树脂模线圈的制作方法

文档序号:6819601阅读:330来源:国知局
专利名称:树脂模线圈的制作方法
技术领域
本发明涉及利用绝缘树脂模塑的电源变压器线圈,尤其涉及包括铝箔片的薄导体通过绝缘薄膜径向同轴卷绕而成的线圈。
图42是表明传统树脂模线圈1构造的部分剖视图。线圈2卷绕在柱形卷轴10上,利用绝缘树脂使卷轴10外围整体模塑。
图43是沿图42中A1-A1线截取的截面图,其中树脂模线圈1由多个单元线圈2(2A、2B、2C、2D、2E)组成。单元线圈是通过在径向上放置并绕铝箔片卷绕绝缘薄膜而形成的,相邻的线圈2通过连接线55相串联,形成单个线圈整体。引线3A从顶部单元线圈2A引出并接至部分伸出树脂模线圈1表面的上部端子4A,而引线3B同样地从底部单元线圈2E引出并接至下部端子4B。
图44是图43中连接线55周围的放大截面示意图。图45是图43中单元线圈2的放大截面图,包括放置的绝缘薄膜113,卷绕在铝箔片100上。绝缘薄膜113是由例如聚萘二甲酸乙二醇酯薄膜构成的。在图44中,在单元线圈2B和2C的铝箔片100的卷绕操作中,将卷绕开始导体52引出到外径侧并将铝箔片100卷绕在卷轴10上。完成单元线圈2B和2C的铝箔片100的卷绕操作后,将卷绕终结导体51引出到外径侧,卷绕开始和终结导体52和51通过压接端子53连接在一起,形成连接线55。垂直相邻的单元线圈2如图44所示连接在一起。由于压接端子53与单元线圈2C之间存在电位差,在压接端子53与单元线圈2C外围之间维持一绝缘间隙。
图46是表明在另一不同的传统树脂模线圈中引线构造的侧视图。将铜板112焊接到铝箔100上并用作引线。在图43中,引线3A和3B接至顶部和底部单元线圈2A和2E的铝箔片上,铜板112对应于引线3A和3B。图43中的结构不包含抽头端子,但是如果从单元线圈的中间引出抽头,采用图46中的结构。
图47是表明另一不同的传统树脂模线圈构造的正视图。单元线圈(未示出)被模树脂9覆盖。在模树脂9的前表面上设有上下连接端子4A和4B以及一组抽头端子4C。连接端子4A和4B被接至树脂模线圈1内的单元线圈。一组抽头端子4C接至模树脂9内的线圈(未示出)的中间。与外部电路连接的端接板11通过端接螺丝7固定到上连接端子4A上。
图48是表明由另一不同的传统树脂模线圈构成的变压器的正视图。提供三个利用树脂模塑的树脂模线圈1,它们固定在铁心41中,并被上下框架40A和40B夹在当中。在每个树脂模线圈1的前表面中嵌埋有一组抽头端子4C和垂直连接端子对4A和4B。相间引线30接至连接端子4A和4B并外接树脂模线圈1的三个相。此外,短路条13外部短路一组抽头端子4C中的抽头端子,以确定树脂中线圈(未示出)的匝数。
图49示出图48中树脂模线圈1构造的截面图。多级层叠的单元线圈2被模树脂9覆盖。顶级的单元线圈2通过连接引线3A与顶级的连接端子4A连接,而底级的单元线圈2通过连接引线3B与底级的连接端子4B连接。此外,中间线圈2之间的中间部分通过抽头引线C(虚线)与一组抽头端子4C连接。
图50是表明由另一不同的传统树脂模线圈构成的变压器的正视图。提供三个利用树脂模塑的树脂模线圈201,它们固定在铁心204中,并被上下框架204A和204B夹在当中。在每个树脂模线圈201的正表面设置高压端子211,而在其背表面设置低压端子208。
图51是沿图50中V-V线截取的截面示意图。由高低压线圈202和203组成的树脂模线圈201卷绕在图右侧的铁心(未示出)上。高低压线圈202和203通过气隙200分别树脂模塑。铝线圈连接导体207从低压线圈203的各个侧面向上引出,每个导体被焊接到铝相间连接导体209。
图52是表明低压线圈203中铝箔片212的端头与线圈连接导体207之间接合的侧视图。铝箔片212与线圈连接导体207通过焊接区213连接在一起。
图53是表明另一不同的传统树脂模线圈构造的侧视图。卷绕在铁心204上的高低压线圈202和203都是树脂模塑并通过柱形气隙223而设置的。由金属箔构成的防触板226卷绕在低压线圈203的外围并引出且通过接地引线227接地。
图54是对图53中防触板226的一种发展。接地引线227钎接至防触板226的端部。防触板226卷绕在低压线圈203外径侧上,如果在高低压线圈202与203之间出现介电击穿的话,防止高压线圈202的击穿电流流入低压线圈203中。击穿电流通过防触板226和接地引线227流到外部,从而保护了低压线圈203。
图55是表明另一不同的传统树脂模线圈构造的侧视图。卷绕在铁心204上的高低压线圈202和203都是树脂模塑并通过柱形气隙223而设置的。由金属丝网构成的防触板226卷绕在低压线圈203的外围并引出且通过接地引线227接地。
图56表明图55中防触板226的详细结构。图56(a)是在卷绕前防触板226的扩展,图56(b)是沿图56(a)中Y3-Y3线截取的截面图。将金属箔226E折叠以覆盖防触板226的上下端,并钎焊到防触板226上。
然而,图42中所示的传统线圈存在将单元线圈2连接在一起所需的时间长的缺点。在图44中,相邻的每一对单元线圈2的卷绕终结和起始导体51和52必须利用压接端子35连接在一起,因此这种连接操作所花的时间长。本发明的第一个目的是提供一种制造步骤数少的树脂模线圈。
此外,图45所示的传统线圈在铝箔片100的匝之间似乎会短路。即,如果在绝缘薄膜113中存在针孔(很小的,几乎看不见的通孔),在各匝铝箔片100之间发生空气绝缘,通过针孔在各匝之间似乎会发生短路。在工厂进行的质量控制测试期间,能够检测出各匝之间发生短路的这些线圈,然后将其作为不合格产品排除出去。然而,从经济上讲,这类不合格产品是不希望有的。本发明的第二个目的是提供一种在两匝之间不会短路的线圈。
此外,在图46所示的传统线圈中,将铜板112焊接到铝箔100上并用作引线。因此,焊接铜板需要花大量的时间和劳动。本发明的第三个目的是整体地形成铝箔片和引线,缩短焊接操作所需的时间。
此外,在图47所示的传统线圈中,端接板11会旋转。即,当端接螺丝7松开时,端接板11绕端接螺丝7旋转,阻止端接板与外部电路接触。本发明的第四个目的是使端接板不旋转。
此外,图48所示的传统线圈的缺点在于,当其集成为三相变压器时,需要较长的相间引线30。换句话说,长的相间引线30必须从上部连接端子4A延伸到另一相中的下部连接端子4B,从而相间引线30需要大量的材料,于是,树脂模变压器的成本变高。本发明的第五个目的是提供一种缩短相间引线所需长度的线圈。
此外,图51所示的传统线圈具有大量的焊接部分,即,在图51和52中,在线圈连接导体207与相间连接导体209之间以及铝箔片212与线圈连接导体207之间的焊接需要大量时间。本发明的第六个目的是减少焊接操作,缩短制造时间。
此外,图53所示的传统线圈需要用相当多的时间来制造防触板226。换句话说,需要花大量的时间将接地引线227钎焊到防触板226上。图55和56所示的传统线圈中也需要用大量的时间将金属箔226E钎焊到防触板226的上下端。本发明的第七个目的是提供一种制造防触板时间短的树脂模线圈。
为了实现第一个目的,权利要求1限定的本发明能够提供这样一种树脂模线圈,其中通过将绝缘薄膜放在铝箔片上并将它们径向同轴卷绕形成单元线圈,将多个单元线圈在轴向上以一定间隔层叠;相邻单元线圈的卷绕起始导体与卷绕终结导体分别电连接在一起,使多个单元线圈串联连接,还对各单元线圈一体地树脂模塑,这里,所述单元线圈的卷绕终结导体在其外径位置上相对卷绕方向垂直折叠,再进一步向其内径折叠,从而相对轴向对角延伸,然后在相邻单元线圈的内径位置上将单元线圈向卷绕方向折叠,形成相邻单元线圈的卷绕起始导体。这种结构免除了需要利用压接端子将相邻的每一对单元线圈连接在一起,因而使连续的铝箔片能够形成单个线圈。
此外,根据权利要求2限定的本发明,跨接导体将所述单元线圈的卷绕终结导体连接到所述相邻单元线圈的卷绕起始导体上,覆盖跨接导体的跨接绝缘体包括折叠的绝缘薄膜,所述的跨接导体被绝缘薄膜夹在当中。因此,可在两侧一体地形成将跨接导体夹在当中的绝缘片,在卷绕操作期间绝缘片不会散开。
此外,根据权利要求3限定的本发明,树脂模线圈中引出抽头引线一侧的外层厚度可以大于另一侧的厚度。这种结构减小了线圈在排列多相树脂模线圈方向上的宽度。
此外,根据权利要求4限定的本发明,在线圈的内径一侧中可以设置浸渍不硬化环氧树脂的聚酯胶片层,对绕聚酯胶片层卷绕的线圈热固化。因此,在热固化后,聚酯胶片层变为性质类似玻璃纤维增强塑料(FRP),因此提高了线圈的机械力。
此外,根据权利要求5限定的本发明,通过把波纹形玻璃纤维层叠在平玻璃纤维上,由此形成的玻璃纤维垫卷绕在聚酯胶片层与线圈之间,可用模树脂浸渍玻璃纤维垫。这种结构提高了树脂对线圈内径侧的浸渍作用,因此减少不合格产品的数目。
此外,根据权利要求6限定的本发明,可以使玻璃纤维绕线圈的外径卷绕,并用模树脂浸渍玻璃纤维。因此,在用模树脂浸渍后,所述玻璃纤维变为性质类似玻璃纤维增强塑料(FRP),因此增大了线圈的机械力。
此外,根据权利要求7限定的本发明,在与引出引线一侧相对侧可以使树脂模向其外径膨胀,从而使单元线圈之间的跨接位于树脂模膨胀的位置上。这种结构减小了线圈在排列多相树脂模线圈的方向上的宽度。
为了实现第二个目的,根据权利要求8限定的本发明,可以使形成线圈的铝薄膜通过多层绝缘薄膜卷绕。因此即使绝缘薄膜中有针孔,在薄膜卷绕时可以防止针孔在同一位置上相互重叠,因此,降低了各匝之间短路的可能。
为了实现第三个目的,根据权利要求9限定的本发明,可以从形成线圈的箔导体的端头起,在铝箔片中以其纵向等间隔地形成切割线,从而形成多个切割端条带;在其根部首先切割最外侧的切割端;把与最外侧切割端相邻的切割端在其根部垂直折叠到铝箔片的长度方向,接着把其余的相邻切割端依次在其根部垂直折叠到铝箔片的长度方向;把折叠的切割端在厚度方向层叠起来形成从线圈引出的引线。在已有技术中,需将引线焊接到铝箔。这种结构仅利用铝箔片便能够形成单元线圈和引线。
此外,根据权利要求10限定的本发明,将有孔的绝缘薄膜在孔的位置上折叠,用包含这种绝缘薄膜的引线绝缘体覆盖线圈中引出引线的根部,将所述引线插入引线绝缘体的孔中。因此,可以一体地形成两个侧面把跨接导体夹在当中的绝缘片,在卷绕操作期间绝缘片不会散开。
此外,根据权利要求11限定的本发明,通过折叠玻璃纤维形成的L形玻璃纤维枕可以与单元线圈外径侧边缘引出引线的位置接触。这种结构能够使引线与线圈之间的绝缘距离维持足够大。
为了实现第四个目的,根据权利要求12限定的本发明提供这样一种树脂模线圈,其中利用绝缘树脂对整个线圈进行模塑;一对垂直的连接端子嵌埋在模塑绝缘树脂的外表面中,线圈的两端接至连接端子,与外部电路连接的端接板被固定到上部的连接端子,这里,定位螺丝穿透端接板,定位螺丝的顶端插入设置在模树脂表面的定位孔中,这种结构能够使定位螺丝起挚子作用。
此外,根据权利要求12、13限定的本发明,可以将定位螺丝固定在端接板中形成的螺纹孔中,定位螺丝的顶端插入定位孔中。
此外,根据权利要求12、14限定的本发明,可以把其上形成有定位孔的埋入附件嵌埋在模树脂的表面中,将定位孔加工成螺纹孔,定位螺丝可以通过所述端接板中形成的通孔旋入埋入附件的所述定位孔中。
为了实现第五个目的,根据权利要求15限定的本发明提供一种树脂模线圈,其中,利用绝缘树脂对整个线圈进行模塑;多个抽头端子和一对垂直的连接端子嵌埋在模塑树脂的外表面中,连接端子通过连接引线接至线圈的各端,所述的多个抽头端子通过抽头引线接至线圈的中间,其中,这对连接端子设置在这组抽头端子的上方。这种结构缩短了上下连接端子之间的间隔,因而缩短了相间引线所需的长度。
此外,根据权利要求16限定的本发明,将下部连接端子与线圈末端连接在一起的连接引线的上升部可以由圆柱形铜材制成。铜材连接引线能够增大电流密度,减小连接引线所需的厚度。此外,连接引线是圆柱形引线,而不是象现有技术那样的铝箔片,在树脂浇注期间可使连接引线牢固固定,因此允许树脂在模塑后硬化,连接引线维持准确位置。
为了实现第六个目的,根据权利要求17限定的本发明可提供一种包括片状线圈的树脂模线圈,每个线圈是通过将绝缘薄膜放在铝箔片上并以径向将它们同轴卷绕而形成的;线圈连接导体分别接至铝箔片的卷绕终结端和起始端,在片状线圈的轴向引出;相间连接导体通过线圈连接导体把多个片状线圈电连接在一起,所述的片状线圈是利用模树脂一体地模塑的,其中,所述线圈连接导体和相间连接导体都是铜导体;所述铝箔片与线圈连接导体是在室温下压焊在一起的;线圈连接导体与相间连接导体通过螺栓连接在一起。这种结构不需要将铝箔片、线圈连接导体和相间连接导体焊接在一起,因此缩短了制造所需的时间。通常,当在室温下将铝线圈连接导体与铝箔片压焊在一起时,压焊部分会受损伤。然而,本发明人已经发现,可延展的铜线圈连接导体与铝箔片之间的压焊可防止压焊部分破损。此外,由于相间连接导体是由铜制成的而不是象现有技术那样由铝箔片制成的,所以增大了电导率。铜材的相间连接导体可阻止线圈连接导体与相间连接导体之间的螺栓连接增大接触电阻。
此外,根据权利要求18限定的本发明,线圈连接导体可以分别置于所述铝箔片的卷绕终结端和起始端;这个重叠部分被安装在压焊装置方块之间,压焊装置的每个方块有一个能够在室温下进行压焊的凸出部分。
此外,根据权利要求19限定的本发明,在所述的方块上可以设置多个凸出部分;为了在室温下进行多次压焊,所述重叠部件中的压焊部分以片状线圈的轴向顺次移动。
此外,根据权利要求20限定的本发明,在所述片状线圈的最内层和最外层之中可以卷绕上面涂覆不硬化耐热环氧树脂的聚萘二甲酸乙二醇酯(PET-EPP)薄膜。因此,加热后,涂覆在PET-EPP上的环氧树脂发生硬化,增大了片状线圈的机械强度。
此外,根据权利要求21限定的本发明,在所述的片状线圈中设置包括柱形气隙的冷却路径;可以形成从片状线圈上下端面垂直伸出且和片状线圈的最内层和最外层以及所述冷却路径的内径壁和外径壁接触的树脂导槽;除冷却路径部分以外,在树脂导槽之间填充模树脂。因此,能够使模树脂在片状线圈端部固化,没有漏泄。
根据权利要求22限定的本发明,在所述片状线圈的最内层中卷绕上面涂覆不硬化耐热环氧树脂的聚萘二甲酸乙二醇酯(PET-EPP)薄膜;在片状线圈的绝缘片中采用PET-EPP;在所述片状线圈的最外层中卷绕上面涂覆不硬化耐热环氧树脂的热收缩带(EPP-TG)。因此,加热后,涂覆在PET-EPP和PEN-TG上的环氧树脂发生硬化,增大了片状线圈的机械强度。在加热的同时,PEN-TG热收缩,使片状线圈向其内径侧绷紧,从而使模变压器线圈更加牢固。
此外,根据权利要求23限定的本发明提供一种树脂模线圈,其中,将各自包括铝箔片的线圈片和绝缘片相互放在一起并同轴卷绕;在室温下将线圈片的卷绕起始和终结端压焊到包含铜板的连接导体上,对整个装置进行树脂模塑,把连接导体引出到外部,这里,线圈片与包含铝箔片的重叠片一起压焊到连接导体上。这种结构能够把线圈片、重叠片和连接导体正确地连在一起。即使线圈片的厚度在0.2mm以下,通过将铝的总厚度(线圈片与重叠片的总厚度)设定为至少0.2mm,能够实现适当连接。
在这种结构中,线圈片包括两个相互放在一起并卷绕的铝箔片,其中一个用作重叠片。这种结构能够形成每个薄线圈片厚度在0.2mm以下的多个薄线圈片相互卷绕而成的线圈,该线圈片柔软且容易卷绕,从而缩短卷绕所需的时间。
为了实现第七个目的,根据权利要求25限定的本发明提供一种树脂模线圈,其中,利用绝缘树脂对绕铁心卷绕的高、低压线圈进行模塑,并通过圆柱形气隙配置;包括金属箔的防触板绕所述低压线圈的外围卷绕;设置一接地引线并引出到外部,这里,将所述金属箔的端部在卷绕方向上切割成Γ形条,在其根部将它垂直折叠到所述卷绕方向,然后以宽度减小到原宽度三分之一的方式重叠折叠两次,用热收缩管覆盖重叠折叠的条带形成接地引线。这种结构能够通过简单地折叠金属箔形成接地引线,而且不需要钎焊到防触板上,大大缩短了制造防触板所需的时间。
此外,根据权利要求26限定的本发明提供一种树脂模线圈,其中,利用绝缘树脂对绕铁心卷绕的高、低压线圈进行模塑,并通过圆柱形气隙配置;包括金属丝网的防触板绕低压线圈的外围卷绕,其特征在于,将绝缘薄膜折叠,使得所述防触板的上下两端卷曲并与防触板卷绕在一起。这种结构不需要钎焊到防触板上,大大缩短了制造防触板所需的时间。


图1是表明根据权利要求1中本发明实施例的树脂模线圈结构的透视示意图。
图2是沿图1中A-A线截取的截面图。
图3是图2中跨接部分的扩展图。
图4是表明根据权利要求2中本发明实施例的树脂模线圈结构的截面示意图。
图5是图4中跨接部分的扩展图。
图6是表明根据权利要求3-6中本发明实施例的树脂模线圈部分跨接部分的俯视图。
图7是沿图6中B-B线截取的截面图。
图8是表明图6中玻璃纤维垫结构的透视图。
图9是根据权利要求7中本发明实施例的树脂模线圈的截面示意图。
图10是图9的俯视图。
图11是根据权利要求8中本发明实施例的树脂模线圈的放大截面示意图。
图12是说明根据权利要求9中本发明实施例在树脂模线圈中形成引线过程的侧视图。
图13是根据权利要求10中本发明实施例的树脂模线圈的放大截面示意图。
图14是根据权利要求10中本发明另一不同实施例的树脂模线圈的放大截面示意图。
图15示出从绝缘片107上制造图13或14中引线绝缘体106的过程。
图16是表明将引线104插入图15中引线绝缘体106的孔108中的侧视图。
图17是根据权利要求11中本发明实施例,表明图13或14中所用玻璃纤维枕105详细结构的透视图。
图18是表明根据权利要求13中本发明实施例的树脂模线圈结构的正视图。
图19是表明在图18的结构中设置端接板11的结构的正视图。
图20是沿图19中X1-X1线截取的截面图。
图21是表明根据权利要求14中本发明实施例的树脂模线圈结构的正视图。
图22是表明在图21的结构中设置端接板11的结构的正视图。
图23是沿图22中Y1-Y1线截取的截面图。
图24是表明由权利要求15中本发明实施例的用树脂模线圈构成的变压器的正视图。
图25是表明图24中树脂模线圈1结构的截面图。
图26是根据权利要求17和18中本发明实施例表明对铝箔与线圈连接导体进行冷压焊的压焊装置的透视图。
图27是图26的俯视图。
图28表明将相间连接导体连接到树脂模线圈上的结构。图28(a)是正视图,图28(b)是侧视图。
图29表明根据权利要求19中本发明实施例对铝箔与线圈连接导体进行冷压焊的压焊装置。图29(a)是正视图,图29(b)是侧视图。
图30是表明根据权利要求20中本发明实施例的树脂模线圈结构的俯视图。
图31是沿图30中X2-X2线截取的截面图。
图32是表明根据权利要求21和22中本发明实施例的树脂模线圈结构的俯视图。
图33是沿图32中Y2-Y2线截取的截面图。
图34是沿图33中Z3-Z3线截取的截面图。
图35是根据权利要求23中本发明一个参考例表明树脂模线圈结构的一侧截面图。
图36是图35中树脂模线圈的扩展示意图。
图37是表明图36中冷压焊部分周围的放大截面图。
图38是表明权利要求23中实施例的树脂模线圈的冷压焊部分周围的放大截面图。
图39示出从箭头C所指方向看到的图38的相同部分。
图40是根据权利要求25中本发明实施例表明模塑防触板方法的扩展图。
图41表明根据权利要求26中本发明实施例的防触板的详细结构。图41(a)是卷绕前的扩展图。图41(b)是沿图41(a)中X3-X3线截取的截面图。
图42是表明传统树脂模线圈结构的部分剖面图。
图43是沿图42中A1-A1线截取的截面图。
图44是表明图43中连接线周围的放大截面示意图。
图45是图43中单元线圈的放大截面图。
图46是表明另一不同的传统树脂模线圈引线引出结构的侧视图。
图47是表明另一不同的传统树脂模线圈结构的正视图。
图48是表明另一不同的传统树脂模线圈结构的正视图。
图49是表明图48中树脂模线圈1结构的截面图。
图50是由另一不同的传统树脂模线圈构成的变压器的正视图。
图51是沿图50中V-V线截取的截面示意图。
图52是表明图51中低压线圈的铝箔端与线圈连接导体之间接合的侧视图。
图53是表明另一不同的传统树脂模线圈结构的侧视图。
图54是图53中防触板的扩展图。
图55是表明另一不同的传统树脂模线圈结构的侧视图。
图56表明图55中防触板的详细结构。图56(a)是卷绕前的扩展图。图56(b)是沿图56(a)中Y3-Y3线截取的截面图。
下面将基于本发明的实施例对其进行描述。图1是表明权利要求1本发明实施例的树脂模线圈结构的透视示意图。图2是沿图1中A-A线截取的截面图。跨接导体62代替了图43和44中的连接线55,它们设置在与连接线55相同的位置。图1和2中的其它结构与传统装置相同,因此略去对具有相同标号的类似元件及其详细描述。
在图1和2中,单元线圈2B有一个垂直折叠的卷绕终结导体61,以从外到内的对角线方向向下延伸,像跨接导体62一样,引入到卷轴10上,这里它被再次垂直折叠,形成单元线圈2C的卷绕起始导体63。以相同方式通过跨接导体将单元线圈2C引入到单元线圈2D。与此同时,铝箔片可以继续与线圈卷绕。在图1中,省略了卷轴和模塑绝缘树脂。在图2中也省略了模树脂。
图3是对图2中跨接部分62的扩展。沿跨接部分62设置绝缘片65。绝缘片65和另一绝缘片64将图2中所示的跨接部分62夹在当中,以阻止跨接部分62与单元线圈2B和2C接触。图1至3中所示的结构消除了图37中传统线圈的缺点,即需要花相当多的时间将单元线圈连接在一起。
图4和5是表明根据权利要求2本发明实施例的树脂模线圈结构的截面示意图。图4和5是沿图1中A-A线截取的截面图,但是与图2和3略有不同。换句话说,覆盖跨接部分62两侧的绝缘片164在折叠部分165处被折叠。图4和5中其它结构与图2和3中的相同。跨接部分62两侧上的绝缘片164是整体形成的,在卷绕期间不会散开。这便于操作并降低操作者的疲劳,故又提高了工作效率。
图6是表明根据权利要求3至6本发明实施例的树脂模线圈的部分跨接区的俯视图。图7是沿图6中B-B线截取的截面图。图8是表明图6中玻璃纤维垫结构的透视图。
在图6和7中,以从线圈内径侧开始依次在外围形成浸渍有不固化环氧树脂的聚酯胶片层23、玻璃纤维垫22、单元线圈2、玻璃纤维21和模树脂9。从单元线圈2拉出引线3A并接至连接端子4A,连接端子4A与外部电路(未示出)相连接,如图6所示。
在图8中,玻璃纤维垫22是由其上层叠波纹形玻璃纤维22B的平玻璃纤维22A构成的。由于纤维中纱线的牵连,玻璃纤维22A和22B不会分离,除非采用切割器将其切割开。由于在平玻璃纤维22A与波纹形玻璃纤维22B之间有间隙,它们可以很好地浸渍模树脂。
回过来参考图7,将聚酯胶片层23绕左侧的卷轴(未示出)卷绕,玻璃纤维垫22绕聚酯胶片层23的外径卷绕。单元线圈2绕玻璃纤维垫22的外径卷绕,玻璃纤维21绕单元线圈2的外径卷绕。在去除卷轴后,将玻璃纤维垫21内径侧上的各层容纳在模中并整个地浸渍环氧树脂而形成模树脂9,接着对各层进行加热。因此,玻璃纤维21、玻璃纤维垫22和聚酯胶片层23全部都变为与FRP类似的特性,以便增大线圈的机械力。传统技术在模树脂9内侧没有玻璃纤维,如图43所示,因此,限制了线圈中的机械力。图7中的结构增大了线圈的机械力,因此提高了其短路的能力,改善了变压器的可靠性。
此外,在现有技术中,单元线圈2是利用绝缘圆柱体作为卷轴10卷绕的,如图43所示,卷轴10起线圈的绝缘体的作用。结果,当用环氧树脂浸渍模树脂9时,阻止环氧树脂在单元线圈2与卷轴10之间前进,因此增大了不合格产品的几率。由于玻璃纤维垫22能够很好地浸渍环氧树脂,如上所述,大大地降低了不合格产品的几率,即几乎接近为零。
在图6中,在引出引线3A一侧上模树脂9的厚度XX大于其它侧面上的厚度YY。厚度XX为在模树脂9中延伸引线3A所需,但是在模树脂9的其它侧面不引出引线3A。尽管图中未示出,从厚度XX这一部分引出一条线圈抽头引线。因此,减小了图6中线圈的垂直宽度。这种结构允许以垂向排列多相线圈,还允许设置铁心的垂直长轭。因此,厚度YY的减小使铁心窗口尺寸减小,因而也使整个变压器的尺寸减小。
图9是根据权利要求7的本发明实施例的树脂模线圈的截面示意图。图10是图9的俯视图。在图9中,从单元线圈2的左侧引出引线3A和引线3C。另一方面,单元线圈2通过线圈2右侧的跨接导体62连接在一起。连接引线接至外部电路,而抽头引线切换线圈中的匝数。引线3A是从单元线圈2末端引出到连接端子4A的连接引线的一个例子,而引线3C是从单元线圈2的中间引出到连接端子4C的抽头引线的一个例子。在图10中,从单元线圈2外侧引出引线的厚度X大于树脂模9在垂直该厚度X的方向上的厚度Y。树脂模9在引线侧的凸起与图6中所示的相似。另一方面,树脂模9在单元线圈2的跨接侧的厚度Z也大于其在垂直该厚度Z的方向上的厚度Y。这种结构减小了线圈在多相线圈排列方向(图10中的垂直方向)上的宽度,因此减小了铁心窗口的尺寸以及整个变压器的尺寸。
图11是根据权利要求8的本发明实施例的树脂模线圈的放大截面示意图。铝箔片100通过两个绝缘薄膜113卷绕,形成单元线圈2。其它结构与图45中传统结构相同。
在图11中,即使在绝缘薄膜113中有针孔,当绝缘薄膜113卷绕时,这些针孔在同一位置上被阻止相互重叠,降低了单元线圈2在匝间被短路的可能。于是,使不合格产品的几率降低到接近于零。虽然在图11中,铝箔片100是通过两层绝缘薄膜113卷绕的,若让铝箔片100通过两层以上的绝缘薄膜113(通常有多层绝缘薄膜113)卷绕,可以进一步阻止匝间的短路。
图12是表明根据权利要求9的本发明实施例形成树脂模线圈引线的过程的侧视图。在图12中按照(a)到(e)的次序形成引线。在图12(a)中,在形成单元线圈的铝箔片100中从右到左以等间隔形成切割线101。这一步形成四个相同宽度的切割端条带102A、102B、102C、102D。在图12(b)所示的下一步中,最外侧(图中底部)的切割端102A在其根部103被切割。在图12(c)所示的下一步中,将与切割端102A相邻的切割端102B在其根部垂直折叠到铝箔片100的纵向方向(图中的横向方向)。在图12(d)所示的下一步中,将切割端102C在其根部在图中向下折叠。在这种情况下,被折叠的切割端102B和102C在厚度方向上相互层叠。在图12(e)所示的下一步中,切割端102D在其根部在图中向下折叠并置于切割端102C上。将切割端102B、102C和102D相互放在一起形成引线104,将引线104接至连接端子4A或4C(图9)。在图46所示的传统装置中,将铜板112焊接到铝箔片100上并用作引线。因此,焊接铜板112需要花相当多的时间和劳动。在图12的情况中,能够仅利用铝箔片100整体形成单元线圈和引线104。因此,减少了制造引线所需的时间,防止不适当焊接,因而从根本上提高了可靠性。
图13是根据权利要求10的本发明实施例的树脂模线圈的放大截面示意图。该图示出从单元线圈引出抽头引线104部分的结构。线圈轴位于图右侧,单元线圈2的周围填充模树脂(未示出)。引线104具有与图12(e)所示相同的结构,它的引出部分被引线绝缘体106夹在当中。L-形玻璃纤维枕105插在引线绝缘体106的上面和下面,以使每一个枕与单元线圈2的外径侧边缘接触。引线绝缘体106使引线104与单元线圈2的铝箔片相绝缘,玻璃纤维枕105允许在引线104与单元线圈2之间可靠地维持足够长的绝缘距离。
图14是根据权利要求10的本发明实施例的树脂模线圈的放大截面示意图。从单元线圈2的内径侧引出抽头或连接引线104,将其接至外部电路。其它结构与图13相同。因此,玻璃纤维枕105和引线绝缘体106提供相同的功能。图15示出从图13或14中的绝缘片107制造引线绝缘体106的过程。图15(a)是表明为引线绝缘体106而切割绝缘片107的俯视图,这里绝缘片107(例如聚酰亚胺纸)是长方形的,其中心有一个长方形的孔108。以将孔108一分为二的方法在虚线所示的位置折叠109。图15(b)是表明通过在折叠位置109处折叠绝缘片107而获得的引线绝缘体106形状的透视图。引线被夹在绝缘片107当中并穿过孔108。
图16是表明将引线104插入图15(b)所示引线绝缘体106的孔108中的侧视图。引线绝缘体106的孔108设置在与单元线圈2相对的引线104的侧面上。因此,引线104两个侧面上的绝缘片是一体形成的,阻止引线绝缘体106在卷绕操作期间散开。
图17是表明根据权利要求11的本发明实施例在图13或14中使用的玻璃纤维枕105详细结构的透视图。在使玻璃纤维的被折叠部分相互面对并使纤维的两端111B相互对接的方法在两个折叠位置111A折叠带形玻璃纤维111。然后,在折叠位置111C和111D垂直折叠纤维,垂直形成如图17所示的L-形玻璃纤维枕105。玻璃纤维枕105是四个玻璃纤维111的叠层,在引线与单元线圈之间能够维持足够大的绝缘距离。
图18和19是表明根据权利要求12至14的本发明实施例的树脂模线圈结构的的正视图。图18示出略去了端接板的情况,图19示出有端接板的情况。在连接端子4A上方有一个定位孔12,将定位螺丝8插入定位孔12中。
图20是沿图19中X1-X1线截取的截面图。在连接端子4A中形成一个螺纹孔14,允许端接螺丝穿透端接板11固定在螺纹孔14中,使端接板11固定。定位孔12设置在连接端子4A上方的模树脂9表面中。螺纹孔15穿透端接板11,定位螺丝8是一个埋头螺钉,将螺钉轴身旋入螺纹孔15中,从而穿透端接板11。可以将定位螺丝8的顶部插入到定位孔12中,然后将定位螺丝8拧到端接板11中。即使端接螺丝7松开,定位螺丝8可阻止端接板11旋转。
图21和22是表明根据权利要求15的本发明实施例的树脂模线圈结构的正视图。在图21中去掉了端接板11,而在图22中给出了端接板11。将有十字凹槽的定位螺丝17插入设置在连接端子4A顶部的嵌入配件16中。
图23是沿图22中Y1-Y1截取的截面图。嵌入配件16被嵌埋在连接端子4A顶部的模树脂9表面中。在嵌入配件16中形成形状与螺纹孔一样的定位孔18。另一方面,孔11A穿透端接板11,定位螺丝17的轴身部分穿透孔11A。定位螺丝17的顶部被拧到定位孔18中。即使端接螺丝7松开,定位螺丝17可阻止端接板11旋转。由于端接板11被牢固地固定到嵌入配件16中,图23所示的实施例比图20的更适合于大容量线圈。
图24是表明由权利要求15本发明实施例的树脂模线圈1组成的变压器的正视图。连接端子4A和4B设置在抽头端子群4C的上方。因此减小了上下连接端子4A和4B之间的间隔,与图48相比,这又减小了相间引线30的长度。其它结构与图48所示传统结构相同,对其详细描述从略。
图25是表明图24中树脂模线圈1结构的截面图。连接端子4B设置在抽头端子群4C的上方。底部的单元线圈2通过连接引线3B接至连接引线3B。其它结构与图49所示传统结构相同。通过在树脂模线圈1周围方向上升高可阻止连接引线3B与抽头引线3C相互接触,从而使它们相互分离。此外,连接引线3B的升高部分是由圆柱形铜材料组成的。
在图25中,连接端子4A与4B之间的部分必须承受树脂模线圈1在相间绝缘测试期间施加的冲击电压。因此,尽管连接端子4A与4B之间的最小允许间隔是由树脂模线圈1的绝缘等级确定的,但是只要中间部分能够承受冲击电压,端子可以尽可能靠近。连接引线3B的升高部分是由铜材制成的,所以降低引线的电阻,提高其电流密度。因此,可以减小连接引线3B的厚度。此外,与传统的铝箔相比,由于连接引线3B是圆柱形,可以阻止偏转,在模树脂9铸模期间牢固地固定,在树脂模塑后,可以设定树脂9,连接引线3B保留在准确位置上。这种结构阻止连接引线3B接近或接触到抽头引线3C。结果,消除了不合格的产品,提高了线圈的经济性。
图26是表明根据权利要求17和18的本发明实施例用压焊装置215冷压焊铝箔212和线圈连接导体207a的透视图。图27是图26的俯视图。在图26和27中,将铜-线圈连接导体207a置于形成片状线圈210的铝箔212的卷绕起始或终结端上,将重叠部分安装在压焊装置215的上部方块216和下部方块217之间。压焊装置进行冷压焊,在上部方块216的底面设置一凸出部分218。线圈连接导体207a与铝箔212的重叠部分位于凸出部分218的位置上。在冷压焊期间,下部的液压缸219将下部方块217升高,从上部方块216的凸出部分218将几百Kgf/mm2压应力施加到线圈连接导体207a与铝箔212的重叠部分。在线圈连接导体207a的横向中间形成压焊接合,而线圈连接导体207a顺次向其纵向移动,因此形成多个压焊接合,使导体与铝箔212相连接。
由于线圈连接导体207a是由铜材制成的,铜材比铝材更易延展,凸出部分218的凸出长度是相当大的,可以增大线圈连接导体207a的塑性形变,给铝箔212的压焊接合提供足够大的压应力。当凸出部分218的凸出长度为2.3mm时,限制压焊材料的厚度,很可能把厚度不足2mm的线圈连接导体207a与厚度不足1mm的铝箔212压焊在一起。然而,当凸出部分218的凸出长度为5.2mm时,可以把3mm厚的线圈连接导体207a与2.5mm厚的铝箔212冷压焊在一起。以这种方式,能够将片状线圈210的铝箔212与线圈连接导体207a通过冷压焊的手段连接在一起,所以,与需要进行焊接的传统结构相比,可以缩短卷绕操作所需的时间,消除了对焊接散热处理的需要。
图28示出一种与相间连接导体209a相连接的树脂模线圈201的结构。图28(a)是正视图,图28(b)是侧视图。线圈连接导体207a与相间连接导体209a都是由铜材制成并通过螺栓220连接的。由于铝材的导电率比铜材的差,与铜材相比,两种铝材之间的螺栓连接需要的导体尺寸大。此外,由于铝材的接触电阻大,螺栓连接需要增大线圈连接导体207a与相间连接导体209a之间的接触面。图28中的结构能够减小线圈连接导体207a与相间连接导体209a的宽度和厚度。
图29示出根据权利要求19的本发明实施例压焊装置进行铝箔与线圈连接导体的冷压焊。图29(a)是正视图,图29(b)是侧视图。在上部方块216上设置多个凸出部分218。其它结构与图26中的结构相同。例如,如图29(a)所示,通过设置三个凸出部分218可以同时形成三个压焊接合,大大缩短了压焊所需的时间。
图30是表明根据权利要求20的本发明实施例一种树脂模线圈结构的俯视图。线圈是以形成长方形的方式卷绕的,线圈连接导体207在垂直方向上延伸。最外层205A和最内层205B是由PET-EPP制成的。
图31是沿图30中X2-X2线截取的截面图。然而,未示出图31的下半部分,但是它与上半部分完全对称。片状线圈205是由放在绝缘薄膜205D上并绕其卷绕的铝箔205C构成的,绝缘薄膜是由聚萘二甲苯乙二醇酯薄膜(PET)制成的,在片状线圈205上下端垂直凸出的最外层205A与最内层205B之间填充模树脂221。整个模变压器线圈作加热和固化处理。因此,设置最外层205A和最内层205B以及包围片状线圈205的模树脂221,形成具有高的机械强度的线圈。
图32是表明根据权利要求21和22的本发明实施例的一种树脂模线圈结构的俯视图。模变压器线圈以形成圆形的方式卷绕,线圈连接导体207在垂直方向上延伸。在片状线圈206内周边通过隔离体224形成冷却路径223,每条路径是由气隙组成的,以便将线圈分离成外层线圈206A和内层线圈206B。
图33是沿图32中Y2-Y2线截取的截面图。图34是沿图33中Z3-Z3线截取的截面图。然而,图33中未示出下半部分,但是,它与上半部分完全对称。内外层线圈206B和206A是由PEN-EPP制成的绝缘薄膜262与铝箔261叠合构成的,内层线圈206B的最内层232是由PEN-EPP制成的。此外,外层线圈206A的最外层231是由卷绕的EPP-TG材料制成的。形成树脂导槽233使之从内外层线圈206A和206B的顶端表面垂直凸出并与外层线圈206A的最外层和冷却路径223的内外径壁接触。此外,内层线圈206B的最内层232向上凸出,也被用作树脂导槽。以树脂导槽233侧面向上的方式放置这种模变压器线圈,除通道路径223部分以外,在树脂导槽233之间的部分填充模树脂221,如图33所示。然后对模变压器线圈加热。一旦已设定模树脂221,将模变压器线圈上下颠转,除通道路径223特定部分以外,在树脂导槽233相对两侧之间的部分填充模树脂221,接着进行热处理。
在图33这种结构的模线圈中,在加热后对施加到PEN-EPP和EPP-TG的环氧树脂进行固化,以显著地增大片状线圈206的机械强度。尽管传统技术不是积极地在片状线圈206中填充环氧树脂,但是图33中的结构在片状线圈206内部填充环氧树脂,将绝缘薄膜262和PEN-EPP最内层232牢固地粘附到铝箔261上。此外,在加热期间EPP-TG最外层收缩,所以整个模变压器线圈向其内径收紧,增大了其牢固性。
此外,如果在图33中外层线圈206A和内层线圈206B的端头填充模树脂,树脂导槽233也能够使模树脂221固化,没有漏泄。根据现有技术,最内层232是由绝缘的圆柱卷轴组成的,未设置最外层231和树脂导槽233。暂时阻断冷却路径223,将模变压器线圈的外围浸没在装有模树脂的容器中。因此,片状线圈206的内里没有浸渍环氧树脂。传统的浸没在装有模树脂容器中的目的不是提高机械强度而是防止片状线圈吸收水分。图33的结构不仅防止片状线圈吸收水分,而且还提高了机械强度。树脂导槽233不需要阻断冷却路径223并能够使模树脂221固化而没有漏泄。
图35是表明根据权利要求23中本发明一个参考例的树脂模线圈结构的一侧截面图。由铝箔制成的线圈片302(实线)和由塑料薄膜制成的绝缘片307(虚线)绕轴308同轴卷绕几层。线圈片302的卷绕起始(内层)和卷绕终结端(外层)各自被冷压焊到铜板制成的连接导体301上。利用树脂对双点划线划界的框架内部进行模塑,从框架中引出连接导体301。
在图35中,连接导体301的右端接至外部电路或相间连接引线。为了获得良好的接触,连接导体301是由铜材制成的。把这种线圈用作树脂模变压器的低压线圈,所以可流过大电流。因此连接导体301包括宽的铜板,在连接导体301与线圈片302之间设置接合,允许大电流流过。
图36是图35中树脂模线圈的扩展示意图。线圈片302的卷绕起始或终结端被冷压焊到连接导体301上。图上示出的310为冷压焊部分,在几个点处对连接导体301和线圈片302进行冷压焊,以承受通过接合流过的电流。冷压焊在室温下使硬金属材料压接在一起同时使它们变形。在接合的位置上材料相互扩散,形成一种牢固的金属耦合。
图37是表明图36中冷压焊部分周围的放大截面图。冷压焊装置用虚线表示,由带有凸出部分305的上部方块304和下部方块306组成。相互放置的连接导体301和线圈片302被上下部方块304和306夹在当中并被液压缸(未示出)压紧。连接导体301和线圈片302承受大约2kN/mm2的压力。因此,连接导体301和线圈片302被凸出部分305变形,凹进到冷压焊部分310中。当冷压焊方法还未建立时,连接导体301和线圈片302被钎焊到一起,连接需要相当长的时间。然而,冷压焊方法利用液压缸进行简单的压焊,简化了操作并缩短了操作所需的时间。
然而,上述参考例的结构不能把薄线圈片压焊到连接导体上。
冷压焊的一个具体例子涉及将厚度在0.2mm至0.8mm之间的线圈片压焊到厚度在1.6或2.0mm之间的连接导体上。将冷压焊装置中的凸出部分设计成凸出长度X在1.6与2.3mm之间(图37),施加压力直至线圈片和连接导体的总厚度达到预定值(约50%)为止。然而,已经发现,冷压焊方法不能使厚度不足0.2mm的线圈片足够地变形,导致与连接导体的连接不良。因此,厚度不足0.2mm的线圈片必须钎焊到连接导体上,这种连接需要相当长的时间。
图38是表明权利要求23中实施例的树脂模线圈的冷压焊部分周围的放大截面图。图38示出树脂模线圈冷压焊部分结构的目的是能够把薄线圈片压焊到连接导体上,连接导体301、线圈片302和由铝箔制成的重叠片303,相互放置,被上下部方块304和306夹在当中,然后被液压缸(未示出)压紧,如图38所示。连接导体301、线圈片302和重叠片303承受大约2kN/mm2的压力,与在图37参考例的装置中一样。凸出部分305使这三个元件变形和相互压焊。
图39示出从箭头C所指方向看到的图38的相同部分,对应于图36参考例中树脂模线圈的扩展示意图。该图与图36的不同之处在于重叠片303(虚线)被压焊到线圈片302的背面(与连接导体301相对的表面)。
如果图38中铝材料一侧的总厚度(线圈片302和重叠片303的总厚度)与图37中根据参考例配置的线圈片302的厚度相等,那么,如果施加相同的压力,两侧的变形程度是相等的。因此,即使线圈片302的厚度为0.2mm或更小,通过将铝材料一侧上的总厚度设定在0.2mm以上,能够使线圈片302与连接导体301良好接合。
在图39中,重叠片303可以与线圈片302具有相同的宽度和长度,线圈片302可以由两种相互放置和卷绕在一起的铝箔形成。因此,提供的线圈可以包括多个厚度不足0.2mm的被重叠卷绕的薄线圈片302。由于线圈片302柔软,它们易于卷绕,这就缩短了卷绕所需的时间。
图40是表明根据权利要求25中本发明实施例的防触板模塑方法的扩展图。按照图40(a)至(d)的次序,对防触板226进行模塑。首先,在卷绕方向(图中的横向)上将金属箔226的一端切割成保留条形部分226A(宽为D)的Γ形,如图40(a)所示。在条形部分226A的根部(折叠226B)将其垂直折叠到卷绕方向,如图40(b)所示。此外,在宽度D的三分之一处将条形部分226A重叠折叠(折叠226C),如图40(c)所示。然后,将条形部分226A对半折叠,如图40(d)所示。在图40(d)中,用热收缩管229覆盖三重叠折叠条形部分226A,形成接地引线227。用这种方式,通过将金属箔226折叠能够简单地形成接地引线227。这种结构不需要对防触板进行钎焊,因此从根本上缩短了制造防触板226所需的时间。此外,防触板226和接地引线227是一体形成的,所以不存在钎焊不合格的可能性,与现有技术相比显著地提高了可靠性。
图41表明根据权利要求26中本发明实施例的防触板的详细结构。图41(a)是卷绕前的扩展图。图41(b)是沿图41(a)中X3-X3线截取的截面图。将绝缘薄膜230折叠,从而同时包住防触板226的上下端。其它结构与传统结构相同。在图41所示的情况中,防触板226绕低压线圈卷绕。简单地将绝缘薄膜230折叠并装在防触板226的两端。这种结构不需要钎焊到防触板226上,因此缩短了制造防触板226所需的时间。
根据权利要求1限定的本发明,在单元线圈外径位置上将其垂直折叠到卷绕方向上,再进一步折叠到其内径上,形成卷绕终结导体,从而相对轴向对角延伸,然后在相邻单元线圈的内径位置上将单元线圈在卷绕方向上折叠,形成相邻单元线圈的卷绕起始导体。这种结构不需要利用压接端子将每对相邻单元线圈连接在一起,可用连续的铝箔形成单个线圈。结果,从根本上缩短了制造线圈所需的时间,这又降低了树脂模线圈的成本。
根据权利要求2限定的本发明,跨接导体将单元线圈的卷绕终结导体连接到相邻单元线圈的卷绕起始导体上,覆盖跨接导体的跨接绝缘体包括折叠的绝缘薄膜,所述的跨接导体被绝缘薄膜夹在当中。因此,跨接绝缘体两侧的绝缘片是一体形成的,在卷绕操作期间不会散开。因此,简化了操作,减轻了操作者的疲劳,提高了工作效率。
根据权利要求3限定的本发明,树脂模线圈中引出抽头引线这一侧的外层厚度大于另一侧的厚度。这种结构减小了整个变压器的尺寸,降低了其成本。
根据权利要求4限定的本发明,在线圈的内径一侧设置浸渍不硬化环氧树脂的聚酯胶片层,对绕聚酯胶片层卷绕的线圈热固化。这种结构增大线圈的机械力,提高变压器的可靠性。
根据权利要求5限定的本发明,通过把波纹形玻璃纤维层叠在平玻璃纤维上而形成的玻璃纤维垫卷绕在聚酯胶片层与线圈之间,用模树脂浸渍玻璃纤维垫。这种结构提高了树脂对线圈内径侧的浸渍,因此减少了不合格产品的数目。
根据权利要求6限定的本发明,玻璃纤维绕线圈的外径卷绕,用模树脂浸渍玻璃纤维。这种结构增大了线圈的机械力,进一步提高了变压器的可靠性。
根据权利要求7限定的本发明,树脂模向与引出引线一侧相对的一侧上外径扩大,从而使单元线圈之间的跨接位于树脂模放大的位置上。这种结构减小铁心的尺寸,因此减小整个变压器的尺寸。
根据权利要求8限定的本发明,形成线圈的铝膜通过多层绝缘薄膜卷绕。这种结构能够阻止匝间短路,这又降低了不合格产品的数目和成本。
根据权利要求9限定的本发明,从形成线圈的箔的端头起在铝箔片中以纵向等间隔地形成切割线,从而形成多个切割端条带;在其根部首先切割最外侧的切割端;把与最外侧切割端相邻的切割端在其根部垂直折叠到铝箔片的长度方向,接着把其余的相邻切割端依次在其根部垂直折叠到铝箔片的长度方向;把折叠的切割端在厚度方向层叠起来,形成从线圈中引出的引线。这种结构大大缩短了制造引线所需的时间,提高了可靠性。
根据权利要求10限定的本发明,将带有孔的绝缘薄膜在孔的位置上折叠,用包含这种绝缘薄膜的引线绝缘体覆盖从线圈中引出引线的根部,将所述引线插入引线绝缘体的孔中。因此,引线两侧的绝缘片一体形成,在卷绕操作期间不会散开,从而提高工作效率。
根据权利要求11限定的本发明,通过玻璃纤维折叠形成的L形玻璃纤维枕与从单元线圈外径侧边边缘引出引线的位置接触。这种结构能够把引线与线圈之间的绝缘距离维持足够大,这可以提高可靠性。
根据权利要求12至14限定的本发明,定位螺丝穿透到端接板,将定位螺丝的顶部插入设置在模树脂表面的定位孔中,这种结构阻止端接板旋转,确保端接板与外部电路维持正常接触。
根据权利要求15限定的本发明,一对连接端子设置在一组抽头端子的上方。这种结构缩短相间引线所需的长度,因此降低了装置成本。
根据权利要求16限定的本发明,将下部连接端子与线圈端部连接在一起的连接引线上升部是由圆柱形铜材制成的。这种结构能够减小连接引线的厚度,减少不合格产品,从而进一步降低装置的成本。
根据权利要求17限定的本发明,线圈连接导体和相间连接导体都是铜导体;铝箔片与线圈连接导体是在室温下压焊在一起的;线圈连接导体与相间连接导体通过螺栓连接在一起。这种结构允许省略所有的焊接连接操作,显著缩短制造所需时间。
根据权利要求18限定的本发明,所述的线圈-连接导体分别置于所述铝箔片的卷绕终结和起始端;这个重叠部分被安装在压焊装置方块之间,每个压焊装置方块有一个能够在室温下压焊的凸出部分。这种结构在铝箔与线圈连接导体之间提供高可靠压焊。
根据权利要求19限定的本发明,在所述的方块上设置多个凸出部分;为了在室温下进行多次压焊,所述重叠部件中压焊部分以片状线圈的轴向顺次移动。这种结构提高了把铝箔压焊到线圈连接导体上的速度。
根据权利要求20限定的本发明,在所述片状线圈的最内层和最外层中卷绕上面涂覆不硬化耐热环氧树脂的聚萘二甲酸乙二醇酯(PET-EPP)薄膜。这种结构显著地增大模变压器线圈的机械强度,也增强了线圈的短路容量。
根据权利要求21限定的本发明,在所述的片状线圈中设置包括柱形气隙的冷却路径;形成从片状线圈上下端表面垂直伸出并触及片状线圈的最内层和最外层以及所述冷却路径的内径壁和外径壁的树脂导槽;除冷却路径部分以外,在树脂导槽之间填充模树脂。这种结构允许树脂导槽从片状线圈的上下端表面伸出,以便能够使片状线圈端部的模树脂固化,没有漏泄,从而不需要阻断冷却路径。
根据权利要求22限定的本发明,在所述片状线圈的最内层中卷绕上面涂覆不硬化耐热环氧树脂的聚萘二甲酸乙二醇酯(PET-EPP)薄膜;在片状线圈的绝缘片中采用PET-EPP;在所述片状线圈的最外层中卷绕上面涂覆不硬化耐热环氧树脂的热收缩带(EPP-TG)。这种结构进一步增大模变压器线圈的机械强度,因此增大线圈的短路强度。
根据权利要求23限定的本发明,线圈片与包含铝箔片的重叠片一起压焊到连接导体上。这种结构能够将很薄的线圈片与连接导体相连,缩短连接所需的时间。
在这种结构中,根据权利要求24限定的本发明,线圈片包括两个相互放在一起并卷绕的铝箔片,其中一个用作重叠片。这种结构便于卷绕,缩短卷绕所需的时间。
根据权利要求25限定的本发明,将所述金属箔的端部在卷绕方向上切割成Γ形条,在其根部将它垂直折叠到所述卷绕方向,然后以宽度减小到原宽度三分之一的方式两次将其重叠折叠,用热收缩管覆盖重叠折叠条带,形成接地引线。这种结构能够通过简单地折叠金属箔形成接地引线,且不需要钎焊到防触板上,因此缩短了制造防触板所需的时间。此外,防触板与接地引线为一体大大提高了可靠性。
根据权利要求26限定的本发明,将绝缘薄膜折叠,使得所述防触板的上下两端卷曲,绝缘薄膜与防触板卷绕在一起。这种结构缩短了制造防触板所需的时间,这又降低了装置的成本。
权利要求
1.一种树脂模线圈,其中通过将绝缘薄膜放在铝箔片上并将它们径向同轴卷绕形成单元线圈,将多个单元线圈在轴向上以一定间隔层叠;将相邻单元线圈的卷绕起始导体与卷绕终结导体分别电连接在一起,使所述多个单元线圈串联连接,还对单元线圈一体地树脂模塑,其特征在于所述单元线圈的卷绕终结导体在其外径位置上向卷绕方向垂直折叠,再进一步向其内径折叠,形成的卷绕终结导体相对轴向对角延伸,然后在相邻单元线圈的内径位置上将单元线圈向卷绕方向折叠,形成相邻单元线圈的卷绕起始导体。
2.如权利要求1所述的树脂模线圈,其特征在于跨接导体将所述单元线圈的卷绕终结导体连接到所述相邻单元线圈的卷绕起始导体上,覆盖跨接导体的跨接绝缘体包括折叠的绝缘薄膜,所述的跨接导体位于绝缘薄膜之间。
3.如权利要求1或2所述的树脂模线圈,其特征在于树脂模线圈中引出抽头引线一侧的外层厚度大于另一侧的厚度。
4.如权利要求1-3中任何一项所述的树脂模线圈,其特征在于在线圈的内径一侧设置浸渍不硬化环氧树脂的聚酯胶片层,使绕聚酯胶片层卷绕的线圈热固化。
5.如权利要求4所述的树脂模线圈,其特征在于通过把波纹形玻璃纤维层叠在平玻璃纤维上形成的玻璃纤维垫卷绕在所述聚酯胶片层与所述线圈之间,用模树脂浸渍玻璃纤维垫。
6.如权利要求5所述的树脂模线圈,其特征在于玻璃纤维绕线圈的外径卷绕,用模树脂浸渍玻璃纤维。
7.如权利要求1所述的树脂模线圈,其特征在于扩大与引出引线一侧相对的一侧上树脂模的外径,从而使单元线圈之间的跨接位于树脂模膨胀的位置上。
8.如权利要求1-7中任何一项所述的树脂模线圈,其特征在于形成线圈的铝膜通过多层绝缘薄膜卷绕。
9.如权利要求1所述的树脂模线圈,其特征在于从形成线圈的箔导体的端头起在铝箔片上以纵向等间隔地形成切割线,从而形成多个切割端条带;在其根部首先切割最外侧的切割端;把与最外侧切割端相邻的切割端在其根部垂直折叠到铝箔片的长度方向,接着把其余的相邻切割端依次在其根部垂直折叠到铝箔片的长度方向;把折叠的切割端在厚度方向层叠起来,形成从线圈中引出的引线。
10.如权利要求9所述的树脂模线圈,其特征在于将带有孔的绝缘薄膜在孔的位置上折叠,用包含这种绝缘薄膜的引线绝缘体覆盖从线圈中引出引线的根部;将所述引线插入引线绝缘体的孔中。
11.如权利要求9或10所述的树脂模线圈,其特征在于通过将玻璃纤维折叠形成的L形玻璃纤维枕与从单元线圈外径侧边边缘引出引线的位置接触。
12.一种树脂模线圈,其中,利用绝缘树脂对整个线圈进行模塑;一对垂直连接端子嵌埋在模塑绝缘树脂的外表面中,线圈的两端接至连接端子,与外部电路连接的端接板被固定到上部连接端子,其特征在于将定位螺丝穿透所述端接板,定位螺丝的顶部插入设置在模树脂表面的定位孔中。
13.如权利要求12所述的树脂模线圈,其特征在于将定位螺丝固定在所述端接板上形成的螺纹孔中,定位螺丝顶部插入到定位孔中。
14.如权利要求12所述的树脂模线圈,其特征在于在其中形成所述定位孔的嵌入配件嵌埋在模树脂的表面中;把定位孔加工成螺纹孔;把定位螺丝通过在所述端接板中形成的通孔拧到所述嵌入配件的所述定位孔中。
15.一种树脂模线圈,其中,利用绝缘树脂对整个线圈进行模塑;一组抽头端子和一对垂直连接端子嵌埋在模塑树脂的外表面中,连接端子通过连接引线接至线圈的各端,所述的一组抽头端子通过抽头引线接至线圈的中间,其特征在于所述的这对连接端子设置在这组抽头端子的上方。
16.如权利要求15所述的树脂模线圈,其特征在于将下部连接端子与线圈的端部连接在一起的连接引线上升部是由圆柱形铜材制成的。
17.一种包括片状线圈的树脂模线圈,每个线圈是通过将绝缘薄膜放在铝箔片上径向将它们同轴卷绕而形成的;线圈连接导体分别接至所述铝箔片的卷绕终结和起始端,在所述片状线圈的轴向引出;相间连接导体通过线圈连接导体把多个片状线圈电连接在一起,这里所述的片状线圈是利用模树脂一体地模塑的,其特征在于所述的线圈连接导体和所述的相间连接导体都是铜导体;所述的铝箔片与所述的线圈连接导体是在室温下压焊在一起的;线圈连接导体与相间连接导体通过螺栓连接在一起。
18.如权利要求17所述的树脂模线圈,其特征在于所述的线圈连接导体分别置于所述铝箔片的卷绕终结和起始端;这个重叠部分被安装在压焊装置方块之间,每个压焊装置方块有一个能够在室温下压焊的凸出部分。
19.如权利要求18所述的树脂模线圈,其特征在于在所述的方块上设置多个凸出部分;所述重叠部件中压焊部分在片状线圈的轴向顺次移动,在室温下进行多次压焊。
20.如权利要求17-19中任何一项所述的树脂模线圈,其特征在于在所述片状线圈的最内层和最外层中卷绕上面涂覆不硬化耐热环氧树脂的聚萘二甲酸乙二醇酯(PET-EPP)薄膜。
21.如权利要求17-19中任何一项所述的树脂模线圈,其特征在于在所述的片状线圈中设置包括柱形气隙的冷却路径;形成从片状线圈上下端表面垂直伸出,并与片状线圈的最内层和最外层以及所述冷却路径的内径壁和外径壁接触的树脂导槽;除冷却路径部分以外在树脂导槽之间填充模树脂。
22.如权利要求17-19中任何一项所述的树脂模线圈,其特征在于在所述片状线圈的最内层中卷绕上面涂覆不硬化耐热环氧树脂的聚萘二甲酸乙二醇酯(PET-EPP)薄膜;在片状线圈的绝缘片中采用PET-EPP;在所述片状线圈的最外层中卷绕上面涂覆不硬化耐热环氧树脂的热收缩带(EPP-TG)。
23.一种树脂模线圈,其中,线圈片和绝缘片各自包括一个铝箔片,将它们相互放在一起并同轴卷绕;在室温下将线圈片的卷绕起始和终结端压焊在包含铜板的连接导体上,对整个装置进行树脂模塑,连接导体引出到外部,其特征在于线圈片与包含铝箔片的重叠片一起压焊到连接导体上。
24.如权利要求23所述的树脂模线圈,其特征在于线圈片包括相互放在一起并卷绕的两个铝箔片,其中一个用作重叠片。
25.一种树脂模线圈,其中,利用绝缘树脂对绕铁心卷绕的高低压线圈进行模塑,通过圆柱形气隙进行配置,包括金属箔的防触板绕所述低压线圈的外围卷绕;设置一接地引线并引出到外部,其特征在于将所述金属箔的端部在卷绕方向上切割成Γ形条,在其根部将它垂直折叠到所述卷绕方向,然后以宽度减小到原宽度三分之一的方式两次将其重叠折叠,用热收缩管覆盖在重叠折叠条带形成接地引线。
26.一种树脂模线圈,其中,利用绝缘树脂对绕铁心卷绕的高低压线圈进行模塑,通过圆柱形气隙进行配置;包括金属丝网的防触板绕低压线圈的外围卷绕,其特征在于将绝缘薄膜折叠,以致所述防触板的上下两端卷曲,绝缘薄膜与防触板卷绕在一起。
全文摘要
一种树脂模线圈,将绝缘薄膜与铝箔片径向同轴卷绕形成单元线圈,多个单元线圈以一定间隔轴向层叠,相邻单元的卷绕起始与终结导体串联连接,一体地进行树脂模塑。单元线圈的卷绕终结导体在其外径位置向卷绕方向垂直折叠,再进一步向其内径折叠,形成的卷绕终结导体相对轴向对角延伸,然后在相邻单元线圈的内径位置将单元线圈向卷绕方向折叠,形成相邻单元线圈的卷绕起始导体。
文档编号H01F27/28GK1201243SQ9810970
公开日1998年12月9日 申请日期1998年5月27日 优先权日1997年5月27日
发明者门间幸宏, 松永圭, 上妻辰夫, 齐藤重正 申请人:富士电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1