半导体装置的制作方法

文档序号:24341494发布日期:2021-03-19 12:23阅读:50来源:国知局
半导体装置的制作方法

本发明实施例一般涉及半导体制造,更特别涉及采用离子注入的装置与其制造方法。



背景技术:

在半导体产业的最近发展中,采用鳍状场效晶体管取代平面晶体管。在鳍状场效晶体管中,晶体管通道实质上形成于大高宽比的结构(通常称作鳍状物)中。鳍状场效晶体管的栅极不只覆盖鳍状物的顶部,还覆盖鳍状物的侧部。此设置比平面晶体管具有多种优点,包括在相同效能下的可信度更高且更能控制通道反转。



技术实现要素:

在一实施例中,半导体装置包括晶体管以及与晶体管相邻的隔离区。晶体管具有通道区,通道区包含成分元素与多余原子,且成分元素属于元素周期表的一族,其中多余原子为氮,或属于元素周期表的该族。通道区中的多余原子的浓度介于约1019cm-3至约1021cm-3之间。隔离区亦含有多余原子,且隔离区中的多余原子的浓度介于约1020cm-3至约1021cm-3之间。

在一实施例中,半导体装置包括栅极,其中栅极的上侧宽度比栅极的下侧宽度大超过1nm,通道区,包含成分元素与多余原子,成分元素属于元素周期表的一族,而多余原子为氮或属于元素周期表的该族,以及通道区中的多余原子浓度介于约1019cm-3至约1021cm-3之间。

在一实施例中,鳍状场效晶体管包含的通道区包括的成分元素属于元素周期表的一族,且鳍状场效晶体管的制作方法包括:将通道遮罩结构置于鳍状物的第一部分上以覆盖鳍状物的第一部分,通道遮罩结构未覆盖鳍状物的第二部分,且鳍状物的第一部分包括通道区的至少一部分,进行氮或属于元素周期表的该族的元素的第一离子注入,以及退火第一离子注入。

附图说明

图1是鳍状场效晶体管的制造工艺的阶段中,包含两个鳍状场效晶体管的结构的选定单元的简化透视图。

图2a、图2b、图3a、图3b、图4a与图4b是鳍状场效晶体管的制造工艺的多种阶段中,选定的鳍状场效晶体管结构的简化剖视图。

图5a与图5b是鳍状场效晶体管的制造工艺的轻掺杂漏极工艺顺序之前的选定结构的简化剖视图。

图6a与图6b是p型轻掺杂漏极工艺顺序中的应变注入后的选定p型鳍状场效晶体管结构的简化剖视图。

图7是p型轻掺杂漏极工艺顺序中的应变注入后的p型鳍状场效晶体管结构中的应力分量平面图。

图8a与图8b是鳍状场效晶体管的制造工艺中使源极/漏极凹陷后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。

图9a与图9b是鳍状场效晶体管的制造工艺中沉积第一层间介电层后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。

图10a与图10b是鳍状场效晶体管的制造工艺中移除栅极堆叠后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。

图11a与图11b是鳍状场效晶体管的制造工艺中形成置换栅极后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。

图12a与图12b是鳍状场效晶体管的制造工艺中形成接点后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。

图13是一些实施例中,鳍状场效晶体管中的应变注入的注入参数的表格。

图14是一实施例中,应变注入方法的流程图。

图15是一实施例中,在轻掺杂漏极的阶段进行应变注入的方法的流程图。

附图标记说明:

a-a、b-b、c-c:剖线

110:鳍状物

120:基板

130:隔离区

140:虚置栅极堆叠

510:虚置栅极

520:氮化硅层

530:氧化物层

540:第一间隔物

550:通道区

560:通道长度方向

565、575:倾斜角度

570:鳍状物宽度方向

610:上侧鳍状物区

625:压缩应变

630:上侧隔离区

633、635、638:应变分量

640:上侧堆叠区

655:下侧鳍状物部分

710:角落

810:区域

820:凹陷水平

830:第二间隔物

840:自由完全鳍状物区

850:侧壁

910:源极/漏极结构

920:气隙

930:接点蚀刻停止层

940:第一层间介电层

1010:空洞

1020:顶部宽度

1030:底部宽度

1110:第二栅极介电层

1120:置换栅极

1210:第二层间介电层

1220:源极/漏极接点

1230:栅极接点

1240:上侧宽度

1250:下侧宽度

1400、1500:方法

1410、1420、1430、1510、1520、1530、1540、1550:步骤

具体实施方式

下述内容提供的不同实施例或实例可实施本发明的不同结构。下述特定构件、与配置的实施例是用以简化本发明内容而非局限本发明。举例来说,形成第一构件于第二构件上的叙述包含两者直接接触的实施例,或两者之间隔有其他额外构件而非直接接触的实施例。此外,本发明的多个实例可重复采用相同标号以求简洁,但多种实施例及/或设置中具有相同标号的元件并不必然具有相同的对应关系。

此外,空间性的相对用语如“下方”、“其下”、“较下方”、“上方”、“较上方”、或类似用语可用于简化说明某一元件与另一元件在图示中的相对关系。空间性的相对用语可延伸至以其他方向使用的元件,而非局限于图示方向。元件亦可转动90°或其他角度,因此方向性用语仅用以说明图示中的方向。

此处的用语“iv族半导体元素”实质上为元素周期表的ivb族的单一元素所组成的任何半导体元素,比如硅或锗。同样地,用语“iv族半导体化合物”实质上为元素周期表的iva族元素组成的任何半导体化合物,包括硅锗、碳化硅锗、或碳化硅,不论化合物的组成固定或随位置变化。此外,用语“iii-v族半导体化合物”实质上为元素周期表的iiia族和va族的元素所组成的任何半导体化合物,包括砷化镓、砷化铟镓、或类似物。另外,化学式si1-xgex表示纯或实质上纯硅,纯或实质上纯锗、或任何组成的硅锗,不论其组成固定或随位置变化。在锗含量x为零的情况下,si1-xgex为纯硅或实质上纯硅。在锗含量x为1或100%时,si1-xgex为纯锗或实质上纯锗。

此处的用语“p-finfet”与“n-finfet”分别为n型与p型鳍状场效晶体管。此外,用语“源极-漏极”旨在表示源极或漏极。举例来说,源极-漏极区作为或打算作为晶体管的源极或漏极的区域。用语“注入物种”指的是注入元素,而用语“注入气体”指的是离子注入机中用于注入物种的气体。举例来说,注入气体四氟化硅可用于注入注入物种si。应变或应力可由附图中的箭头表示。然而箭头的长度或宽度并非用于表示应力或应变的绝对或相对强度,除非在说明书中另外明确说明。

在半导体制造工艺中,可在离子注入步骤后进行一或多道退火步骤。此处在离子注入步骤之后,比任何其他退火步骤更早发生的退火步骤,可视作对离子注入进行退火。

此处公开的一些实施例说明鳍状场效晶体管的制造工艺,但公开的工艺亦可应用于其他结构。图1是鳍状场效晶体管的制造工艺的阶段中,含有两个鳍状场效晶体管通道的结构的选定单元的简化透视图。在图1所示的制造工艺的阶段中,鳍状物110形成于基板120上,且隔离区130使鳍状物110彼此分隔并与其他鳍状物(未图示)分隔。此外,虚置栅极堆叠140沿着鳍状物110的侧壁并位于鳍状物110的上表面上。两个晶体管通道区可形成于鳍状物110被虚置栅极堆叠140覆盖的部分中。如图1所示,任何制造工艺阶段中的剖线a-a沿着垂直于基板120的平面。类似地,任何制造工艺阶段中的剖线b-b沿着垂直于基板120的平面。类似地,任何制造工艺阶段中的剖线c-c沿着垂直于基板120的平面。图2a至6a与8a至12a参考图1所示的剖线a-a,而图2b至6b与8b至12b参考图1所示的剖线b-b。

图2a至4b是鳍状场效晶体管的制造工艺的多种阶段中,选定的鳍状场效晶体管结构的简化剖视图。如图2a与2b所示,制造工艺的例子由基板120开始。基板120可为基体半导体基板、绝缘层上半导体基板、绝缘基板、或类似物。机体半导体基板可为硅或半导体化合物,其可掺杂或未掺杂。绝缘层上半导体基板可包含半导体材料层形成于绝缘层上,绝缘层可为埋置氧化物层、氧化硅层、或类似物,且绝缘层可位于下方基板如硅基板或玻璃基板上。

在图2a与2b所示的制造工艺中,鳍状物110所用的材料层可位于基板120上。在多种例子中,鳍状物110所用的材料可包含一或多个半导体层沉积于基板120上,且沉积方法可为外延。鳍状物110所用的材料组成可与下方的基体材料不同,其可未掺杂或在成长时或成长后掺杂。举例来说,鳍状物110所用的材料可为或包括硅、硅锗、纯或实质上纯锗、碳化硅、iii-v族半导体化合物、ii-vi族半导体化合物、或类似物。

此处预期在其他制造工艺中,不特别沉积材料以用于鳍状物110,且鳍状物110可由基板120产生。在这些工艺中,多种附图中的鳍状物110与基板120所用的材料之间的线条并不表示材料性质的改变,而是表示完成制造鳍状物后的鳍状物110的近似底部。

在图3a与3b中,鳍状物110位于基板120上。可由任何合适方法图案化鳍状物。举例来说,可采用一或多到光刻工艺图案化鳍状物,包括双重图案化或多重图案化工艺。一般而言,双重图案化或多重图案化工艺结合光刻与自对准工艺,其产生的图案间距小于采用单一的直接光刻工艺所得的图案间距。举例来说,可形成牺牲层于基板上,并采用光刻工艺图案化牺牲层。可采用自对准工艺沿着图案化牺牲层的侧部形成间隔物。接着可移除牺牲层,且保留的间隔物可用于图案化鳍状物。

鳍状物可由多种方法产生,包括蚀刻基版上的层状物的区域,或沉积鳍状物材料至窄沟槽中。在工艺中可蚀刻层状物的区域以产生鳍状物,且鳍状物图案可转移至一或多个下方的遮罩层。这些遮罩层可为或包括氮化硅、氮氧化硅、碳化硅、碳氮化硅、类似物、或上述的组合。接着可采用非等向蚀刻移除鳍状物区域以外的材料。

在图4a与图4b中,隔离区130位于鳍状物110之间。隔离区130可包含或可为绝缘材料如氧化硅、氮化硅、类似物、或上述的组合,且其形成方法可为合适的沉积工艺。举例来说,隔离区130可包含可流动的化学气相沉积工艺所形成的氧化硅。亦可采用任何可接受的工艺所形成的其他绝缘材料。可采用平坦化工艺如化学机械研磨移除多余材料,使绝缘材料与鳍状物110的上表面共平面。接着可使绝缘材料凹陷以形成隔离区130,使鳍状物110自隔离区130之间凸起。绝缘材料的凹陷方法可采用任何可接受的蚀刻工艺,比如对绝缘材料具有选择性的蚀刻工艺。隔离区130的上表面可平坦如图示、凸起、凹陷、或存在更复杂的形状,端视工艺细节而定。

在其他的制造工艺中,鳍状物的形成方法为沉积鳍状物材料至窄沟槽中,其比上述工艺复杂且关于未图示的额外结构。在工艺的一例中,可形成介电层于半导体的基板120的上表面上,可蚀刻穿过介电层以形成沟槽,可外延成长鳍状物材料于沟槽中,且可使介电层凹陷以让鳍状物材料自介电层凸起并形成鳍状物。外延材料可与基板相同或不同,其可未掺杂或在成长时或成长后掺杂。在这些工艺中,分别成长n型与p型鳍状场效晶体管所用的不同材料特别有利,比如可最大化每一种装置形态中的载子移动率。举例来说,鳍状物或其部分的组成可为硅锗、碳化硅、纯或实质上纯锗、iii-v族半导体化合物、ii-vi族半导体化合物、或类似物。形成iii-v族半导体化合物所用的可行材料包含但不限于砷化镓、砷化铟、砷化铟镓、砷化铝、砷化铟铝、磷化铟、氮化镓、锑化镓、锑化铝、磷化铝、磷化镓、或类似物。

可形成合适井区(未图示)于鳍状物110及/或基板120中。举例来说,可在即将形成n型鳍状场效晶体管处形成p型井、可在即将形成p型鳍状场效晶体管处形成n型井、或可形成p型井与n型井。可由离子注入提供p型井与n型井所用的掺杂。综上所述,鳍状物110、隔离区130、基板120、与存在于基板上的任何其他结构在井区注入时,可含有来自井区注入的掺质。用于形成n型井的掺质可为磷、砷、锑、或类似物。用于形成p型井的掺质可为硼、二氟化硼、铟、或类似物。可进行一或多道退火步骤以活化注入的掺质。在一些工艺中,可在结晶成长或沉积时掺杂基板及/或鳍状物的材料,且可不必进行井区注入。

图5a与图5b是鳍状场效晶体管的制造工艺的轻掺杂漏极工艺顺序之前的选定结构的简化剖视图,如下所述。图1所示的虚置栅极堆叠140可包含虚置栅极510与一或多个额外层如氮化硅层520与氧化物层530。此外,第一栅极介电层(未图示)可位于鳍状物110与虚置栅极510之间。第一栅极介电层可包含或可为氧化硅、氮化硅、高介电常数的介电层、类似物、或上述的多层,且其形成方法可为热成长及/或化学或顺应性的沉积(由合适的沉积技术)。一旦完成制造工艺,鳍状物110的通道区550可作为鳍状场效晶体管的通道。在一些制造工艺的例子中,第一间隔物540可位于鳍状物110与虚置栅极堆叠140的侧部上。第一间隔物540可为或包含氮化硅、氧化硅、氮氧化硅、或类似物。在一实施例中,第一间隔物540为氮化硅。

在图5a中,鳍状场效晶体管具有通道长度方向560。此外,倾斜角度565指的是在鳍状场效晶体管的通道长度方向中的倾斜角度。图5b亦显示鳍状物宽度方向570。倾斜角度575指的是在鳍状物宽度方向中的倾斜角度。可倾斜地进行离子注入,并产生对称的注入轮廓于对称结构的两侧上,且通常以两个步骤进行注入。相对于垂直于基板的平面,以正值与负值的倾斜角注入总剂量的两半。在无倾斜角度的离子注入中,以单一步骤注入总剂量。

轻掺杂漏极工艺可包含n型轻掺杂漏极工艺顺序及/或p型轻掺杂漏极工艺顺序。在n型轻掺杂漏极工艺顺序的例子中,可依据n型轻掺杂漏极图案沉积并图案化遮罩层如光刻胶层,以覆盖p型鳍状场效晶体管结构并露出n型鳍状场效晶体管结构。接着注入n型掺质以形成n型鳍状场效晶体管所用的n型轻掺杂漏极区,其可作为予体。举例来说,可注入磷、砷、锑、或其他n型掺质的一或多者作为n型轻掺杂漏极掺质,以形成n型轻掺杂漏极区。此注入可视作n型轻掺杂漏极注入。在n型轻掺杂漏极注入之后,可移除图案化光刻胶层并进行n型轻掺杂漏极退火以活化掺质。在p型轻掺杂漏极工艺顺序中,图案化的遮罩层(比如依据p型轻掺杂漏极图案沉积与图案化的光刻胶层)可覆盖n型鳍状场效晶体管结构并露出p型鳍状场效晶体管结构。接着注入p型掺质以形成p型鳍状场效晶体管所用的p型轻掺杂漏极区,其可作为受体。举例来说,可注入硼、二氟化硼、铟、或其他p型掺质的一或多者作为p型轻掺杂漏极掺质,以形成p型轻掺杂漏极区。此注入可视作p型轻掺杂漏极注入。在p型轻掺杂漏极注入之后,可移除图案化光刻胶层并进行p型轻掺杂漏极退火以活化掺质。在无轻掺杂漏极注入时,晶体管的通道与源极/漏极区之间的掺杂浓度变化剧烈,会产生有害的热电子。轻掺杂漏极注入通常用于使通道与源极/漏极区之间的掺质浓度变化更平缓。可在p型轻掺杂漏极工艺顺序之前或之后,进行n型轻掺杂漏极工艺顺序。此外,可在n型轻掺杂漏极与p型轻掺杂漏极的工艺顺序之间进行其他工艺步骤。举例来说,在n型轻掺杂漏极工艺顺序之后与p型轻掺杂漏极工艺顺序之前,可形成侧壁以有利地影响p型轻掺杂漏极掺值的位置。此外,为了取代分开的n型轻掺杂漏极与p型轻掺杂漏极退火步骤,可采用单一的轻掺杂漏极退火活化p型轻掺杂漏极与n型轻掺杂漏极的掺质。在多种工艺的例子中,一或多个退火步骤可为快速热退火、峰值退火、激光退火、或类似步骤。用语中等掺杂漏极、n型中等掺杂漏极、与p型中等掺杂漏极有时可用于取代用语轻掺杂漏极、n型轻掺杂漏极、与p型轻掺杂漏极,以表示给定工艺中所用的掺杂浓度略高于过去技术世代所用的历史性低等级。亦可采用其他用语如漏极延伸。

在此处所述的实施例中,进行离子注入可有利地影响鳍状场效晶体管通道区中的应变。此注入在此处可视作应变注入。

图6a与图6b是p型轻掺杂漏极工艺顺序中的应变布植后的选定p型鳍状场效晶体管结构的简化剖视图。在此实施例中,在p型轻掺杂漏极光刻胶图案存在下进行应变注入。因此此实施例的优点为不需额外的图案化步骤,可降低成本与工艺复杂度。此外,虚置栅极堆叠140与第一间隔物540的组合可作为注入所用的遮罩结构。在多种实施例中,可在p型轻掺杂漏极工艺顺序中进行的一或多道p型轻掺杂漏极注入的任一者之前或之后,进行应变注入。在一实施例中,鳍状物110所用的材料为硅,而应变注入所用的注入物种亦为硅。举例来说,可采用四氟化硅作为注入气体以注入硅。注入物种进入鳍状物110的一些上侧鳍状物区610、隔离区130的一些上侧隔离区630、以及虚置栅极堆叠140的上侧堆叠区640。进入虚置栅极堆叠140的侧壁与鳍状物110的侧壁上的第一间隔物540的部分的任何注入物种,并未图示于此以简化附图。

在一实施例中,采用单一的退火步骤退火p型轻掺杂漏极与应变注入。此实施例具有优点,因为不需额外的退火步骤以用于应变注入。在一实施例中,可采用850℃的单一峰值快速热退火作为p型轻掺杂漏极与应变注入所用的一般退火。退火步骤具有许多效果。首先,退火时的注入物种自注入区向外扩散至相邻区域中。若进行应变注入时不倾斜如图6a与6b所示的垂直箭头,则注入物种将被虚置栅极堆叠140与位于虚置栅极堆叠140的侧壁上的第一间隔物540的部分阻挡而不能进入通道区550,除非横向散布。在退火时,注入物种可朝通道区550扩散并扩散其中。若应变注入在通道长度的方向中采用倾斜角度,较大量的注入物种可在退火之前进入较深的通道区550中,接着在退火时可进一步扩散于通道区中。因此注入物种进入通道区550的量取决于参数如注入倾斜角度与退火的时间及温度。类似地,注入至隔离区130的上侧部分中的硅原子,朝鳍状物110的下侧鳍状物部分655扩散其中。此外,注入至隔离区130的上侧部分中的硅原子可扩散至栅极堆叠(未图示于图6a与6b的剖视图中)下的隔离区130的未注入区。再者,许多注入物种在退火键结至相邻原子之前占据间隙位置,因此在退火时可结合至结晶结构中,进而增加注入区中的应变等级,并因此增加施加至相邻区域的应力等级。三者,退火步骤可部分修复应变注入所造成的显著结晶损伤。

硅的应变注入产生压缩应变于p型鳍状场效晶体管的通道区550中。此压缩应变625产生在图6a的剖面中,在上侧鳍状物区610下的强度减少,且实质上在通道长度的方向中。此应变的优点之一为改善p型鳍状场效晶体管的效能,因为沿着通道长度方向的压缩应便可增加空穴迁移率。上侧隔离区630中的应变注入亦产生应变,但此应变主要发生在低于通道区550的区域中。由于主要的电流发生在通道区中,上侧隔离区630中的应变注入对晶体管效能的影响较小。然而上侧隔离区630中的应变注入所造成的应变分量将简述于此。在简化的二维说明中,可分辨这两种应变分量。第一压缩应变分量发生的方向实质上沿着鳍状物宽度,并在其存在的区域中降低空穴迁移率。应变分量(如图6b所示的应变分量633与图6a所示的应变分量635)存在于图6b的剖面中,并存在于图6a的剖面之前与之后。此外,鳍状物材料被图6a中向内与向外的方向压缩,其来自于图6a的剖面之后的上侧隔离区630与图6a的剖面之前的上侧隔离区630。第二压缩应变分量产生的方向实质上沿着通道长度,且于其存在的区域中增加空穴迁移率以抵销第一分量。图6a所示的应变分量638存在于图6a的剖面之前与之后。

上述的应力分量将进一步图示于平面图中。图7是p型轻掺杂漏极工艺顺序中的应变注入后的p型鳍状场效晶体管结构中的应力分量平面图。隔离区130隔离鳍状物110,其被虚置栅极堆叠140依序覆盖。图7的剖线a-a与c-c分别对应图1中的剖线a-a与c-c。鳍状场向晶体管通道中的压缩应变625来自于鳍状物110的上侧区域中的应变注入,其可增加空穴迁移率并增进晶体管效能。值得注意的是图7中的压缩应变625在平面图中为虚线,应理解应变发生在鳍状物110的通道区,而非虚置栅极堆叠140的顶部。压缩的应变分量633与638发生在低于通道550的区域中,但对晶体管效能的影响较小。应理解的是在靠近隔离区130的注入区的角落710的位置,总应变的分量方向如应变分量633与638反映此处所述的双方向的简化性质。

如图6a所示,一实施例的应变注入的另一优点为加大上侧堆叠区640。举例来说,一些实施例的栅极堆叠的顶部宽度可加大约6%至约10%。在上侧堆叠区640中的应变注入施加的应力下,第一间隔物540位于虚置栅极堆叠140的侧壁上的部分向外倾斜。虽然图6a显示第一间隔物540的倾斜为实质上线性,其可为非线性的形状。加大上侧堆叠区640可提供许多优点。这些优点将搭配图11a与图12a说明如下。

图8a与图8b是鳍状场效晶体管的制造工艺中使源极/漏极凹陷后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。在制造工艺的此阶段之前,可将第二间隔物830置于虚置栅极堆叠140的侧壁上的第一间隔物540之上以及鳍状物之上。由于第二间隔物830位于第一间隔物540上,此应变注入的实施例中的第二间隔物830位于虚置栅极堆叠140的侧壁上的部分可向外倾斜。

由于遮罩顺序覆盖n型鳍状场效晶体管且露出p型鳍状场效晶体管,鳍状物110的区域810被向下移除到凹陷水平820。亦可移除第一间隔物540与第二间隔物830的部分。在后续工艺步骤之后,区域810可作为p型鳍状场效晶体管所用的源极或漏极。此实施例的优点在于使源极/漏极凹陷的步骤可移除区域810中的结晶损伤,其来自于应变注入且保留于退火之后。

在注入与退火工艺时,注入物种进入通道区550,而鳍状物110的任何部分中的注入物种维持在区域810与通道区之间。源极/漏极的凹陷工艺并未移除上述注入物种。注入物种可提供压缩应变,因此增进通道区中的迁移率。在一些制造工艺中,栅极堆叠未覆盖鳍状物110的自由完全鳍状物区840,且使源极/漏极凹陷的步骤不移除自由完全鳍状物区840。此区域视作自由完全鳍状物区,其于应变注入步骤时含有实质上所有注入其中的注入物种。通过此制造工艺,上侧隔离区630的部分可能已移除,造成通道区550下的区域中的应变分量降低。在一些实施例中,可实质上或完全移除上侧隔离区630。

图9a与图9b是鳍状场效晶体管的制造工艺中沉积第一层间介电层后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。p型鳍状场效晶体管的源极/漏极结构910产生在图8a的区域810中,其产生方法可为外延成长。如图9b所示,成长于相邻的鳍状物110之上的外延的源极/漏极结构可合并形成相连结构,而气隙920形成于相连结构之下。在成长时或成长之后,可掺杂源极/漏极区,其掺质浓度可介于约1019cm-3至约1021cm-3之间。用于形成n型鳍状场效晶体管的源极/漏极区的掺质可为磷、砷、锑、或类似物,而用于形成p型鳍状场效晶体管的源极/漏极区的掺质可为硼、二氟化硼、铟、或类似物。

在一些实施例中,源极/漏极结构910所用的材料可与鳍状物110的材料实质上相同。在其他实施例中,可选择不同材料以施加压缩应力于通道区550上。综上所述,若鳍状物110为硅,源极/漏极结构910可包含硅、硅锗、锗、硼化硅锗、锗锡、或类似物。在这些实施例中,通道区550中的总应变可来自应变注入与源极/漏极结构910。因此应变注入可增强因源极/漏极区施加应力所改善的迁移率。

可采用类似方法产生n型鳍状场效晶体管所用的源极/漏极结构。在一些实施例中,源极/漏极结构所用的材料可与鳍状物的材料实质上相同。在其他实施例中,可选择不同材料以施加拉伸应力于n型鳍状场效晶体管的通道区上。综上所述,若鳍状物为硅,源极/漏极区可包含硅、碳化硅、磷化硅、碳磷化硅、或类似物。在含有n型鳍状场效晶体管所用的应变注入的实施例中,n型鳍状场效晶体管通道区中的总应变可来自于应变注入与n型鳍状场效晶体管的源极/漏极区。因此应变注入可增强因源极/漏极区施加应力所改善的迁移率。

在制造源极/漏极区之后,可沉积第一层间介电层940于鳍状场效晶体管结构上。第一层间介电层940可为或包含磷硅酸盐玻璃、硼硅酸盐玻璃、硼磷硅酸盐玻璃、未掺杂的硅酸盐玻璃、或类似物,且其沉积方法可为任何合适方法如化学气相沉积、等离子体辅助化学气相沉积、或可流动的化学气相沉积。一些实施例在沉积第一层间介电层之前,沉积接点蚀刻停止层930于鳍状场效晶体管结构上。接点蚀刻停止层930可包含介电材料如氮化硅、氧化硅、氮氧化硅、或类似物,其蚀刻速率与上方的第一层间介电层940的材料不同。在应变注入的一实施例中,位于虚置栅极堆叠140的侧壁上的接点蚀刻停止层930的部分可向外倾斜。

图10a与图10b是鳍状场效晶体管的制造工艺中移除栅极堆叠后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。可进行平坦化工艺如如化学机械研磨以平坦化晶圆的上表面,并准备移除虚置栅极堆叠140。平坦化工艺可止于虚置栅极堆叠140的上表面使虚置栅极堆叠140实质上保持完整,或可移除虚置栅极堆叠140的上侧部分以及沿着虚置栅极堆叠140的侧壁的第一间隔物540与第二间隔物830的上侧部分。接着可移除平坦化步骤后残留的虚置栅极堆叠140的任何材料,以留下由第一间隔物540界定其侧部的空洞1010,且移除方法可为选择性蚀刻。对所有晶体管或预定操作于特定电压范围的晶体管而言,可保留位于鳍状物110上的第一栅极介电层(未图示),或自空洞1010完全或部分移除第一栅极介电层。在应变注入的一实施例中,空洞1010的顶部宽度1020大于底部宽度1030。

图11a与图11b是鳍状场效晶体管的制造工艺中形成置换栅极后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。第二栅极介电层110可位于空洞1010中。第二栅极介电层1110可顺应性地沉积于晶圆上,其可包含氧化硅、氮化硅、或上述的多层。在一些制造工艺中,第二栅极介电层1110可包含高介电常数的介电材料,其介电常数大于约7.0,且可包含铪、铝、锆、镧、镁、钡、钛、铅、或上述的组合的金属氧化物或硅酸盐。第二栅极介电层1110的沉积方法可为分子束沉积、原子层沉积、等离子体辅助化学气相沉积、或类似方法。此实施例的应变注入的优点为第一间隔物540的倾斜轮廓,有利于顺应性沉积第二栅极介电层1110。第二栅极介电层1110亦向外倾斜。

在填充工艺中,可沉积置换栅极1120于第二栅极介电层1110上,其可包括含金属材料如氮化钛、氧化钛、氮化钽、碳化钽、钴、钌、铝、钨、上述的组合、或上述的多层。虽然图11a未图示置换栅极1120的细节,置换栅极1120可包含任何数目的衬垫层与功函数调整层。如图10a所示,p型轻掺杂漏极工艺顺序中的应变注入的另一优点为空洞1010的顶部宽度1020加大,其可增加相同深度的置换栅极1120的整体体积,进而有利于降低置换栅极的电阻。减少栅极电阻可增加电路速度。在另一优点中,加大的顶部宽度1020有利于填充工艺,可减少任何尺寸的空洞形成于置换栅极中的可能性。空洞是有害的,因为空洞会增加栅极电阻并劣化电路速度。

在沉积置换栅极1120所用的材料之后,可由平坦化步骤移除第二栅极介电层1110与置换栅极1120沉积于第一层间介电层940的上表面上的部分,以得图11a与图11b所示的结构。此处预期在一些制造工艺中,n型鳍状场效晶体管与p型鳍状场效晶体管所用的置换栅极与相关的介电层可能不同。在这些工艺中,可采用合适遮罩方法以沉积n型鳍状场效晶体管与p型鳍状场效晶体管所用的不同材料。

图12a与图12b是鳍状场效晶体管的制造工艺中形成接点后的选定p型鳍状场效晶体管结构的简化剖视图,且鳍状场效晶体管的制造工艺包括p型轻掺杂漏极工艺顺序中的应变注入。第二层间介电层1210沉积于第一层间介电层940上。第二层间介电层1210可为介电材料如磷硅酸盐玻璃、硼硅酸盐玻璃、硼磷硅酸盐玻璃、未掺杂的硅酸盐玻璃、或类似物,其可为可流动性,且其沉积方法可为任何合适方法如化学气相沉积、等离子体辅助化学气相沉积、或可流动的化学气相沉积。源极/漏极接点1220所用的开口可穿过第二层间介电层1210、第一层间介电层940、与接点蚀刻停止层930。在一些制造工艺中,栅极盖(未图示)可存在于置换栅极1120上。栅极接点1230所用的开口穿过第二层间介电层1210并穿过栅极盖(若存在)。开口的形成方法可采用可接受的光刻与蚀刻技术。可形成一或多个衬垫层(未图示)如扩散阻障层、粘着层、或类似层于开口中。衬垫层可包含钛、氮化钛、钽、氮化钽、或类似物。源极/漏极接点1220与栅极接点1230所用的导电材料可位于个别开口中。接点所用的导电材料可为铜、铜合金、银、金、钨、钴、铝、镍、或类似物。接着可进行平坦化工艺如化学机械研磨,以自第二层间介电层1210的表面移除多余材料。可进行退火工艺以形成硅化物于源极/漏极结构910与源极/漏极接点1220之间的界面。可在分开的工艺顺序中形成源极/漏极接点1220与栅极接点1230,或在相同的工艺顺序中形成源极/漏极接点1220与栅极接点1230。

虽然源极/漏极接点1220与栅极接点1230均存在于图12a所示的剖面中,氮应理解一些制造工艺中的一些或所有接点不会存在于图12a的剖面中,而是在图12a的剖面之前或之后。此外,图12a与12b所示的源极/漏极接点1220与栅极接点1230的倾斜侧壁,并不表示其与附图中的其他结构的倾斜侧壁(如置换栅极1120的侧壁)之间具有任何相等或不相等的关系。

此实施例的应变注入可具有两个额外优点,其将搭配图12a说明。首先,置换栅极1120的上侧宽度1240大于下侧宽度1250。较大的上侧宽度1240可用于置换栅极1120与栅极接点1230之间的电性连接,若栅极接点1230亦具对应尺寸,则有利于降低连接电阻。再者,内连线层(未图示)通常沉积于第二层间介电层1210上,使多种末端的内连线可形成电路。由于此实施例有利于置换栅极1120所用的填充工艺,其能产生较高的栅极并因此加大一侧的内连线层与另一侧的基板与鳍状场效晶体管结构之间的垂直距离。较大的垂直距离可减少结构之间的电容。在一些状况中,利用此机会降低电容可净增电路速度。

由于形成接点后的工艺步骤主要关于形成结构于第二层间介电层1210上,图12a与图12b是完成电路制造工艺后的选定p型鳍状场效晶体管结构的剖视图。如图12b所示,应力注入的原子可位于通道区550中、自由完全鳍状物区840中、保留于源极/漏极结构910与通道区550之间的鳍状物的任何部分(未图示)中。如图12b所示,应力注入的原子可位于上侧隔离区630中。区域的成分元素原子位于其中。材料的成分元素在此定义为存在于材料中的任何元素,其原子浓度占约20%以上的材料。材料成分的原子在此处可视作成分原子。举例来说,若通道区550为si0.8ge0.2,其成分的硅与锗原子位于通道中且比例为约4:1。若通道区的成分在垂直方向中非定值,则成分硅与锗原子的垂直浓度轮廓将反映组成的垂直轮廓。类似地,在实质上化学计量的二氧化硅所构成的隔离区中,位于隔离区中的成分硅与氧原子比例为约1:2。此外,予体或受体可位于这些区域中。举例来说,在p型鳍状场效晶体管的通道区,掺质如硼或铟可位于其中。如上述强调的内容,在应变注入的实施例中,来自应变注入的原子亦可位于多种区域中。这些原子在应变注入时进入区域,或在后续退火时扩散至区域中,在此处视作多余原子。多余原子可为间隙性,或键结至其他原子。在应变注入物种与成分元素不同的实施例中,比如氮应力注入与si0.8ge0.2通道,可由化学物种、浓度轮廓、或任何间隙原子的存在分辨多余原子。注入轮廓的浓度轮廓取决于注入物种、注入物种注入入的材料、注入能量、注入剂量、与注入的倾斜角度。这些浓度轮廓通常在特定深度存在峰值(视作范围),且有时在横向一致的状况下近似于高斯函数。退火步骤可经由扩散改变注入的浓度轮廓,端视退火的温度-时间轮廓以及主体材料中的扩散物种的扩散系数而定。一般采用数值模块与模拟计算多种注入所用的注入轮廓与退火后的轮廓。一般可采用测量技术如二次离子质谱与纳米二次离子质谱测量这些轮廓。注入原子通常为间隙性,虽然退火时会假定注入原子位于晶格位置,但一些注入原子仍维持在间隙。因此任何间隙原子的存在可能表示多余原子的存在。在应力注入物种与成分元素相同的实施例中,比如硅应力注入至硅或si0.8ge0.2通道中,可由浓度轮廓或任何间戏原子的存在分辨多余原子。

在应变注入的多种实施例中,通道区550中的多余原子浓度介于约1019cm-3至约1020cm-3之间。在其他实施例中,上侧隔离区630中的多余原子浓度介于1020cm-3至约1021cm-3之间。在其他实施例中,自由完全鳍状物区840中的多余原子的单位面积浓度约为应变注入剂量。举例来说,一实施例用于p型鳍状场效晶体管的单位面积浓度介于1015cm-2至约1017cm-2之间。

图13是一些实施例中,鳍状场效晶体管中的应变注入的注入参数的表格。图13所示的实施例可应用于鳍状场效晶体管,其中鳍状物材料为任何iv族半导体元素或iv族半导体化合物,比如包括si1-xgex(锗含量x介于0至100%之间,包含硅与锗)、si1-x-ygexcy、或类似物。在p型鳍状场效晶体管的一实施中,四氟化硅气体用于注入硅至p型鳍状场效晶体管中,其剂量介于约1015cm-2至1017cm-2之间,倾斜角度介于0度至30度之间,且注入能量介于约5kev至约30kev之间。在另一实施例中,四氟化硅用于注入硅,其剂量介于约1015cm-2至约1017cm-2之间,倾斜角度介于0度至约30度之间,且注入能量造成注入范围r介于约20nm至约40nm之间。在p型鳍状场效晶体管的其他实施例中,四氟化锗气体或氮气分别用于注入锗或氮。

在其他实施例中,应变注入用于增加n型鳍状场效晶体管通道中的电子迁移率。在一实施例中,二氧化碳作为含碳气体以注入碳至n型鳍状场效晶体管中,其掺杂剂量超过1017cm-2,倾斜角度介于0度至30度之间,且注入能量小于约15kev。在另一实施例中,二氧化碳作为含碳气体,以注入碳至n型鳍状场效晶体管中,其剂量超过约1017cm-2,倾斜角度介于0度至约30度之间,且注入能量造成注入范围r介于约20nm至约40nm之间。在其他实施例中,氮气用于注入氮至n型鳍状场效晶体管中。

在图6a所示的实施例中,应变注入时的第一间隔物540存在于鳍状物110上与虚置栅极堆叠140的侧壁上。多种实施例在应变注入时,第一间隔物540、多个间隔物、或其他层可或可不各自存在于鳍状物110上或虚置栅极堆叠140的侧壁上。此处预设一些实施例中,可适当地调整应变注入参数如下述的剂量、能量、与倾斜角度,以确保退火步骤后的注入物种位于通道区550中并具有上述的有利浓度。

在一些实施例中,鳍状物材料为iii-v族半导体化合物,且周期表的iiia与va族的一或多个元素可作为注入物种。举例来说,鳍状物材料可为砷化镓,而注入物种可为氮、磷、砷、铝、镓、及/或铟。在一些实施例中,可注入近似相同剂量的iiia族元素与va族元素至近似相同的注入范围,以维持鳍状物的化学计量。举例来说,鳍状物材料可为砷化镓,而va族元素(如氮、磷、或砷)与iiia族元素(如铝、镓、或铟)可注入至近似相同的剂量与注入范围。

在多种实施例中,用于退火应变注入的退火步骤为可与鳍状场效晶体管制造工艺相容的任何退火工艺,包括快速热退火、峰值退火、激光退火、或类似工艺。在一实施例中,可采用单一退火步骤退火应变与p型轻掺杂漏极注入。在其他实施例中,可进行分开的应变退火步骤以用于应变注入。举例来说,若鳍状场效晶体管制造工艺中采用的p型轻掺杂漏极退火温度较低、时间较短、或上述两者兼具(与应变注入的退火相较),则先进行应变退火。在一实施例中,p型轻掺杂漏极的工艺在图案化光刻胶后,可应变注入以用于p型鳍状场效晶体管、移除光刻胶、应变退火、施加并图案化p型轻掺杂漏极的光刻胶、p型轻掺杂漏极注入、移除第二光刻胶、以及p型轻掺杂漏极退火。在另一实施例中,采用硬遮罩以避免第二图案化步骤:p型轻掺杂漏极的光刻胶用于图案化硬遮罩,并进行应变注入以用于p型鳍状场效晶体管、应变退火、p型轻掺杂漏极注入、以及p型轻掺杂漏极退火,接着移除硬遮罩。类似实施例可用于n型鳍状场效晶体管。其他实施例亦属可能。举例来说,可在轻掺杂漏极工艺顺序之前进行p型鳍状场效晶体管与n型鳍状场效晶体管的一者或两者所用的应变注入,且可进行一或多到应变退火步骤,以分开或一起退火p型鳍状场效晶体管与n型鳍状场效晶体管的一者或两者所用的应变注入。

在一些实施例中,应变注入可在鳍状物宽度的方向中倾斜,且可或可不在通道长度的方向中倾斜。如图6b所示,在鳍状物宽度方向中不具有任何倾斜的注入,而注入的原子不能抵达上侧鳍状物区610之下的鳍状物110的区域。然而若注入在鳍状物宽度的方向中倾斜,则注入的原子将抵达上侧鳍状物区610下的鳍状物110的区域,并有利于缓解通道区550下侧的任何应变降低。在一些实施例中,总应变注入剂量的一部分在鳍状物宽度的方向中倾斜地注入。在一些实施例中,应变注入在通道长度的方向中不倾斜,且在鳍状物宽度的方向中倾斜。在此实施例中,以三个步骤进行应变注入。在第一步骤中,可注入总剂量的一部分而不倾斜。接着将总剂量的其余部分分为两半,并在鳍状物宽度的方向中以正与负的倾斜值分成两步注入。在其他实施例中,应变注入可在通道长度与鳍状物宽度的方向中进行。在此实施例中,总剂量的一部分在通道长度方向上以正与负的倾斜值分成两步注入,而总剂量的其余部分在鳍状物宽度方向上另外以正与负的倾斜值分成两步注入。在一些实施例中,在鳍状物宽度的方向中的倾斜角度介于0度至约30度之间。

在一些实施例中,可在鳍状场效晶体管的制造工艺的阶段进行p型鳍状场效晶体管所用的应变注入,而非在p型轻掺杂漏极或n型轻掺杂漏极的阶段。举例来说,一实施例在使源极/漏极凹陷之后与源极/漏极外延之前,可进行应变注入。如图8a所示,使源极/漏极凹陷可直接露出通道区550的侧壁850。应变注入在通道长度的方向中倾斜,以将注入物种注入到通道区550中。此外,与轻掺杂漏极工艺顺序中的应变注入相较,可采用较低的注入剂量。接着在源极/漏极外延之前,进行退火步骤以增进应变并修复注入损伤。在其他实施例中,在源极/漏极外延后可进行应变注入。

图14是一实施例中,应变注入的方法1400的流程图。在步骤1410中,通道遮罩结构位于鳍状物的第一部分上而不位于鳍状结构的第二部分上,且第一部分位于通道区的至少一部分上。通道遮罩结构可或可不包含栅极如虚置栅极或置换栅极,且可或可不包含一或多个侧壁。通道遮罩结构可为或包括光刻胶、氮化硅、氧化硅、或类似物。通道遮罩结构的宽度可与通道区的宽度不同,比如结构延伸出通道区或不遮罩所有的通道区。在步骤1420中,进行应变注入。通道遮罩结构至少可阻挡一些注入物种进入通道区。在步骤1430中,进行退火。

图15是一实施例中,在轻掺杂漏极的阶段进行应变注入的方法1500的流程图。轻掺杂漏极阶段可为n型轻掺杂漏极或p型轻掺杂漏极的阶段,且方法可应用于n型鳍状场效晶体管所用的n型轻掺杂漏极阶段、p型鳍状场效晶体管所用的p型轻掺杂漏极阶段、或n型与p型鳍状场效晶体管所用的轻掺杂漏极阶段。在步骤1510中,栅极位于鳍状物的通道区上。栅极可为虚置栅极或置换栅极。在步骤1520中,可依据轻掺杂漏极图案放置图案化遮罩层于晶圆上。遮罩层可为光刻胶。在步骤1530中,进行应变注入。在步骤1540中进行一或多道轻掺杂漏极注入,并在步骤1550中进行退火。若遮罩层为光刻胶,可在退火的步骤1550之前移除遮罩层。

在其他方法的实施例中,步骤1530与1540的顺序可颠倒。更普遍的作法是在一或多个轻掺杂漏极注入后进行应变注入。在其他方法的实施例中,抗反射涂层或平坦化层可搭配光刻胶一起使用。在其他实施例中,一或多个硬遮罩层如氧化物或氮化物层可用于遮罩注入,且在图案化一或多个遮罩层之后可或可不移除光刻胶。在退火的步骤1550之前或之后,可移除任何遮罩层。

在一实施例中,半导体装置包括晶体管以及与晶体管相邻的隔离区。晶体管具有通道区,通道区包含成分元素与多余原子,且成分元素属于元素周期表的一族,其中多余原子为氮,或属于元素周期表的该族。通道区中的多余原子的浓度介于约1019cm-3至约1021cm-3之间。隔离区亦含有多余原子,且隔离区中的多余原子的浓度介于约1020cm-3至约1021cm-3之间。在一实施例中,通道区为iv族半导体元素或iv族半导体化合物,晶体管为p型鳍状场效晶体管,以及多余原子为硅。在一实施例中,通道区为iv族半导体元素或iv族半导体化合物,晶体管为p型鳍状场效晶体管,以及多余原子为锗。在一实施例中,通道区为iv族半导体元素或iv族半导体化合物,晶体管为p型鳍状场效晶体管,以及多余原子为氮。在一实施例中,通道区为iv族半导体元素或iv族半导体化合物,晶体管为n型鳍状场效晶体管,以及多余原子为碳。在一实施例中,通道区为iv族半导体元素或iv族半导体化合物,晶体管为n型鳍状场效晶体管,以及多余原子为氮。在一实施例中,通道区为iii-v族半导体化合物,以及多余原子为氮或属于元素周期表的iii族或v族。

在一实施例中,半导体装置包括栅极,其中栅极的上侧宽度比栅极的下侧宽度大超过1nm,通道区,包含成分元素与多余原子,成分元素属于元素周期表的一族,而多余原子为氮或属于元素周期表的该族,以及通道区中的多余原子浓度介于约1019cm-3至约1021cm-3之间。在一实施例中,半导体装置为鳍状场效晶体管,且还包括隔离区与鳍状场效晶体管相邻。隔离区包括多余原子,且隔离区的多余原子浓度介于约1020cm-3至约1021cm-3之间。在一实施例中,鳍状物延伸高于隔离区的最顶部表面。在一实施例中,自由完全鳍状物区中的多余原子的单位面积浓度为至少1015cm-2

在一实施例中,鳍状场效晶体管包含的通道区包括的成分元素属于元素周期表的一族,且鳍状场效晶体管的制作方法包括:将通道遮罩结构置于鳍状物的第一部分上以覆盖鳍状物的第一部分,通道遮罩结构未覆盖鳍状物的第二部分,且鳍状物的第一部分包括通道区的至少一部分,进行氮或属于元素周期表的该族的元素的第一离子注入,以及退火第一离子注入。在一实施例中,鳍状场效晶体管为p型,通道遮罩结构包括栅极,鳍状物为iv族半导体元素或iv族半导体化合物,离子注入采用的气体为六氟化硅、四氟化锗、或氮气,离子注入的剂量介于约1015cm-2至约1017cm-2之间,离子注入的能量介于约5kev至约30kev之间,以及离子注入在通道区长度方向中的倾斜角度介于0度至约30度之间。在一实施例中,鳍状场效晶体管为p型,通道遮罩结构包括栅极,鳍状物为iv族半导体元素或iv族半导体化合物,离子注入采用的气体为六氟化硅、四氟化锗、或氮气,离子注入的剂量介于约1015cm-2至约1017cm-2之间,离子注入的能量介于约5kev至约30kev之间,离子注入在通道区长度方向中的倾斜角度介于0度至约30度之间,以及离子注入在鳍状物宽度方向中的倾斜角度介于0度至约30度之间。在一实施例中,鳍状场效晶体管为n型,通道遮罩结构包括栅极,鳍状物为iv族半导体元素或iv族半导体化合物,离子注入采用的气体为二氧化碳或氮气,离子注入的剂量大于约1017cm-2,离子注入的能量小于约15kev,以及离子注入在通道区长度方向中的倾斜角度介于0度至约30度之间。在一实施例中,在一实施例中,鳍状场效晶体管为n型,通道遮罩结构包括栅极,鳍状物为iv族半导体元素或iv族半导体化合物,离子注入采用的气体为二氧化碳或氮气,离子注入的剂量大于约1017cm-2,离子注入的能量小于约15kev,离子注入在通道区长度方向中的倾斜角度介于0度至约30度之间,以及离子注入在鳍状物宽度方向中的倾斜角度介于0度至约30度之间。在一实施例中,方法还包括进行第二离子注入,其中第二离子注入为形成轻掺杂漏极区的轻掺杂漏极注入,以及退火步骤退火第一离子注入与第二离子注入。在一实施例中,鳍状场效晶体管为位于晶圆上的p型鳍状场效晶体管,通道遮罩结构包括栅极,且方法还包括:在第一离子注入之前将图案化遮罩层置于晶圆上,且图案化遮罩层覆盖n型鳍状场效晶体管而不覆盖p型鳍状场效晶体管,以及在图案化遮罩层位于晶圆上时进行第二离子注入,且第二离子注入为形成p型轻掺杂漏极区的p型轻掺杂漏极注入。在一实施例中,鳍状场效晶体管为位于晶圆上的n型鳍状场效晶体管,通道遮罩结构包括栅极,且方法还包括:在第一离子注入之前将图案化遮罩层置于晶圆上,且图案化遮罩层覆盖p型鳍状场效晶体管而不覆盖n型鳍状场效晶体管,以及在图案化遮罩层位于晶圆上时进行第二离子注入,且第二离子注入为形成n型轻掺杂漏极区的n型轻掺杂漏极注入。在一实施例中,方法还包括形成隔离区以与鳍状物相邻,且其中进行氮或属于元素周期表的该族的元素的第一离子注入步骤,包括注入氮或属于元素周期表的该族的元素至隔离区中。在一实施例中,通道区为iii-v族半导体化合物,且注入物种为氮或属于元素周期表的iii族或v族。

本技术领域中技术人员应轻易理解,可在不偏离本发明实施例范围的情况下改变材料和方法。亦应理解,除了说明实施例的特定内容之外,本发明实施例提供许多可应用的发明概念。因此所附权利要求旨在将这些工艺、机器、制造方法、组成、手段、方法、或步骤包括在其范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1