调整用于驱动晶体管装置的驱动强度的制作方法

文档序号:11680906阅读:125来源:国知局
相关申请案的交叉参考本申请案主张2016年1月19日提出申请的且标题为“可调整强度栅极驱动机构(mechanismofadjustablestrengthgatedrive)”的第62/280233号美国临时专利申请案的权益,所述临时专利申请案以其全文引用的方式并入本文中。本发明涉及调整用于驱动晶体管装置的驱动强度。
背景技术
::驱动器电路用于调节穿过组件或其它电路的电流及/或电压。在电力电子学中,切换模式转换器中的驱动器控制开关装置(例如晶体管)可包含开关装置的布置。作为实例,金属氧化物场效应晶体管(mosfet或fet)在许多应用中可用作输出装置,所述应用包含放大器、电力供应器、电机驱动器及继电器。因此,驱动器电路需要配置有适当强度以便以fet被设计且被制作进行操作的驱动强度来驱动fet的栅极。技术实现要素:本发明涉及调整用于驱动晶体管装置的驱动强度。一个实例涉及一种系统,所述系统可包含检测器,所述检测器可在一段时间内监测可耦合到晶体管装置的输入的输出节点处的电压,且提供具有与所述晶体管装置的所述输入与一个输出之间的电容有关的值的信号。所述系统可进一步包含驱动器,所述驱动器可经由所述输出节点耦合到所述晶体管装置的所述输入且具有可编程驱动强度。所述系统可进一步包含控制器,所述控制器可基于所述信号而配置所述驱动器以便以对应驱动强度驱动所述晶体管装置。另一实例涉及一种系统,所述系统可包含多个驱动器,每一驱动器可包含经耦合以驱动输出节点的多个驱动器段,所述输出节点可耦合到相应晶体管装置的输入以用于驱动所述相应晶体管装置。所述系统可进一步包含检测器,所述检测器可基于在一时间间隔内响应于提供到所述输出节点以用于递送到所述相应晶体管装置的所述输入的电流而监测所述输出节点的电压而提供一值。所述值可与所述相应晶体管装置的所述输入与一输出之间的电容有关。所述系统可进一步包含控制器,所述控制器可基于所述值而选择性地启用所述多个驱动器中的每一者的所述多个驱动器段的一部分以便以对应驱动强度驱动每一相应晶体管装置。又一实例涉及一种方法,所述方法可包含:在一时间间隔内响应于提供到至少一个晶体管装置的输入的电流而监测所述输入的电压;及基于所述输入的所述所监测电压而提供一信号。所述信号可具有与所述至少一个晶体管装置的所述输入与一输出之间的电容有关的值。所述方法可进一步包含基于所述信号而设定耦合到所述至少一个驱动器的所述输入的驱动器的驱动强度以便以对应驱动强度驱动所述至少一个晶体管装置。附图说明图1图解说明用以调整用于驱动晶体管装置的驱动器的驱动强度的系统的实例。图2图解说明用以调整用于驱动晶体管装置的驱动器的驱动强度的另一系统的实例。图3图解说明检测器的实例。图4图解说明另一检测器的实例。图5图解说明用以控制用于驱动晶体管装置的驱动强度的方法的流程图的实例。具体实施方式本文中描述用以设定用于驱动晶体管装置(例如场效应晶体管(fet))的驱动器的驱动强度的系统及方法。驱动器可包含为设定驱动器的驱动强度可选择性地启用或停用的若干驱动器段。本文中进一步揭示使得能够根据将要驱动的晶体管装置的性质(例如,电容)而设定驱动器的驱动强度的系统及方法。作为实例,电路可给fet的栅极供应固定电流以确立fet的栅极处的栅极电压。可随时间监测fet的栅极处的电压以提供fet的所监测栅极电压。可基于所监测栅极电压与时间之间的关系而提供对应于晶体管装置的栅极-源极电容的值。所述值可用于控制用于驱动fet的驱动器的驱动强度。此处所揭示的方法可判断驱动器的适当驱动强度以支持具有各种大小的宽范围的fet装置。通过以此方式确立驱动强度给用户提供了优化成本及性能的机会,从而进一步实现经改善效率、可靠性及emi特性。尽管相对于驱动一或多个fet而证明本文中所揭示的实例,但本文中所揭示的方法同样适用于设定用于驱动其它晶体管装置类型(例如双极结晶体管(bjt)及结型栅场效应晶体管(jfet))的驱动强度。图1图解说明可调整用于驱动相关联晶体管装置104的驱动器102的驱动强度的系统100的实例。如本文中所使用,晶体管装置104可包含若干一或多个晶体管。在实例中,系统100可实施为包含输出节点105的一或多个集成电路(ic)芯片,所述输出节点可经耦合以驱动晶体管装置104的输入(例如,栅极)108。因此,晶体管装置104可是外部晶体管装置。驱动器102可具有用于驱动系统的输出105的可变驱动强度。驱动器102的可变驱动强度可经由系统100的控制器106而调整以便以对应驱动强度驱动可耦合到晶体管装置104的栅极108的输出节点105。如本文中所使用,术语“驱动强度”是指响应于施加于晶体管装置104的栅极108处的电流而随时间将电荷提供到晶体管装置104的栅极108的速率,所述速率对应于栅极电压随时间改变的速率。晶体管装置104的栅极108与晶体管装置104的源极之间存在固有电容,本文中称为栅极-源极电容。控制器106可控制驱动器102,使得驱动器102的可变驱动强度可经调整以基本上匹配与晶体管装置104相关联的适当驱动强度。举例来说,以基本上等于与晶体管装置104相关联的适当驱动强度的驱动强度驱动晶体管装置104调节晶体管装置104的切换速度,使得晶体管装置104在指定切换时间内进行切换。用于驱动晶体管装置104的适当驱动强度取决于fet104的栅极-源极电容的大小。系统100可经配置以基于与晶体管装置104的栅极-源极电容有关的值对驱动器102的可变驱动强度进行编程以匹配用于晶体管装置104的适当驱动强度。在一个实例中,在校准模式期间可确定晶体管装置104的栅极-源极电容。在起动驱动器102时,控制器106可在校准模式期间停用驱动器102以使驱动器102处于停用状态,使得驱动器102的栅极驱动电流基本上为零。控制器106可发射电流控制信号以激活电流源110以给晶体管装置104的栅极108可耦合到的输出节点供应电流。电流源110可经配置以提供基本上固定电流。以另一实例方式,如果假定ig表示由电流源110供应的基本上固定电流,q表示进入到栅极108中的电荷,ta表示对应于基本上固定电流被供应到栅极108的时间的开始时间,tb表示结束时间,那么供应到栅极108的电荷q可表示为q=ig*(ta-tb)。栅极-源极电容cgs可表示为进入到栅极108中的电荷(q)与晶体管装置的栅极电压vg的函数。举例来说,可根据以下方程式cgs=(ig*(ta-tb))/vg而计算栅极-源极电容。由于ig是随时间固定的(即,不变化),因此可忽略ig以进一步缩短方程式cgs=(ta-tb))/vg。因此,晶体管装置104的栅极108处的所监测栅极电压与时间之间的数学函数关系可与晶体管装置108的栅极-源极电容有关。系统进一步包括检测器112,所述检测器可耦合到晶体管装置104可耦合到的输出节点且耦合到控制器106。控制器106可将监测激活信号发射到检测器112以致使检测器112在校准模式期间随时间监测栅极电压。可给晶体管装置104的栅极108供应基本上固定电流,且可随时间监测晶体管装置104的栅极电压以提供与晶体管装置104的固有电容有关的值,所述固有电容对应晶体管装置104的栅极-源极电容。因此,所监测栅极电压与时间之间的数学函数关系可与晶体管装置104的栅极-源极电容有关。在一个实例中,检测器112在规定时间间隔内监测晶体管装置104的栅极电压以提供与晶体管装置104的栅极-源极电容有关的值。在另一实例中,检测器112监测晶体管装置104的栅极108处的栅极电压响应于供应基本上固定电流而达到阈值所经过的时间量以提供与晶体管装置104的栅极-源极电容有关的值。检测器112可将具有与晶体管装置104的栅极-源极电容有关的值的检测器信号发射到控制器106。检测器信号的值可是与晶体管装置104的栅极-源极电容有关的模拟或数字值。控制器106可基于检测器信号而调整驱动器102的可变驱动强度。控制器106可将检测器信号的值与对应于驱动器102的不同驱动强度的一预定值范围或一组预定值范围进行比较。因此,控制器106可响应于所述比较而对驱动器102进行编程以基于与晶体管装置104的栅极-源极电容有关的值而设定驱动器102的可变驱动强度。在控制器校准驱动器102之后,控制器可将电流源110及检测器112去激活并进入系统100的正常操作模式。因此,控制器106可基于与晶体管装置104的栅极-源极电容有关的值对驱动器102进行编程,使得驱动器102以适当驱动强度驱动晶体管装置104。在另一实例中,可用具有不同栅极-源极电容或基本上类似栅极-源极电容的另一晶体管装置替换图1的晶体管装置104。控制器106可基于在校准模式期间确定的与其它晶体管装置的栅极-源极电容有关的相应值对驱动器102进行编程,使得驱动器102以适当驱动强度驱动其它晶体管。以适当驱动强度驱动晶体管装置104减小晶体管装置104的切换损失(及因此改善晶体管装置104的效率)、增加晶体管装置104的可靠性且改善晶体管装置104的emi特性。图2图解说明可调整用于晶体管装置的驱动器的驱动强度的另一系统200的实例。系统200可被用于一或多个集成电路(ic)芯片上。系统200可包含:第一驱动器202,其可包含一或多个驱动器段204;及第二驱动器206,其可包含一或多个驱动器段208。可选择性地启用及停用每一驱动器202及206的驱动器段以调整每一驱动器202及206的可变驱动强度。尽管图2的实例中图解说明两个驱动器202及206,但应理解,系统200可包含任何数目个驱动器。驱动器202及206中的每一者连接到相应输出节点211及213。举例来说,第一驱动器202可经由输出节点211耦合到第一fet210,且第二驱动器206可经由输出节点213耦合到第二fet212。第一fet210及第二fet212可分别包含一或多个fet。在一个实例中,系统200实施为ic,且第一fet210及第二fet212是外部fet。因此,第一fet210及第二fet212可经由相应电连接耦合到相应输出节点(例如,端子)211及213以使得驱动器202及206能够驱动fet。系统200可进一步包含控制器214。控制器214可耦合到第一驱动器202的驱动器段204中的每一者。控制器214可进一步耦合到第二驱动器206的一或多个驱动器段208中的每一者。控制器214可对一或多个驱动器段204及208进行编程以调整第一驱动器202及第二驱动器206的相应可变驱动强度。因此,控制器214可选择性地启用及停用一或多个驱动器段204及208以调整第一驱动器202及第二驱动器206的相应可变驱动强度。控制器214可基于与第一fet210的栅极-源极电容有关的值对每一驱动器202及206的可变驱动强度进行编程以匹配与fet210及212相关联的适当驱动强度。在一个实例中,可在起动第一驱动器202及第二驱动器206时确定第一fet210的栅极-源极电容。在起动第一驱动器202及第二驱动器及206时,控制器214可在校准模式期间校准第一驱动器202及第二驱动器206。控制器214可将相应停用信号发射到每一驱动器202及206以将每一驱动器202及206的一或多个驱动器段204及208设定为处于停用状态。系统200可进一步包含耦合在电流源218与输出节点211之间的开关216。开关216可响应于来自控制器214的开关激活信号而被激活以闭合且使得基本上固定电流能够从系统200的固定电流源218流动到耦合到节点211的第一fet210的栅极。在另一实例中,固定电流源218可经由节点211耦合到第一fet210的栅极,且控制器214可将电流激活信号供应到固定电流源218以使得固定电流源218能够给第一fet210的栅极提供基本上固定电流。系统200进一步包括检测器220,所述检测器经由输出节点211而耦合到第一fet210且耦合到控制器214。检测器220可基本上类似于如图1中所图解说明的检测器112而起作用。控制器214可将监测激活信号发射到检测器220以致使检测器220在校准模式期间随时间监测第一fet210的栅极电压。给第一fet210的栅极供应基本上固定电流及随时间监测第一fet210的栅极电压可提供对第一fet210的栅极-源极电容的指示。检测器220可将具有与第一fte210的栅极-源极电容有关的值的检测器信号发射到控制器214,所述栅极-源极电容对应于所监测栅极电压与时间之间的数学函数关系。在一个实例中,检测器220在规定时间间隔内监测第一fet210的栅极-源极电压以提供与第一fet210的栅极-源极电容有关的值。在另一实例中,检测器220监测第一fet210的栅极处的栅极电压响应于基本上固定电流而达到阈值所经过的时间量以提供与第一fet210的栅极-源极电容有关的值。控制器214可接收检测器信号且基于检测器信号的值而选择性地启用每一驱动器202及206的一或多个驱动器段204及208以便以适当驱动强度驱动相应fet210及212。控制器214可将检测器信号的值与对应于不同驱动强度的一预定值范围或一组预定值范围进行比较。控制器214可基于比较的结果而控制将启用每一驱动器202及206的一或多个驱动器段204及208中的哪些驱动器段以便以适当驱动强度驱动fet210及212。因此,控制器214可基于第一fet210的栅极-源极电容对每一驱动器202及206进行编程。在额外实例中,控制器214可将表征每一相应驱动器202及206的一或多个驱动器段204及208中的哪些驱动器段被启用及停用的驱动器段信息储存于控制器214的存储器(图2中未展示)中。此后,控制器214可将电流源218及检测器220去激活并进入系统200的正常操作模式。图2图解说明其中第一fet210及第二fet212具有基本上类似大小的栅极-源极电容的实例。在此实例中,开关216、电流源218及检测器206相对于第一驱动器202而配置,且控制器214基于第一fet210的栅极-源极电容而确定每一驱动器202及206的适当驱动强度。另一选择为,开关216、电流源218及检测器206可相对于第二驱动器202而配置,且控制器214可基于与第二fet212的栅极-源极电容有关的相应值而确定每一驱动器202及206的适当驱动强度。在进一步实例中,第一fet210及第二fet212可具有不同栅极-源极电容。系统200可配置有额外电路,使得第一驱动器202可提供适用于第一fet210的驱动强度,且第二驱动器206可提供适用于第二fet212的驱动强度。系统200可进一步包含第二开关、第二电流源及第二检测器。第二开关、第二电流源及第二检测器可基本上类似于如图2中所图解说明的开关216、电流源218及检测器220而起作用。开关216、电流源218及检测器220可相对于第一驱动器202而配置,且第二开关、第二电流源及第二检测器可相对于第二驱动器206而配置。每一检测器可提供具有与相应fet210及212的栅极-源极电容有关的值的对应检测器信号。控制器214可接收对应检测器信号且基于所述值而选择性地启用每一驱动器202及206的一或多个驱动器段204及208以便以适当对应驱动强度驱动相应fet210及212。图3图解说明检测器300(例如,如图1中所图解说明的检测器112或如图2中所图解说明的检测器220)的实例。检测器300可包含比较器302。比较器302可在一输入处(例如,在比较器302的负输入端子处)接收阈值电压参考(如图3中所图解说明的阈值电压参考)。比较器302可在另一输入处(例如,在比较器302的正输入端子处)接收晶体管装置(例如,如图1中所图解说明的晶体管装置104或者如图2中所图解说明的第一fet210或第二fet212)的栅极处的电压。晶体管装置的栅极处的电压在给定时间可对应于所监测栅极电压(如图3中所图解说明的栅极电压)。比较器302可将阈值电压参考与所监测栅极电压进行比较且提供指示所监测栅极电压何时基本上等于或大于阈值参考电压的比较器输出信号。在一个实例中,可从控制器(例如,如图1中所图解说明的控制器106或如图2中所图解说明的控制器214)提供阈值电压参考。检测器300可进一步包含计时器304,所述计时器可测量从对应于计时器304被激活的开始时间起直到计时器接收到来自比较器302的比较器输出信号为止已经过的时间量。计时器304可响应于开始计时器信号(如图3中所图解说明的开始计时器信号)而被激活。开始计时器信号可对应于图1及2中所图解说明的实例的上下文中所描述的监测激活信号。计时器304可接收开始计时器信号并记录直到接收到比较器输出信号为止已经过的时间量。在替代实例中,开始计时器信号可响应于开关(例如,如图2中所图解说明的开关216)的闭合而提供到计时器304。计时器304可响应于比较器输出信号而输出计时器信号(如图3中所图解说明的计时器信号)。计时器信号可包含计时器304处的对应于从接收到开始时间信号到接收到比较器输出信号已经过的时间量的计时器值。因此,计时器值可与所采用的栅极电压响应于晶体管装置的栅极处的所施加电流而达到阈值电压参考的时间量与晶体管装置的栅极处的栅极电压之间的数学函数关系有关。因此,计时器值可与晶体管装置的栅极-源极电容有关。与具有较低计时器值(例如,2μs)的计时器信号相比,具有较大计时器值(例如,4μs)的计时器信号可提供如下指示:晶体管装置具有较大栅极-源极电容。由计时器304产生的计时器信号可是数字计时器信号。数字计时器信号可从计时器304供应到控制器(例如,如图1中所图解说明的控制器106或如图2中所图解说明的控制器214)。控制器可接收数字计时器信号且将数字计时器信号的数字计时器值与和不同驱动强度相关联的一预定计时器值范围或多个所经过预定计时器值范围进行比较。控制器可基于比较的结果对相关联驱动器(例如,如图1中所图解说明的驱动器102或者如图2中所图解说明的驱动器202及206)进行编程,使得驱动器的可变驱动强度可经调整以基本上匹配晶体管装置的适当驱动强度。图4图解说明另一检测器400的实例。检测器400可经配置以基本上类似于如图1中所图解说明的检测器112或者如图2中所图解说明的检测器220而起作用。检测器400可包含电压监测电路402以监测晶体管装置(例如,如图1中所图解说明的晶体管装置104或者如图2中所图解说明的第一fet210或第二fet212)的栅极处的电压。电压监测电路402可响应于来自检测器400的计时器404的监测控制信号而产生模拟电压信号。模拟电压信号可表示晶体管装置的瞬时所监测栅极电压。计时器404可响应于开始时间信号(如图4中所图解说明的开始时间信号)在经过一定量的时间之后产生监测控制信号。在一个实例中,响应于电流流动到晶体管装置的栅极(例如响应于开关(例如,如图2中所图解说明的开关216)的闭合或用以触发电流流动的控制信号)而提供开始计时器信号。电压监测电路402可响应于接收到电压监测控制信号而输出可包含栅极电压值的模拟所监测栅极电压信号,所述栅极电压值可与栅极电压与在晶体管装置的栅极处监测到栅极电压的时间之间(例如,数学函数关系)有关。因此,所监测栅极电压值在一段时间内的改变可与晶体管装置的栅极-源极电容有关。作为实例,与具有较低模拟栅极电压值(例如,2μv)的模拟所监测栅极电压信号相比,具有较大模拟栅极电压值(例如,4微伏(μv))的模拟所监测栅极电压信号可提供如下指示:栅极具有较大栅极电容。在其它实例中,可使用其它电压范围(例如,mv范围)。检测器400可进一步包含模/数转换器(adc)406。adc406可接收模拟所监测栅极电压信号且将所述模拟所监测栅极电压信号转换为对应数字所监测栅极电压信号(如图4中所图解说明的电压信号)。数字所监测栅极电压信号可从adc406供应到控制器(例如,如图1中所图解说明的控制器106或者如图2中所图解说明的控制器214)。控制器可接收数字所监测栅极电压信号且将数字栅极电压值与和不同驱动强度相关联的一预定数字栅极电压值范围或多个预定数字栅极电压值范围进行比较。控制器可基于比较的结果而配置驱动器(例如,如图1中所图解说明的驱动器102或者如图2中所图解说明的驱动器202及206),使得驱动器的可变驱动强度可经调整以基本上匹配晶体管装置的适当驱动强度。图5图解说明用于调整晶体管装置的驱动强度的方法500的流程图的实例。在510处,方法500可包含在一时间间隔内响应于提供到输入的电流而监测至少一个晶体管装置(例如,如图1中所图解说明的晶体管装置104或者如图2中所图解说明的第一fet210或第二fet212)的输入的电压。在520处,方法500可进一步包含基于输入处的所监测电压而提供信号。所述信号可具有与至少一个晶体管装置的固有电容有关的值。在530处,方法500可进一步包含基于所述信号而设定驱动器(例如,如图1中所图解说明的驱动器102)的驱动强度以便以对应驱动强度驱动至少一个晶体管装置。驱动器可耦合到至少一个晶体管装置的输入。鉴于前述内容,上文已描述多个实例。当然,不可能描述组件或方法的每一想得到的组合,但所属领域的技术人员将认识到,许多其它组合及排列是可能的。因此,本说明打算包含归属于包含所附权利要求书的本申请案的范围内的所有此些更改、修改及变化。在本揭示内容或权利要求书叙述“一(a、an)”、“第一”或“另一”元件或其等效内容时,应解释为包含一个或一个以上此种元件,且不需要也不排除两个或两个以上此种元件。如本文中所使用,术语“包含(includes)”意指包含但不限于,且术语“包含(including)”意指包含但不限于。术语“基于”意指至少部分地基于。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1