光电箔的制造方法

文档序号:6816909阅读:245来源:国知局
专利名称:光电箔的制造方法
技术领域
本发明涉及到薄膜光电池。例如,非晶硅(即a-Si:H)光电(PV)池是众所周知的结构,它包含通常由n掺杂硅、本征硅和p掺杂硅交替组成的几个层,而且最重要的是具有从入射光产生电流的能力。在例如阳光能够用来产生电力的情况下,光电池在原理上构成了一种令人感兴趣的替代能源,而且是一种比矿物燃料或核电力对环境更有利得多的能源。但这种PV电池要想成为重要而经济上有吸引力的替换物,它就必须制成合适的形式并用较廉价的原材料和成本较低的工艺来加以制造。
为了满足这一要求,本发明的目的在于提供使光电池得以制成箔状的一种工艺。这不仅是希望光电池具有箔状以便能够在“滚卷(roll-to-roll)”工艺中大规模经济地生产,而且由于柔性衬底基的光电池比之在玻璃衬底上制造的较常规的非晶硅PV电池,其用途更多且更易于处置。
因此,本发明涉及制造光电箔的方法,此光电箔由载体支承并包含多个合起来具有从入射光产生电流的能力的层(以下称为“光电(PV)层”)、在邻接和平行于光电层的一侧上的背面电极层、以及在邻近和平行于光电层的另一侧上的透明导体层,此方法包含提供衬底以及在衬底上涂敷透明电极层和光电层(包括任何额外的和/或辅助的层)。在涂敷光电层之后,将背面电极层加于某些点处。这一电极不一定要透明,而且实际上最好是可见光的反射体(为了反射和导电,背面电极一般为金属层)。为了清楚起见,注意在本发明的上下文中,术语“背面”指光电箔最终使用时背离光入射侧的那一侧。
例如在Shinohara等人的论文(First WCPEC;Dec.5-9,1994;Hawaii,p.682ff(IEEE))中描述了这一方法,其中所用的衬底是聚(2,6-萘二甲酸乙二酯)(PEN)。所公开的方法有几个严重的缺点,例如首先制作PV层,然后制作透明导体。这是一种不充分透明的,亦即不能最终用作透明导体层的窗口衬底的合理顺序(通常是制作在玻璃衬底上的非晶硅PV电池)。但首先涂敷PV层然后涂敷透明导体层的必须的“反转”顺序又对所用的透明导体材料有严格的限制。例如,非常好的一种透明电极层是掺氟的氧化锡。但在这种顺序中,为了得到所希望的性能和组织,最好在至少400℃温度下进行涂敷。由于结晶、掺杂剂扩散和/或氢的损失,这种高温可能破坏PV层。淀积掺氟氧化锡的最佳温度也引起PEN衬底退化,因此,此层不能在PV层之前淀积。于是,如果使用透明电极所希望的温度,则在PEN衬底上的任何淀积顺序都可能对PV箔产生电力的能力有不利的影响。
因此,需要一种能够滚卷制造(较坚韧的)光电箔或器件的工艺,同时该工艺能够使用任何所希望的透明导体材料和淀积工艺,而不危害PV层的产生电流的作用。本发明的工艺满足了这些要求和其它所希望的目的。
至此,本发明包括上述已知类型的方法,该方法包含下列连续步骤●提供临时衬底;●施加透明导体层;●施加光电层;●施加背面电极层;●施加(永久)载体;●去除临时衬底;以及最好●在透明导体层侧面上涂敷顶部涂层。
在本发明的最佳实施例中,透明导体层在比光电层能抵抗的温度更高的温度下涂敷(例如,对于a-Si:H,PV层能抵抗的最高温度与所述层的淀积温度大约相同。更高的温度会引起氢的损失以及掺杂剂和杂质的扩散,从而形成使PV层效率降低的缺陷)。
这些步骤及其顺序使PV电池能够制作成箔状,同时保留通常在玻璃衬底上生产PV电池情况下的所希望的制造顺序(此时,由于玻璃将起窗口的作用而能够从涂敷透明导体层开始)。因此,当采用本发明的工艺时,能够选择衬底以进行任何后续的工序步骤(例如透明导体层的高温涂敷)而无须考虑其(亦即衬底的)最终PV箔功能所要求的透明度或其它性能。在涂敷最后光电层、背面电极层和永久载体背面衬底之后,为了在尽可能多的工序步骤中支承薄的PV箔并确保箔呈现足够的强度和抗弯刚度(最好适合于预计的最终产品),去除临时衬底。在去除临时衬底之后,透明导体(正面电极或前电极)通常配备有透明保护层,进一步增加了箔和/或最终产品的机械性能。
虽然透明导体层通常直接淀积在临时衬底上(有时用一个或更多个用作工艺辅助的极薄的层来进行),在提供临时衬底之后,也可以首先将最终保护层涂敷于所述临时衬底上,然后涂敷透明导体层,接着涂敷其它层以构成箔。此时,保护层最好应当由无机材料制成。
本领域的熟练技术人员不难选择临时衬底及其去除方法(恰当地利用溶解或腐蚀)。例如,临时衬底可以是“正”光刻胶,亦即在光照时经历从抗溶剂到可被溶剂分离的变化的光敏材料,例如交联键聚酰亚胺。为了满足使用低成本材料的目的,这些衬底不是最佳选择。在这方面,使用能够利用等离子体腐蚀(例如O2等离子体,或例如对聚氧硅烷的SF6等离子体)来去除的聚合物更为有利。虽然原则上任何聚合物都是适合的,但考虑到上述情况,使用能够承受更高温度(250℃,高于400℃更好)的聚合物当然更好。
根据本发明的临时衬底最好是金属或金属合金箔。其主要理由是这种箔通常能够承受进一步加工过程中的最高温度而不易挥发,并能够用已知的腐蚀技术容易地去除。选择金属(特别是铝或铜)的另一个理由是PV箔最终应该含有“侧”电极(形成对任何辅助装置或网络实现连接的触点,亦即实际上使用PV箔作为电源)。借助于保留部分临时衬底(例如作为侧边沿或侧条),就不需要另行涂敷这些触点。
合适的金属包括钢、铝、铜、铁、镍、银、锌、钼以及它们的合金或多层结构。尤其是为了经济目的,最好使用Fe、Al、Cu或它们的合金。为了确保性能(结合成本考虑),铝、电淀积的铁和电淀积的铜最好。适合的腐蚀方法虽然对所选择的金属各不相同,但本领域的熟练技术人员能够加以选择。最佳的腐蚀剂包括酸(路易斯酸以及布伦斯特酸),例如在铜作为金属箔的情况下,最好使用FeCl3、硝酸或硫酸。用烧碱(NaOH)等能够有效地去除铝。
为了去除起见,临时衬底最好尽可能薄。当然仍然应当能够在其上涂敷更多的层并将它们保持在一起,但这通常不要求500μm以上的厚度。厚度最好是1-200μm。取决于弹性模量,大多数材料要求5μm的最小厚度,此时的厚度最佳范围是5-100μm,最好是5-50μm。
永久载体材料可以涂敷在背面电极层上,亦即如从工序观点看“在顶部”,但实际上在箔的最终背面或底部。因此,新的载体层最终形成真正的衬底(称为“临时衬底”的层,位于箔的最终正面侧即顶部,在工艺过程中实际上是覆盖层)。这一载体层的适当材料包括诸如聚对苯二甲酸乙二酯、聚(2,6-萘二甲酸乙二酯)、聚氯乙烯之类的聚合物箔或诸如芳族的高性能聚合物箔或聚酰亚胺箔,还有例如配备有绝缘(介电)顶层的金属箔、平板玻璃或含有树脂和玻璃的复合物。最好是含有软化点低于载体本身的热塑粘合剂的聚合“共挤压”箔。共挤压箔也可以配备有反扩散层(例如,分别为聚酯(PET)、共聚多酯和铝)。载体的厚度范围最好在75μm-10mm之内。100μm-6mm以及150μm-300μm更好。抗弯曲刚度[在本发明的范围内定义为材料的弹性模量(E,单位为N/mm2)乘以载体厚度(t,单位为mm)的三次方,即E×t3l最好大于16×10-2Nmm且通常小于15×106Nmm。
载体(最终衬底)本身可能已经是或包含预期使用所要求的结构。这样,载体可以是例如一片瓦或一组瓦、屋顶瓦、屋顶板、小汽车顶棚、大棚车顶棚等等。但通常临时衬底和/或载体最好是柔性的。
如上所述,“顶部涂层”或顶层涂敷在透明导体上。这一般是(空腔)板或具有高透射性的诸如非晶(高)氟化聚合物、聚碳酸酯、聚(甲基丙烯酸甲酯)或诸如汽车工业中使用的任何可获得的透明涂层。如有需要,可以涂敷额外的抗反射或抗污染层。
在最后工序步骤之后,箔的抗弯刚度(此抗弯刚度通常较多地决定于载体和顶部涂层)最好大于任何一个中间产品的抗弯刚度。
要指出的是,日本专利公开no.1987-123780涉及到一种制造光电转换薄膜的方法,其中在衬底上连续淀积TCO电极、PV层和另一个TCO电极。然后去除衬底以便获得非常薄而高度柔软的薄膜。支承载体的加入对本发明来说是很重要的并且导致比较厚(例如100μm)且坚固的箔,但这一点可能与日本专利公开no.1987-123780所说的相反。而且,虽然日本专利公开no.1987-123780确实公开了临时衬底的使用,但也同时反复提出在PV层上淀积TCO。这样,临时衬底的使用不要求避免在PV层上淀积TCO或所述淀积对PV层的不利影响。
美国5232860涉及到在平板玻璃衬底上制作的特别柔软的相似的光电器件。引线层被用来促进器件从玻璃衬底卸下。也没有提到载体的加入,可能会使所希望的“特别柔软”(这是US 5232860技术的重要目的)成为不可能,同样可以在PV层上淀积TCO。在US 5232860的器件制造中,由于临时衬底应该由玻璃或相似材料制成,故滚卷工序不是选项。
日本专利公开1980-143706公开了使用可移去的衬底来制造包含透明导电层的高聚合物产品(诸如薄膜和单眼或复眼镜片)。在日本专利公开1980-143706中没有公开光电池(或同样复杂结构的产品)和在这种电池中遇到的问题,因而与本发明无关。
EP 189976涉及到生产相似于Shinohara等人的半导体器件(特别是太阳电池)的方法。在根据EP 186976的方法中,首先制作PV层,然后将透明导体涂敷到PV层。
Kishi等人的论文“超轻柔软非晶硅太阳电池及其在飞机中的应用”(见Technical Digest of the International PVSEC-5,Kyoto,Japan,1990,p.645-648)公开了一种借助于在透明塑料膜上淀积各个层而制造的太阳电池。没有指出也没有暗示临时衬底。
临时衬底最好是电淀积的(亦即电镀的)金属层。此方法除了能够提供易于移去的薄的(<100μm)金属层,还具有明显的优点,特别是在PV箔的加工方面。亦即,为了任何一个PV电池有效地工作,希望入射光通过PV结构尽可能多被散射。为此,PV电池的表面以及其他层的表面需要某种结构,例如使表面包含多个光学棱镜(它使入射光分离并扩展通过PV电池)。电镀提供金属箔的一个大优点是电镀(电淀积)工序使得有可能赋予箔任何希望的结构。借助于使其上淀积金属的表面具有一定的结构(一般为鼓状),能够得到这种结构。当在有结构的衬底上制作PV箔时,衬底起模具作用,对其邻近层、后续层印出所述结构的负影象(共形涂层)。用已知的方法,例如用激光刻蚀或用任何光刻工艺,可以得到所希望的鼓形表面。在背离鼓的一侧也可以产生有结构的表面。在此侧的结构不受或不仅仅受鼓的表面结构和构成鼓的材料的影响,而且还受诸如电流密度之类的工序参数、所用电解液的选择和浓度以及所用添加剂的影响。本领域熟练技术人员知道如何调整相关的参数,并能够获得约为0.1-10μm的表面粗糙度(垂直于表面,Rz)。
虽然光散射结构最好,但包含多个相邻的锥形的结构更好,从而具有交替的突出与凹下,其间的相对距离(Rz)最好是上述数量级,而约为0.15μm或0.2μm更好。为了防止非晶硅层中在尖锐的峰谷的情况下可能出现的缺陷,突出和凹下最好具有圆滑的形状(例如基底对斜边的角度最大为40度)。应该理解,若突出的锥形出现在鼓之类的表面上,则其对临时衬底并最终对透明导体和其他层印出的负影象,将是具有锥形凹下的反锥形结构而不是突出的锥形。因此,借助于调整临时衬底的结构,本发明基本上使透明导体的结构能够被调整成最终具有最佳的表面形貌。
考虑到影响最终结构的可能性,希望选择铜作为电淀积的金属箔。但由于铜可能具有穿过硅PV层扩散的倾向,最好提供带有不降低的扩散势垒的铜箔(电镀),例如抗腐蚀层特别是氧化锌,或选择能够防止所述扩散的透明导体,例如TiO2、Al2O3、SnO2或ZnO。可以用物理汽相淀积(PVD)或化学汽相淀积(CVD)来电镀涂敷反扩散层。
为代替具有按常规要与临时衬底一起被去除的反扩散层的铜箔,也可以提供带有适当种类玻璃层的铜箔(或任何选定的其他临时衬底)。此玻璃层基本上是透明的,因而能够永久用作透明导体层的保护窗口。为了经济目的,并为了能够实现滚卷工艺,此玻璃层最好非常薄,例如厚度为100-200nm。此层的恰当的涂敷方法是例如SiH4和N2O(等离子体氧化物)的PECVD(等离子体增强化学汽相淀积),并加入适当的诸如B2H6的添加剂以形成具有良好透明度的硼硅玻璃。涂敷APCVD氧化硅最好。
在以这种方式提供临时衬底之后,可以提供实际构成PV电池(以箔的形式)的各个层。广义地说,薄膜半导体型PV电池包含透明导体(最终形成箔的“正面侧”,亦即用于(太阳)光照的那一侧)、多个一起呈现光电效应的薄膜半导体层(诸如由p型掺杂非晶硅层、本征非晶硅层和n型掺杂非晶硅层组成的叠层)、以及先前所述的背面电极层(最好也用作反射器件)。正面侧和背面侧二者可配备有所希望的保护层,对正面侧的主要要求当然是此层要透明,而其他所希望的性能包括良好的粘附性、耐磨性、抗天气变化及抗紫外能力等。可以用已知的方法,例如用金属有机化学汽相淀积(MOCVD)、溅射、常压化学汽相淀积(APCVD)、PECVD、喷涂热解、蒸发(物理汽相淀积)、电淀积、丝网印刷、溶胶-凝胶工艺等,来淀积透明导体(通常是TCO,即透明导电氧化物)。最好在高于250℃的温度下涂敷透明导体层,高于400℃更好,以便能够得到具有优良性能和/或结构的透明导体层。
氧化铟锡、氧化锌、掺铝或硼的氧化锌、硫化镉、氧化镉、氧化锡以及最好是掺氟的SnO2,都是适合用于透明导体层的材料的例子。上述最后一个透明电极材料由于在高于400℃(最好500℃-600℃)的温度下涂敷时能够形成具有柱状光散射结构所以最好。特别是用这种电极材料,选择允许上述高温的临时衬底,更确切地说是选择有结构的电淀积的金属衬底的优点在很大程度上表现出来。而且,此材料具有抗最常用的腐蚀剂的优点以及具有比氧化铟锡更好的抗化学能力和更好的光电性能。此外,价格便宜得多。
在涂敷透明导体层之后,可以按需要制作PV箔。已知如何涂敷PV层及应该选择何种层结构。为了得到关于此点的基本知识,可参考Yukinoro Kuwano的“光电池”、Ullmann的Encyclopedia,Vol.A20(1992),161以及“Solar Technology”、Ullmann的Encyclopedia,Vol.A24(1993),369。
多种薄膜半导体材料可以用来制作PV层。于是,所要求的PV电池能够由非晶硅(a-Si:H)、微晶硅、多晶非晶碳化硅(a-SiC)和a-SiC:H、非晶硅锗(a-SiGe)和a-SiGe:H制造。而且,本发明的PV箔可包含CIS PV电池(二硒铜铟,CuInSe2)、碲化镉电池、Cu(In,Ga)Se电池、ZnSe/CIS电池、ZnO/CIS电池、Mo/CIS/CdS/ZnO电池。
在包含掺氟的氧化锡的非晶硅电池的情况下,一般包含一个或多个由p型掺杂非晶硅层、本征非晶硅层和n型掺杂非晶硅层组成的叠层,且p型掺杂层位于朝向入射光侧。
这样,在a-Si-H实施例中,PV层至少包含p型掺杂非晶硅层(Si-p)、本征非晶硅层(Si-i)和n型掺杂非晶硅层(Si-n)。可以在第一组p-i-n层上涂敷第二个和更多的p-i-n层。可以连续地涂敷多个重复的p-i-n(“pinpinpin”或“pinpinpinpin”)层。借助于堆垛多个p-i-n层,提高了单位电池的电压并提高了稳定效率(减小了光诱生的退化,即所谓的Staebler-Wronski效应)。而且,借助于在各个层(主要是i层特别是i层内部)中选择带隙不同的材料,能够优化光谱响应。这个a-Si层的总厚度通常约为100-2000nm,200-600nm更典型,300-500nm更好。
为了使PV箔能够在各个层中恰当地起作用,在各个位置中,最好局部去除部分材料以产生5-100mm的分离的条形,最好约为5-25mm,以便为箔中的PV电池提供串联电连接(每个p-i-n在最大功率点处产生大约0.5V,将多个p-i-n电池串联以产生所希望的箔的电压)。这可以用激光器以已知的方式完成。作为变通,也可以为此而利用(化学)腐蚀技术。为了避免通常所要求的工序步骤数(光刻胶涂敷、通过掩模辐照、显影、腐蚀、冲洗和剥离光刻胶),本发明提供了一种最终给出所希望的腐蚀图形的简单的制造工具。为此,本发明在一个实施例中在每个层上提供一个腐蚀剂薄层的图形化涂层。这可能是由于进行腐蚀的层比较薄,使得能够涂敷使腐蚀得以发生的足够数量的含有腐蚀剂的物质。当箔中各层的典型厚度约为一百到数百nm时,腐蚀剂层可涂敷到厚度普遍为例如25μm(=25000nm)。由于不同的层有不同的抗腐蚀性,故最终的箔有可能在不同的层中含有几条不同的腐蚀剂。在PV箔的(滚卷)工序过程中,在各层上可以涂敷所要求的小条。合适的涂敷技术包括苯胺印刷、旋转丝网印刷、喷墨、挤压涂敷、转移涂敷等。换言之,在每个工序步骤中,在涂敷各层(其一部分要被去除)之后,施加腐蚀剂。在掺氟的SnO2层上,涂敷例如KOH之类的强碱。可以用加热的方法(这可能是一个额外的工序步骤)来加速腐蚀工序。用例如硫酸之类的酸性腐蚀剂能够去除掺铝的ZnO。其它的透明电极材料可以用熟练人员通常已知的适当的腐蚀剂腐蚀掉(例如可用KOH腐蚀氧化铟锡)。非晶硅可以用NaOH或KOH之类的强碱来腐蚀。背面电极可以用酸来腐蚀。
所有的腐蚀工序基本上可以用同一个装置或一组装置来进行,其中在进行足够腐蚀之后,对被腐蚀的层进行清洗/冲洗并烘干。由于工序是在柔性(临时)衬底上进行,故在整个制造工艺的每一个步骤中,都存在可以借助于伸直而通过各个处理站(例如浴槽)并借助于卷回而收集的自持箔的问题。虽然为此最好是在有临时衬底的时候进行所有的腐蚀工序,但也可以在去除临时衬底之后部分地去除透明导体。
应该指出的是,所述腐蚀方法原则上可以普遍地应用于生产例如非晶硅、PV电池或箔的所有工序。
腐蚀剂条最好尽可能窄,例如1-50μm,最好是20-25μm或更窄,因为在这些条的所在处PV箔不产生电流。
在涂敷有源非晶硅层之后,PV箔配备前述的背面电极层,此电极层最好能够同时用作反射器和电极层(亦即最终成为“背面”电极,透明导体层成为“正面”电极)。此背面电极层的厚度通常约为50-500nm,并可由具有光反射性能的任何一种合适的材料(最好是铝、银或二者的组合)制成。可以用(真空)物理汽相淀积(蒸发)或溅射方法来涂敷这些金属层(最好在比较低的温度下,例如低于250℃),选择性地采用掩模来防止在需要腐蚀条或被掩模线所用的位置处的淀积。在银的情况下,最好首先涂敷粘附促进层(例如TiO2和ZnO是合适的材料,并在涂敷适当厚度,例如约80nm时,具有额外反射的优点。
如先前所涂敷的层那样,背面电极层被做成含有“条”,亦即紧挨和平行于已经存在的条,反射器件层的窄轨迹被去除。材料的这一去除还是用几种方法来进行,例如激光划痕、湿法化学腐蚀、等离子体腐蚀、或用“直接腐蚀涂层”,亦即前述的在预先制作的轨迹中淀积腐蚀剂。从这一“背面电极”腐蚀出来的条被用来为箔中制得的各个PV电池提供必须的串联连接。
上述的腐蚀方法可以用于随后临时衬底的去除中。例如,箔通过含有强碱或H2SO4或FeCl3的腐蚀浴槽,或布伦斯特酸或路易斯酸,涂敷或喷涂在形成临时衬底的金属箔上。去除衬底之后,接着进行常规冲洗和烘干步骤。若只希望去除部分临时衬底(亦即仅仅入射光需要到达透明导体的那部分表面处),在进行腐蚀之前,最好在几乎覆盖二个透明导体轨迹处的窄条中涂敷“抗蚀剂”。
这样就成卷提供了可以使用的PV箔。如有需要,可从箔上切出具有预定功率和电压的片。
根据上述的技术,本发明还涉及到制造薄膜光电箔的方法,此光电箔依次包含下列各层背面电极层、多个光电层和透明导体层,顶电极与背面电极串联,在此方法中,在使用载体之前,在背面电极中确定轨迹,并在淀积光电层和背面电极之后,最好是在去除临时衬底之后,在透明导体层中确定轨迹。最好用激光划痕或腐蚀来确定轨迹。在腐蚀的情况下,最好在背面电极和/或透明导体层上提供腐蚀剂薄层的图形化涂层。
参照附图,用举例的方法,给出了根据本发明制造PV箔的例子,这些对本发明并不构成限制。所有的图示出了沿纵(生产)方向箔的同一个部分在几个制造工序阶段的剖面图。


图1提供了铝之类的金属箔形式的临时衬底(1)。
图2在金属箔(1)上淀积了透明导体(2),例如用大约550℃的APCVD方法涂敷厚度约为600nm的掺氟的SnO2层。也可以在涂敷PV层之前,在透明导体层上淀积ZnO(未示出)中间层(厚度约为80nm)。
图3和图4用激光划痕方法或腐蚀线(3),部分地去除了透明导体层(2)。剩下的部分是由被去除材料(5)的窄轨迹(约25μm)分隔的宽度约为20mm的条(4)。
图5涂敷了PV层(6)。包含一个或多个由p型掺杂非晶硅层(Si-p)、本征非晶硅层(Si-i)和n型掺杂非晶硅层(Si-n)组成的组合,总厚度约为500nm(未逐个示出)。
图6和7借助于用激光划痕或涂敷化学腐蚀剂(8)去除材料窄轨迹,提供了带有条(7)图形的非晶硅层(6)。被去除材料(9)的轨迹被做成尽可能接近透明导体层中的被去除的轨迹(5)。
图8-10在非晶硅层(6)上涂敷了厚度约为250nm的铝层(10),同时用作背面电极和反射层,并可能先施加腐蚀剂(13)腐蚀掉紧挨和平行于先前产生的轨迹(9)的轨迹(12)中的材料以提供条(11)。
图11和12载体(14)被涂敷在背面电极(10)上,然后(用腐蚀方法)去除金属箔临时衬底(1)。在使用中,载体(14)是根据本发明制造的PV箔的真正衬底(背面,底部)。
图13提供了包含透明导体层(2)的其上带有保护性透明顶部涂层(15)的最终正面侧。
在根据本发明的另一个例子中,描述了碲化镉薄膜太阳电池的制作。提供了一个铝临时衬底,其上用APCVD方法在550℃下涂敷了SnO2:F层。接着,涂敷CdS层(厚度为100nm),并随后在氢气氛中于400℃下退火。在退火之后,此装置被加热到550℃,并在He和O2气氛中用所谓的封闭空间升华工序在CdS层上淀积镉和碲(源到衬底的距离为5mm,CdTe源被加热到650℃而衬底被加热到550℃,都在He和O2气氛中,二者的分压都为30乇)。然后用CdCl2蒸汽在425℃下处理此装置,接着溅射获得背面触点。最后,用NaOH溶液腐蚀去除临时衬底。
除了涉及到方法,本发明还包括新颖的PV产品,尤其是依次包含下列层的光电箔反射电极层、多个光电层和透明导体层,且在面向透明导体层侧该箔具有所希望的反锥形表面结构。
而且,由于上述制造方法涉及到临时衬底的使用,故本发明能够使柔性箔型PV电池得到明显改进。这样,本发明也涉及到依次包含反射电极层、多个光电层、透明导体层以及透明保护涂层的光电箔,其改进在于透明导体层是掺氟的氧化锡。虽然此导体本身已知,且对于PV电池十分可取,但现有的工艺不能够使它用于PV箔中的透明导体。亦即,本发明是首次得到以具有所希望的性质的掺氟SnO2作为透明导体(且在高于400℃的温度下淀积)的柔性箔形式的PV结构。
实际上,本发明提供了一种可以具有F-SnO2或其它在高温下涂敷的透明导体的PV材料,而无须用平板玻璃窗口覆盖此导体层(这是具有这种透明导体的PV电池的现有工艺)。
权利要求
1.一种制造光电箔的方法,该光电箔由载体支承,并包含多个合起来具有由入射光产生电流的能力的光电层、在光电层的一侧上并与之邻接和平行的背面电极层、以及在光电层的另一侧上并与之邻接和平行的透明导体层,其特征在于,该方法包含下列连续步骤提供临时衬底;施加透明导体层;施加光电层;施加背面电极层;施加载体;以及去除临时衬底。
2.根据权利要求1的方法,其特征在于,在高于所述光电层能够承受的温度下施加所述透明导体层。
3.根据权利要求1或2中任何一项的方法,其特征在于,所述临时衬底是柔性的。
4.根据权利要求1-3中任何一项的方法,其特征在于,所述载体是柔性的。
5.根据前述权利要求中任何一项的方法,其特征在于,在高于250℃,最好是高于400℃的温度下施加所述透明导体层。
6.根据前述权利要求中任何一项的方法,其特征在于,所述临时衬底是由金属、金属合金或金属多层结构组成的金属箔。
7.根据权利要求6的方法,其特征在于,所述金属箔是电淀积(电镀)的金属箔。
8.根据权利要求6或7的方法,其特征在于,所述金属是Al或Cu。
9.根据前述权利要求中任何一项的方法,其特征在于,所述透明导体层的至少一个表面是具有一定结构的。
10.根据前述权利要求中任何一项的方法,其特征在于,在最后工序步骤之后箔的抗弯刚度大于中间产品中的任何一个的抗弯刚度。
11.一种制造薄膜光电箔的方法,该光电箔依次包含下列各层背面电极层、多个光电层和透明导体层,且顶电极与背面电极串联连接,其特征在于,在使用载体前在背面电极中确定轨迹,并在淀积光电层和背面电极后在透明导体层中确定轨迹。
12.根据权利要求11的方法,其特征在于,用激光划痕或腐蚀方法确定轨迹。
13.根据权利要求11或12的方法,其特征在于,在背面电极和/或透明导体层上提供图形化了的腐蚀剂薄层的涂层。
14.一种可用根据权利要求1-10中任何一项的方法得到的光电箔,该箔依次包含反射电极层和多个光电层,其特征在于,在面向透明导体层侧该箔具有所希望的反锥形表面结构。
15.一种可用根据权利要求1-10中任何一项的方法得到的光电箔,该箔依次包含反射电极层和多个光电层、透明导体层,其特征在于,透明导体层是在400℃以上的温度下淀积的掺氟的氧化锡。
全文摘要
本发明涉及到制造光电箔的方法,该光电箔由载体(14)支承并包含多个合起来具有从入射光产生电流的能力的光电层(16)、在光电层的一侧上并与之邻接和平行的背面电极层(10)、以及在光电层的另一侧上并与之邻接和平行的透明导体层(21),该方法包含下列连续步骤:提供临时衬底、施加透明电极层(2)、施加光电层(6)、施加背面电极层(10)、施加载体(14)、去除临时衬底、以及最好在透明导体层侧上施加顶部涂层。本发明使得能够滚卷制造韧性光电箔或器件,同时使得有可能使用任何所希望的透明导体材料和淀积工艺而不危害PV层的产生电流的作用。
文档编号H01L31/18GK1231772SQ97198288
公开日1999年10月13日 申请日期1997年9月24日 优先权日1996年9月26日
发明者俄罗诺·范·安德尔, 埃里克·米德曼, 鲁德尔夫·俄马努尔·埃斯多·施罗博 申请人:阿克佐诺贝尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1