一种石墨烯电发热丝及其生产工艺的制作方法

文档序号:23178746发布日期:2020-12-04 14:08阅读:411来源:国知局
一种石墨烯电发热丝及其生产工艺的制作方法

本发明涉及电缆制作领域,尤其涉及一种石墨烯电发热丝及其生产工艺。



背景技术:

石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。

研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为1.42×10-10米,键与键之间的夹角为120°。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键(与苯环类似),因而具有优良的导电和光学性能。

石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,石墨烯的理论杨氏模量达1.0tpa,固有的拉伸强度为130gpa。而利用氢等离子改性的还原石墨烯也具有非常好的强度,平均模量可大0.25tpa。由石墨烯薄片组成的石墨纸拥有很多的孔,因而石墨纸显得很脆,然而,经氧化得到功能化石墨烯,再由功能化石墨烯做成石墨纸则会异常坚固强韧。

石墨烯具有非常好的热传导性能。纯的无缺陷的单层石墨烯的导热系数高达5300w/mk,是目前为止导热系数最高的碳材料,高于单壁碳纳米管(3500w/mk)和多壁碳纳米管(3000w/mk)。当它作为载体时,导热系数也可达600w/mk。此外,石墨烯的弹道热导率可以使单位圆周和长度的碳纳米管的弹道热导率的下限下移。

但是现有的石墨烯电发热丝在使用过程中弯曲次数较多时,电发热丝上容易出现裂纹,不仅影响电发热丝的产热效率,同时还存在一定的安全隐患;另一方面,电发热丝自身的热传递效率不高,导致热量利用的效率大大降低,存在一定的缺陷。



技术实现要素:

针对上述问题,本发明提出一种石墨烯电发热丝及其生产工艺,本发明通过线性基坑槽与石墨烯配合以及采用的退火工艺,不仅提升了产热效率和热传导效率,同时还提升了发热线芯的韧性和机械性能,大大提升了石墨烯电发热丝的生产质量,能有效地解决背景技术提出的问题。

为了解决上述的问题,本发明提出一种石墨烯电发热丝,包括发热线芯,所述发热线芯上设有呈圆周分布的线性基坑槽,且所述线性基坑槽内沉积有改性石墨烯层,所述发热线芯表面还铺设有增强网层,所述增强网层上贴合涂覆有绝缘漆层,所述绝缘漆层外部沉积有导热石墨烯层,所述导热石墨烯层外部包覆有绝缘保护层。

进一步改进在于:所述线性基坑槽截面呈梯形,且所述改性石墨烯层与所述线性基坑槽内壁紧密贴合接触。

进一步改进在于:所述增强网层采用尼龙6材料,所述增强网层紧密包裹在发热线芯外表面。

进一步改进在于:所述绝缘漆层包括聚酯亚胺漆层和聚酰胺酰亚胺漆层,且所述聚酰胺酰亚胺漆层位于所述聚酯亚胺漆层外部。

进一步改进在于:所述绝缘保护层采用导热硅胶材料。

本发明还提供了一种石墨烯电发热丝及其生产工艺,包括如下步骤:

s100、对发热线芯进行退火工艺,消除残余应力;

s200、使用无水乙醇对热处理后的发热线芯进行清洗,并在真空环境中进行加热烘干;

s300、发热线芯表面切割线性基坑槽;

s400、利用激光沉积技术在线性基坑槽内沉积改性石墨烯层;

s500、发热线芯表面呈网状紧密包裹尼龙线并涂覆绝缘漆;

s600、利用激光沉积技术在绝缘漆层表面沉积导热石墨烯层;

s700、导热石墨烯层外部涂覆导热硅胶层。

进一步改进在于,步骤s100中退火工艺的具体步骤为:

s101、将发热线芯在600~700℃的真空环境中加热30~40min;

s102、将加热后发热线芯在真空环境中进行缓慢冷却,直至冷却到室温。

进一步改进在于:步骤s500中采用多道涂漆的方式进行绝缘漆的涂覆。

本发明的有益效果为:

(1)本发明的改性石墨烯,弥补了线性基坑槽所带来的机械强度降低的问题,同时石墨烯还具有良好的导热性能以及导电性能,不仅能够将发热线芯1上产生的热量迅速传递出去,同时还能增大发热线芯的工作电流,提升了发热线芯的产热效率;

(2)本发明的线性基坑槽,改变了发热线芯内部的应力分布,降低了发热线芯弯曲时发生裂纹的概率,同时配合退火工艺,大大提升了发热线芯的韧性以及机械强度,提高了石墨烯电发热丝的生产质量。

附图说明

图1是本发明石墨烯电发热丝的截面结构示意图。

图2是本发明石墨烯电发热丝生产工艺流程图。

其中:1-发热线芯;2-线性基坑槽;3-改性石墨烯层;4-增强网层;5-绝缘漆层;6-导热石墨烯层;7-绝缘保护层;8-聚酯亚胺漆层;9-聚酰胺酰亚胺漆层。

具体实施方式

为了加深对本发明的理解,下面将结合实施例对本发明做进一步详述,本实施例仅用于解释本发明,并不构成对本发明保护范围的限定。

根据图1所示,本实施例提出了一种石墨烯电发热丝,包括发热线芯1,所述发热线芯1上设有呈圆周分布的线性基坑槽2,线性基坑槽2的设置,改变了发热线芯1内部的应力分布,降低了发热线芯1弯曲时发生裂纹的概率,且所述线性基坑槽2内沉积有改性石墨烯层3,改性石墨烯层3的加入,弥补了线性基坑槽2所带来的机械强度降低的问题,同时石墨烯还具有良好的导热性能以及导电性能,不仅能够将发热线芯1上产生的热量迅速传递出去,同时还能增大发热线芯的工作电流,提升了发热线芯1的产热效率,所述发热线芯1表面还铺设有增强网层4,增强网层4的设置,提升了石墨烯电发热丝的整体机械强度,延长了电发热丝的使用寿命,所述增强网层4上贴合涂覆有绝缘漆层5,所述绝缘漆层5外部沉积有导热石墨烯层6,所述导热石墨烯层4外部包覆有绝缘保护层7。

本实施例中,所述线性基坑槽2截面呈梯形,且所述改性石墨烯层3与所述线性基坑槽2内壁紧密贴合接触,一方面保证了发热线芯1的完整性,另一方面又能增大导热性。

本实施例中,所述增强网层4采用尼龙6材料,尼龙6材料具有良好的机械性能以及热稳定性能,所述增强网层4紧密包裹在发热线芯1外表面。

本实施例中,所述绝缘漆层5包括聚酯亚胺漆层8和聚酰胺酰亚胺漆层9,且所述聚酰胺酰亚胺漆层9位于所述聚酯亚胺漆层8外部,聚酯亚胺漆作为内层漆,聚酰胺酰亚胺漆作为面漆,二者的配合,具有良好的绝缘性能以及热稳定性能。

本实施例中,所述绝缘保护层7采用导热硅胶材料,导热硅胶材料的使用,一方面起到了导热效果,能够快速地将热量传递出去,另一方面,导热硅胶的具有良好绝缘性能,能够起到电隔离的效果,具有良好的防护效果。

如图2所示,本发明还提供了一种石墨烯电发热丝及其生产工艺,包括如下步骤:

s100、对发热线芯进行退火工艺,消除残余应力,退火降低了发热线芯的硬度,改善了切削加工性;消除残余应力,稳定尺寸,减少变形与裂纹倾向;细化晶粒,调整组织,消除组织缺陷,提升了石墨烯电发热丝的机械性能;

s200、使用无水乙醇对热处理后的发热线芯进行清洗,并在真空环境中进行加热烘干,保证了发热线芯表面的清洁,实现发热线芯与改性石墨烯以及绝缘漆之间的紧密贴合,提升了石墨烯电发热丝的质量;

s300、发热线芯表面切割线性基坑槽,线性基坑槽改变了发热线芯内部的应力分布,降低了发热线芯1弯曲时发生裂纹的概率;

s400、利用激光沉积技术在线性基坑槽内沉积改性石墨烯层,改性石墨烯的加入,弥补了线性基坑槽所带来的机械强度降低的问题,同时石墨烯还具有良好的导热性能以及导电性能,不仅能够将发热线芯1上产生的热量迅速传递出去,同时还能增大发热线芯的工作电流,提升了发热线芯的产热效率;

s500、发热线芯表面呈网状紧密包裹尼龙线并涂覆绝缘漆,涂覆绝缘漆实现发热线芯的电隔离,;

s600、利用激光沉积技术在绝缘漆层表面沉积导热石墨烯层,借助石墨烯良好的导热性能,将发热线芯上产生的热量传递出去,起到了热量传递的作用,使得发热线芯上的热量能够快速地得到利用,避免了发热线芯温度过高,延长了发热线芯的使用寿命;

s700、导热石墨烯层外部涂覆导热硅胶层,导热硅胶的使用,一方面起到了导热效果,能够快速地将热量传递出去,另一方面,导热硅胶的具有良好绝缘性能,能够起到电隔离的效果,具有良好的防护效果。

本实施例中,步骤s100中退火工艺的具体步骤为:

s101、将发热线芯在600~700℃的真空环境中加热30~40min;

s102、将加热后发热线芯在真空环境中进行缓慢冷却,直至冷却到室温。

本实施例中,步骤s500中采用多道涂漆的方式进行绝缘漆的涂覆,采用多道涂漆的方式来保证每层绝缘漆能够保持干燥状态避免了绝缘漆未干燥而引起的分层破裂现象,提升了石墨烯电发热丝的整体质量。

本发明的改性石墨烯,弥补了线性基坑槽所带来的机械强度降低的问题,同时石墨烯还具有良好的导热性能以及导电性能,不仅能够将发热线芯1上产生的热量迅速传递出去,同时还能增大发热线芯的工作电流,提升了发热线芯的产热效率;本发明的线性基坑槽,改变了发热线芯内部的应力分布,降低了发热线芯弯曲时发生裂纹的概率,同时配合退火工艺,大大提升了发热线芯的韧性以及机械强度,提高了石墨烯电发热丝的生产质量。

以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1