一种柔性线状阵列含硫电极的制备方法与流程

文档序号:17945939发布日期:2019-06-18 23:37阅读:213来源:国知局
一种柔性线状阵列含硫电极的制备方法与流程

本发明涉及柔性锂硫电池正极材料的制备方法,尤其涉及一种柔性线状阵列含硫电极的制备方法。



背景技术:

可穿戴设备是新型智能制造模式的重要发展方向,发展可穿戴设备,须研制轻质、柔性和超强续航能力的新型电源与之匹配。相较于平面柔性器件,一维线性结构具有多角度可弯曲的柔性,且易于编织,对机械应力及相应的形变具有潜在的适应性,因而线状柔性电池被认为是最具潜力的解决可穿戴电子设备的能源方案。

近年来线状或纤维状柔性储能器件发展迅速,包括线状超级电容器、线状锂离子电池、线状锂空气电池等。但由于常规锂电池材料容量较低(例如钴酸锂理论容量274mah/g,实际容量为140mah/g左右),因此输出能量密度较低,难以满足可穿戴电子设备的实际需求。因此,克服线状结构活性材料负载量少的限制,引入具有高能量密度且最具实用前景的新一代锂硫电池(理论比容量高达1675mah/g,能量密度可达2600wh/kg)进行线状锂硫电池的研究具有重要意义。

决定线状柔性锂硫电池性能的一个关键因素是高能量密度的硫正极材料的设计开发。然而现有的线状锂硫电池用硫正极面临导电性较差、多硫化物的过多溶解以及循环过程中硫电极的体积形变等问题。同时,线状锂硫电池用硫正极材料必须要考虑线状基体的曲率效应,曲率效应势必造成活性材料在其表面负载难度的增加和负载量的减少。

决定线状柔性锂硫电池性能的另一个关键因素是线状电极的柔韧性。碳纳米管(carbonnanotubes,cnt)和氧化石墨烯(graphemeoxide,go)具有优异的柔韧性和导电性,已被用于线状含硫电极中,包括利用定向排列的碳纳米管纤维作为集流体,负载介孔cmk-3/s制备的电缆状锂硫电池,利用湿法纺丝法制备出石墨烯(reducedgraphemeoxide,rgo)负载碳纳米管负载硫(rgo/cnt/s)超轻复合纤维电极,制备的纸状石墨烯负载硫(rgo/s)复合薄膜弯曲缠绕在锂线的表面设计成电缆型锂硫电池。尽管这些线状锂硫电池研究取得了一定进展,但电极集流体的制备过程复杂、成本高且耗时、柔韧性较低、其机械强度不易满足编织制造的要求。而参考线状超级电容器电极的制备方法,多采用在棉线上包覆cnts或导电金属纳米颗粒,再沉积或者包覆活性材料,此种方法并没有使电极的导电性得到质的提高,且覆盖的修饰材料极易脱落,并不适合反应时发生较大体积变化的电池的线状电极制备。



技术实现要素:

发明目的:针对以上问题,本发明提出一种工艺简单、一步快速且成本低的制备柔性线状阵列含硫电极的方法,能够实现对含硫活性材料高效组装负载,制备得到的线状阵列含硫电极兼具较好的柔韧性和导电性。

技术方案:本发明所述的柔性线状阵列含硫电极的制备方法,包括以下步骤:

s1:利用氧化还原法制备氧化石墨烯溶胶,即go溶胶;

s2:将go溶胶和na2s2o3·5h2o溶于蒸馏水中,或将go溶胶和na2s溶于蒸馏水中,磁力搅拌30min,得到前驱体溶液;其中,前驱体溶液中go的浓度为1~3mg/ml,na2s2o3·5h2o或na2s的浓度为0.1~0.3mol/l;浓度维持在合理的范围,保证离子较好的扩散和反应的进行;

s3:将前驱体溶液转移到含聚四氟乙烯内衬的不锈钢釜中,以纤维束为工作电极,以pt片为对电极,将工作电极和对电极浸入所述前驱体溶液中进行水热电沉积,在集热式磁力搅拌器中于100~200℃下控温搅拌,电沉积参数设置为:扫描电压为-1.5~2.5v,扫描速率10~50mv/s,扫描圈数10~30圈。合适的扫描电压区间和扫描速率,便利于氧化还原反应的顺利进行,增加扫描圈数保证电沉积的质量和分布。利用水热电沉积作用,纤维束的内部空隙及表面被石墨烯负载硫复合材料(即rgo/s复合材料)所紧密牢固覆盖,冷却室温后,对工作电极进行清洗,然后将纤维束在60℃下真空干燥12h,得到柔性线状阵列含硫电极。

所述纤维束可以为金属纤维束、碳纤维束、碳纳米管纤维束、导电高分子型纤维束等导电纤维束。为了增大水热电沉积的比表面积,提高镀层与集流体的结合力,使纤维束的表面及纤丝间被rgo/s复合材料紧密牢固覆盖,所述纤维束在进行水热电沉积之前,先用40%质量分数的hf酸刻蚀60min,取出洗涤干净、烘干备用。

rgo/s复合材料集高导电性、柔韧性、优异的限硫能力于一体,本发明综合利用了rgo/s复合材料在固硫和柔性两方面的功能,以及纤维束高度多孔的纤维结构和优异的机械性能,通过水热电沉积作用,在纤维束的内部空隙及表面包覆rgo/s复合材料,实现了具有优异力学性能与电化学性能的线状阵列柔性含硫电极的构筑。

有益效果:与现有技术相比,本发明的显著优点是:(1)采用高效便捷的水热电沉积技术构建良好柔韧性的含硫电极,合成工艺简便、快速,显著缩短了电极的开发周期,成本低;(2)直接在集流体上沉积石墨烯基含硫活性材料,解决了活性材料与集流体之间不易粘附的问题,尤其是在非平面型集流体上难于粘合的困难;(3)制备的线状柔性锂硫电池锂硫电池稳定循环100圈后,可逆放电容量仍可达到至238.3mah/g,具有较优异的电化学性能。

附图说明

图1为rgo/s复合材料的x射线衍射图谱;

图2为rgo/s复合材料的透射电镜图;

图3为柔性线状阵列含硫电极的光学图像;

图4为不锈钢纤维束和柔性线状阵列含硫电极的扫描电镜图;其中a表示不锈钢纤维束的扫描电镜图,b表示含硫电极的扫描电镜图;

图5为柔性线状阵列含硫电极在167.5ma/g电流密度下的充放电循环曲线。

具体实施方式

下面结合附图及实施例对本发明作进一步的说明。

实施例1

s1:go溶胶的制备

天然石墨片在硫酸和发烟硝酸混合物的作用下被氧化为石墨层间化合物;干燥后的石墨层间化合物粉末在1050℃的高温下热处理15s,获得膨胀石墨;得到的膨胀石墨进一步用硫酸和kmno4氧化24h,之后添加蒸馏水和h2o2,获得氧化石墨悬浊液,随后磁力搅拌30min,用稀盐酸进行洗涤和离心处理,再用去离子水清洗数次,直到ph值达到5~6,获得go溶胶以备稀释用。

s2:前驱体溶液的制备

取2.976gna2s2o3·5h2o和0.12ggo溶胶溶于120ml蒸馏水中,磁力搅拌30min,得到前驱体溶液。

s3:柔性线状阵列含硫电极的制备

将316l不锈钢纤维束在40%质量分数的hf酸中刻蚀60min,取出洗涤干净、烘干备用。将上述前驱体溶液转移到含聚四氟乙烯(ptfe)内衬的不锈钢釜中,以已处理的316l不锈钢纤维束为工作电极,pt片为对电极,置于集热式磁力搅拌器中180℃下控温搅拌。电化学工作站设置扫描电压范围-1.0~2.0v,扫描速率30mv/s,扫描圈数20圈。利用水热电沉积作用,不锈钢纤维束的内部空隙及表面被rgo/s复合材料所紧密牢固覆盖,冷却室温后,对工作电极进行清洗三次,最后将纤维束在60℃真空干燥12h,得到柔性线状阵列含硫电极。

实施例2

s1:go溶胶的制备

同实施例1。

s2:前驱体溶液的制备

取1.872gna2s和0.24ggo溶胶溶于120ml蒸馏水中,磁力搅拌30min,得到前驱体溶液。

s3:柔性线状阵列含硫电极的制备

将碳纤维束在40%质量分数的hf酸中刻蚀60min,取出洗涤干净、烘干备用。将上述前驱体溶液转移到含聚四氟乙烯内衬的不锈钢釜中,以已处理的碳纤维束为工作电极,pt片为对电极,置于集热式磁力搅拌器中100℃下控温搅拌。电化学工作站设置扫描电压范围-1.5~2.5v,扫描速率50mv/s,扫描圈数30圈。利用水热电沉积作用,碳纤维束的内部空隙及表面被rgo/s复合材料所紧密牢固覆盖,冷却室温后,对工作电极进行清洗三次,最后将纤维束在60℃真空干燥12h,得到柔性线状阵列含硫电极。

实施例3

s1:go溶胶的制备

同实施例1。

s2:前驱体溶液的制备

取2.808gna2s和0.36ggo溶胶溶于120ml蒸馏水中,磁力搅拌30min,得到前驱体溶液。

s3:柔性线状阵列含硫电极的制备

将碳纤维束在40%质量分数的hf酸中刻蚀60min,取出洗涤干净、烘干备用。将上述前驱体溶液转移到含聚四氟乙烯内衬的不锈钢釜中,以已处理的碳纤维束为工作电极,pt片为对电极,置于集热式磁力搅拌器中100℃下控温搅拌。电化学工作站设置扫描电压范围-1.5~2.0v,扫描速率10mv/s,扫描圈数10圈。利用水热电沉积作用,碳纤维束的内部空隙及表面被rgo/s复合材料所紧密牢固覆盖,冷却室温后,对工作电极进行清洗三次,最后将纤维束在60℃真空干燥12h,得到柔性线状阵列含硫电极。

实施例1的相关表征:

从制备得到的含硫电极上刮下一部分rgo/s复合材料,用于x射线衍射和透射电镜分析。

图1所示,为rgo/s复合材料的x射线衍射图。同时给出了s和rgo的x射线衍射图,rgo/s复合材料和s元素的衍射峰在相同位置(即23.02°,26.26°,27.65°和28.61°)具有高度的重合性,表明水热电沉积过程中成功地生成了s材料。另外由于rgo衍射峰强度相对于s的强度较弱,因此rgo/s复合材料中没有明显的rgo衍射峰。

图2为rgo/s复合材料的透射电镜图,从图中可看出,通过水热电沉积法制得的rgo/s复合材料具有良好的分散性,s粒子均匀分散在rgo中。

图3为该柔性线状阵列含硫电极的光学照片,通过调控可以制备不同长度的线状电极,同时电极可以经受较大幅度的弯折,表现出较好的柔韧性。

图4中的a和b图分别为不锈钢纤维束和柔性线状阵列含硫电极的扫描电镜图。从形貌对比很明显看出,在水热电沉积以及rgo良好柔韧性的共同作用下,rgo/s复合材料较好地沉积在316l不锈钢纤维束的高孔纤维结构和表面,形成一个致密稳定的含硫线状电极。

线状柔性锂硫电池的制备及电化学性能测试:将柔性线状阵列含硫电极和锂线匹配,分别作为锂硫电池的正极和负极,将1mol/l双(三氟甲烷磺酰)亚胺锂litfsi和1wt%lino3溶解在体积比为1:1的1,3-二氧戊环dol+乙二醇二甲醚dme的溶剂中,作为电解液,选取合适的附件封装制成线状柔性锂硫电池。将该线状柔性锂硫电池在0.1c(1c=1675ma/g)的充放电电流下,进行充放电循环测试。电性能测试结果见图5,锂硫电池稳定循环100圈后,可逆放电容量仍可达到至238.3mah/g,具有较优异的电化学性能。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1