(例如,20℃,25℃,80℃)到预定的t高(例如,150℃,175℃),如下所述。另外,由于栅极网络33的栅极材料82的电阻随着结温的降低而减小,因此当结温低于最大工作结温(即,tj<t高)时,这能够使栅极网络33显著降低器件12中的开关损耗,如下所述。正如下所述,栅极网络33的ptc行为提供了一种提高在高结温下的栅极电阻的反馈机制,同时相应地降低了电压过冲和与功率转换器件关断和二极管关断相关的振铃,但这样做的代价是在较高的结温下损耗增加。

图9a图示说明了功率模块122的电路120的一部分。正如本文中所用,“功率转换系统”是指设计成使用一个或多个功率模块将电功率从一种形式转换为另一种形式(例如,dc-至-ac,ac-至-dc,dc-至-dc)。如本文所用,“功率模块”是指功率转换系统的子系统,该子系统包括多个功率转换器件(例如,sicmosfet功率转换器件12)以及支撑组件(例如,二极管,电感器,电容器,电阻器等)而辅助其运行。所示的电路120包括一个实施方式的功率转换器件12(即,sicmosfet功率转换器件12),其具有具有ptc的栅极网络33,这使其能够在特定(恒定)温度下运行时实现特定(恒定)rg。在所示的电路120中,功率转换器件12直接电连接至电路120的第一vdc腿124,并且经由彼此并联电连接的电感器128和二极管130电连接至电路120的相对vdc腿126。如图9b中的栅极电压信号曲线136所示,图9a中所示的电路120与功率转换器件12的关断和二极管130的相应导通相关。因此,图9a包括箭头132,其表示初始电流,并包括箭头134,其表示负载电流,与所示电路120中的功率转换器件12的关断相关。

图10a和10b是图示说明图9a中所示的电路120中功率转换器件12具有的不同栅极网络33在特定(恒定)温度下能够实现不同的总等效串联栅极电阻(rg)的实施方式的mosfet关断波形的曲线图。更具体而言,图10a是图示说明电路120分别包括具有使之能够实现特定rg(即,r1<r2<r3<r4)的特定栅极网络33的功率转换器件12的四个实施方式的功率转换器件12的漏极电流相对于时间的曲线图140。图10b是图示说明图10a所示的电路120的相同四个实施方式的功率转换器件12的漏极-源极电压相对于时间的曲线图150,指出了由于rg值r1、r2、r3和r4增加而引起的电压过冲(vo-r1,vo-r2,vo-r3,vo-r4)。

对于图10a和图10b中所示的电路120的实施方式,随着rg的增加,功率转换器件12的关断瞬变变慢(例如,关断电流随时间的变化速率更慢,di/dt更小)。另外,由于功率转换器件12的关断能量损失(e关)通过在瞬变时间内的积分id(t)×vds(t)提供,则e关随着rg的增加而增加。随着rg减小,关断瞬变加快(例如,功率转换器件12的关断电流随时间的变化更快,di/dt更大)。另外,由于电压过冲基本上是由于电流换向回路的寄生电感(l寄生)和关断瞬变的乘积(即,l寄生×di/dt)所致,则电压过冲也随着rg的减小而增加。因此,对于本实施方式,所公开的栅极网络33设计成具有使之能够实现将峰值电压保持低于v最大而同时使e关断最小的rg的电阻率。例如,在图10a和10b中表示的rg值中,由r3指示的rg值将图9a的电路120中的功率转换器件12的峰值电压保持低于v最大而同时使关断瞬变的e关最小。

图11a是图9a所示的电路120的部分,其中如图11b中的电压曲线的曲线160所示,图11a中的电路120与二极管128的关断和器件单元22的相应导通相关联。除了以上讨论的元件之外,图11a所示的电路120还包括随着器件单元22导通并且二极管130关断时通过电路120的指示初始电流的箭头160、指示负载电流的箭头162和指示二极管恢复电流的箭头164。图12a和12b是图11a包括具有由于所公开的栅极网络33在特定(恒定)温度下具有更高或更低的电阻率所致的不同rg的器件单元22的电路120的不同实施方式的二极管导通波形。

更具体而言,图12a是图示说明电路120具有具有特定rg(即,r5<r6<r7<r8)的功率转换器件12的四个实施方式的(图11a的)二极管130的漏极电流相对于时间的曲线图170。图12b是图示说明图12a所示的电路120的相同四个实施方式的二极管130的阴极-阳极电压(或“反向”)相对于时间的曲线图180,这指示了由于rg值r5、r6、r7和r8增加而引起的电压过冲(vo-r5,vo-r6,vo-r7,vo-r8)。正如所示,随着rg增加,功率转换器件12的导通瞬变变慢(例如,二极管130的关断电流随时间的变化速率变慢)。随着rg减小,关断瞬变加快(例如,二极管130的关断电流随时间的变化更快),并且由于根据l寄生×di/dt的电流换向回路的寄生电感(l寄生)导致电压过冲增加。因此,对于本实施方式,栅极网络33的电阻率范围通常经过选择而使rg能够保持峰值电压低于v最大而同时使e关最小。例如,在图12a和12b中表示的rg值中,由r7指示的rg值将二极管130中的峰值电压保持低于v最大(例如,二极管130的额定电压)而同时使二极管130中的e关最小。通常可以注意到,图10a和图10b中所表示的r1、r2、r3和r4可以与图12a和12b中表示的r5、r6、r7和r8不相同。换句话说,可以理解的是,所公开的栅极网络33能够设计成在t低~t高的温度范围内具有特定的电阻率范围,才能基于如图10a和10b所示的器件单元22的关断波形和如图12a和12b所示的二极管130的关断波形二者都能够实现合适的rg。

图13是图示说明包括所公开的栅极网络33的功率转换器件12的实施方式的作为以摄氏度(℃)计的结温(即,tj)的函数的归一化rg(即25℃下的rg/rg)的曲线图190。由于栅极网络33的ptc特性和行为,rg随功率转换器件12的tj的增加而增加,而随着tj的减少而减少,正如曲线194所示。例如,在某些实施方式中,正如曲线194所示,随着tj在工作范围内增大或减小(例如,25℃的t低和150℃的t高之间的△t,正如虚线框192所示),rg响应温度变化增大或减小的幅度大于约25%。在某些实施方式中,图13中表示的器件12的实施方式的所公开的栅极网络33能够使rg在t低和t高之间增加约25%~约40%(例如,约30%~40%),而降低了开关损耗,正如所公开的内容。

对于本实施方式,栅极网络33具有由用于制造栅极网络的组件(例如,栅焊盘16,栅极电极34)的结构和材料决定的正电阻温度系数值(ptc)。例如,当栅极网络33由金属硅化物/多晶si层(例如,n+掺杂多晶硅上的tasi2)构成时,则金属硅化物层和多晶si层的相对厚度会影响栅极网络33的ptc值。例如,在某些实施方式中,栅极网络33具有大于约2000ppm/℃的ptc或ptc值。在某些实施方式中,栅极网络33的ptc或ptc值可以大于约2250ppm/℃(例如,处于约2400ppm/℃~3200ppm/℃之间)。相比之下,多晶si电阻器的ptc范围能够从负值(采用常规掺杂)到高达数百ppm/℃(采用退化掺杂)。因此,可以理解的是,某些公开的栅极材料82(例如,某些金属硅化物/多晶-si层)既提供了更低的薄层电阻值,又提供了比单独多晶si的ptc值大十倍或更高的ptc值。

图14是指示本方法的功率转换器件12的实施方式作为rg(以任意单位计)的函数的电压过冲(%)和开关损耗(以任意单位计)的双y-轴x-y曲线图200。曲线202表示功率转换器件12在工作范围的最低结温t低(例如,25℃)下的电压过冲,而曲线204表示器件12在工作范围的最大结温t高(例如,150℃)之下的电压过冲。类似地,曲线206表示器件12在工作范围的最小结温(t低)下的开关损耗,而曲线208表示器件12在工作范围的最大结温(t高)下的开关损耗。

考虑到前述内容,对照器件(例如,基本上类似于图1的功率转换器件12的功率转换器件,其中栅极网络不具有ptc)具有基本恒定的rg,正如虚线210所示,结温要么处于t低,要么处于t高。因此,对于对照功率转换器件(具有恒定的rg),用虚线212指示t低时的电压过冲,而用虚线214指示t高时的电压过冲(对应于v最大,即,器件的额定最大电压)。因此,对于对照功率转换器件(具有恒定的rg),t低时的开关损耗由虚线216指示,而t高时的开关损耗由虚线218指示。

考虑到这一点,对于本方法的实施方式,所公开的栅极网络33使之能够实现在结温低于t高(例如,t低~t高)rg降低的可变rg,如箭头220所示。即,因为栅极网络33的一个或多个组件具有ptc,则器件12的rg在t低时的最小rg(如虚线222所示)和t高时的最大rg(如虚线210所示)之间变化。可以注意到的是,对于图14所示的比较,本方法的功率转换器件12在t高时的rg(如虚线210所示)与具有恒定rg的对照功率转换器件的rg基本相同。因此,功率转换器件12的代表实施方式的t高时电压过冲和开关损耗与比较器件12的t高时电压过冲和开关损耗基本相同。换句话说,由虚线214指示的t高时电压过冲和由虚线218指示的t高时开关损耗都指示了本方法的功率转换器件12和在t高时运行时rg恒定的对照器件的电压过冲和开关损耗。因此,正如所示,在t低~t高的所有温度下,本方法的功率转换器件12和对照功率转换器件(具有恒定的rg)都将电压过冲保持低于最大允许电压过冲极限(例如,低于v最大)。

对于图14所示的本公开功率转换器件12的实施方式,t低时的电压过冲用虚线224表示,而t低时的开关损耗用虚线226表示。对于器件12的所示实施方式,低于t高的结温(tj)时的rg降低导致电压过冲相对于t低时的对照器件(%)稍微增加,如箭头228所示。然而,当tj<t高时的rg降低也会导致本方法的器件12中的开关损耗相对于t低时的对照器件大大降低,正如箭头230所示。换句话说,目前人们都认同,对于低于最大工作温度的所有结温(即,当tj<t高时)rg恒定的对照器件的开关速度将比实际所需的速度慢,从而导致更大的开关损耗。相对而言,本公开的栅极网络33使功率转换器件12的本实施方式能够在小于最大工作温度的所有结温时(即,当tj<t高时)更快地开关,从而降低了开关损耗。此外,对于本器件的实施方式,随着结温接近最高工作温度时(即,tj接近t高时),本公开的栅极材料82增加rg并减慢功率转换器件12的开关速度,使电压过冲最小化并拓展了器件12的安全工作区域。因此,当结温达到t高时,器件12的本公开的栅极网络33保持与对照功率转换器件相似的性能,而同时通过在结温低于t高时显著降低开关损耗证实了相对于对照功率转换器件的性能显著改进。。

应该进一步注意的是,在某些实施方式中,本技术能够与2017年5月18日提交的名称为“integratedgateresistorsforsemiconductorpowerconversiondevices”的共同待决美国专利申请no.15/599,119中公开的技术结合,该专利申请出于所有目的通过引用将其全部内容结合于本文中。综上所述,可以理解的是,在典型的半导体功率转换器件中,当将适当的电压脉冲施加到栅极焊盘时,更接近栅极焊盘(例如,具有距离栅极焊盘的较短电路径)的器件单元可能比距离栅极焊盘较远的器件单元响应(例如,激活或去激活,传导电流或阻断电流流动,导通或关断)更快,并且由此产生的传播延迟差异可能会在功率转换器件的电流/电压分布中产生不良定域化。

考虑到这一点,在某些实施方式中,除了上述的栅极网络之外,功率转换器件可以包括具有集成电阻器网络的栅极焊盘。该集成电阻器网络通常在设置于功率转换器件的不同区域中的器件单元的栅极金属接触区和栅极电极之间提供不同的电阻(例如,至少两个不同的电阻值)。集成电阻器网络包括多个集成电阻器,其中每个集成电阻器经过定制而具有会适当调节(例如,降低)具有经由栅极电连接至外部栅极连接的栅极电极的器件单元组的开关速度的各自电阻。因此,集成电阻器网络能够确保器件单元以同步方式运行(例如,传播延迟的差异最小),而不管它们相对于栅极焊盘的位置如何,同时避免了成本、复杂性和外部芯片电阻器的尺寸的增加。因此,目前人们公认,本公开的栅极材料能够制造集成电阻器网络和所公开的具有ptc特性的栅极网络的组件。例如,在某些实施方式中,功率转换器件的栅极网络可以包括具有集成电阻器网络的栅极焊盘,并还包括一个或多个证实ptc性能的组件(例如,栅极电极,栅极总线,栅极焊盘的各部分)。

通过具体的实例举例而言,图15是功率转换器件12的实施方式的表面的示意图,该功率转换器件12包括具有设置于区域a1、a2、a3和a4中的栅极电极(未示出)的器件单元。对于所示的实施方式,区域a1的器件单元的栅极电极经由栅极总线18a电连接至栅极焊盘16,区域a3的器件单元的栅极电极经由栅极总线18b电连接至栅极焊盘16,而区域a2和a4直接电连接至栅极焊盘16,正如上面关于图8b的讨论。此外,可以注意到的是,从设计前景而言,使栅极焊盘16偏心(即,不设置于器件12表面的中间)可能是有利的;然而,还可以注意到的是,如图15所示,偏心的栅极焊盘16证实了差异传播延迟更大,而没有本公开的集成电阻器网络190的受益。因此,应当理解的是,所公开的集成电阻器网络190使栅极焊盘16和栅极总线18的定位具有更大的自由度,而同时降低了功率转换器件12的器件单元22的差异传播延迟。

正如图15的放大部分所示,所示的实施方式的栅极焊盘16包括具有多个具有至少两个不同的相应电阻值的集成电阻器192(即,标记为集成电阻器r1,r2,r3和r4)的集成电阻器网络190。更具体而言,当具有ptc(例如,大于约2000ppm/℃)的栅极材料82进行沉积并图案化时(例如,图2的框56),在栅极焊盘总线区域14中的栅极材料82的其他部分被除去。这些蚀刻的部分194中断了栅极材料82的连续性,导致栅极焊盘16包括与栅极金属接触区域36相邻设置的集成电阻器网络190。每个集成电阻器r1、r2、r3和r4都包括一个或多个并联电连接的电阻器段198(例如,电阻路径198)或由其构成。另外,还可以理解的是,由于整个栅极网络33通常由具有ptc特性的栅极材料82制成,则栅极焊盘16的各部分(例如,电阻器段198,电阻器网络190的其余部分)、栅极电极或它们的组合在某些实施方式中可以表现出ptc特性。因此,在某些实施方式中,包括集成电阻器网络190的所公开的栅极网络33使设置于功率转换器件的不同区域中的器件单元能够以同步的方式运行,而同时还降低了在相对较低温度(tj<t高)下运行的器件单元的开关损耗,并确保器件单元峰值电压保持低于最大额定电压(v最大)。

本公开的技术效果包括半导体功率转换器件的制作,半导体功率转换器件包括栅极网络,其中栅极焊盘和/或栅极电极由具有正电阻温度系数(ptc,正tcr)的材料制成。所公开的ptc栅极材料的ptc特性在工作结温范围内(例如,约25℃的t低~约150℃的t高)提供可变的总等效串联栅极电阻(rg)。正如以下详细描述,所公开的栅极网络与功率转换器件的器件单元热邻近,并响应于附近的器件单元的结温的变化而改变电阻率。栅极网络的实施方式设计成具有确保器件单元峰值电压保持低于最大电压(v最大),尤其是在结温达到t高时,而同时在结温低于t高时降低器件单元的开关损耗的合适电阻率。另外,在某些实施方式中,功率转换器件可以另外具有包括具有多个经过定制而无视其相对于栅极焊盘的位置最小化功率转换器件的器件单元的传播延迟差异的集成电阻器的集成电阻器网络的栅极焊盘。

该书面描述使用了实例公开本发明,包括最佳模式,并且还使本领域的任何技术人员能够实践本发明,包括制造和使用任何器件或系统以及执行任何结合的方法。本发明的专利范围由权利要求书限定,并且可以包括本领域技术人员想到的其他实例。如果这样的其他实例具有与所述权利要求书的字面语言没有不同的结构元件,或如果它们包括与所述权利要求的字面语言没有实质性差异的等效结构元件,则这种其它实例旨在都包括于所述权利要求的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1