固态成像器件及其驱动方法

文档序号:7619749阅读:89来源:国知局
专利名称:固态成像器件及其驱动方法
技术领域
本发明涉及一种固态成像器件及其驱动方法,并特别涉及一种互补金属氧化物半导体(CMOS)或金属氧化物半导体(MOS)固态成像器件及其驱动方法。
背景技术
能以与CMOS集成电路类似的工艺生产的CMOS固态成像器件(以下称为“CMOS图像传感器”)被认为是固态成像器件(例如,参见日本专利说明书No.3000782)。关于CMOS图像传感器,通过利用与CMOS工艺相关的小型化技术,可以容易地生产对于每个像素具有放大功能的有源结构。另外,CMOS图像传感器具有如下特征,即例如用于驱动像素阵列的驱动电路和用于处理从像素阵列输出的信号的信号处理电路的外围电路被集成在用于像素阵列的同一芯片(基板)上。因此,近年来,CMOS图像传感器已引起注意,并且已进行了关于CMOS图像传感器的许多研究和开发。

发明内容
由本发明的发明人进行的分析表明在固态成像器件如CMOS图像传感器中,图像恶化的原因之一基于以下机理。具体地,当信号从每个像素输出到垂直信号线时,垂直信号线的电势改变。此时,即使读取来自每行中像素的信号,在整个像素阵列中的垂直信号线的电势也会改变。因此,整个像素阵列中的电容耦合使得像素阵列中的势阱发生波动。当在读取来自像素的信号的同时像素阵列中一个阱的电势波动时,该电势波动被叠加在来自像素的信号上。叠加的波动引起了杂波(noise)和寄生信号(shading)(在屏幕上捕获的图像的宽的不均匀性(unevenness))。
鉴于上述情况而作出了本发明。因此,需要提供一种固态成像器件及其驱动方法,通过在读取来自像素的信号的同时抑制像素阵列的势阱的波动,来防止由势阱波动引起的杂波和寄生信号的产生。
根据本发明的实施例,提供了一种固态成像器件,包括像素阵列,该像素阵列包括二维排列的像素,在排列的每列像素中提供有信号线,每个像素都包括光电变换元件;以及固定单元,用于将在像素具有工作周期之前获得的信号线的电势固定到第一电源电势和第二电源电势之间的中间电势。
在以上固态成像器件中,在像素具有工作周期之前,如果复位电平从像素输出到信号线,则通过将信号线的电势固定到中间电势,使信号线的电势从中间电势改变到复位电平。因此,信号线的电势具有小的改变。当输出复位电平时,这使得信号线的电势波动(改变)最小化。因此,抑制了由于信号线的电势波动而引起的像素阵列的势阱波动。
根据本发明的另一实施例,提供了一种固态成像器件的驱动方法,该固态成像器件包括以矩阵形式二维排列的像素,在排列的每列像素中提供有信号线,每个像素都包括光电变换元件,其中,在像素具有工作周期之前,将信号线的电势固定到第一电源电势和第二电源电势之间的中间电势。
根据本发明的实施例,通过抑制由信号线的电势波动引起的像素阵列中的势阱波动,确保了防止势阱波动影响复位电平和信号电平。因此,这防止了由势阱波动引起的杂波和寄生信号的产生。


图1是示出了根据本发明实施例的整个CMOS图像传感器的方框图;图2是示出了根据本发明第一实施例的CMOS图像传感器的基本部分的电路图;图3是图示了根据本发明第一实施例的CMOS图像传感器的操作的时序图;图4是示出了根据本发明第二实施例的CMOS图像传感器的基本部分的电路图;图5是图示了根据本发明第二实施例的CMOS图像传感器的操作的时序图;
图6是示出了本发明第一和第二实施例的变型的电路图;以及图7是示出了根据本发明实施例的模块类型的CMOS成像器件的方框图。
具体实施例方式
下面参考附图全面地描述本发明的实施例。
图1是示出了根据本发明实施例的例如CMOS图像传感器的整个固态成像器件的方框图。以下描述针对本发明的实施例。然而,本发明不限于该实施例。可将本发明的实施例应用到MOS固态成像器件上。
如图1所示,根据本发明实施例的CMOS图像传感器10不仅包括以下像素阵列12,而且还包括垂直驱动电路13、列处理器14、水平驱动电路15、水平信号线16、输出电路17、和定时控制电路18,其中该像素阵列12包括以矩阵形式二维排列的多个像素11,每个像素都包括光电变换元件。
在该系统配置中,基于垂直同步信号Vsync、水平同步信号Hsync、和主时钟MCK,定时控制电路18产生用作垂直驱动电路13、列处理器14、和水平驱动电路15的工作基准的例如时钟信号和控制信号的信号。定时控制电路18将产生的信号提供给垂直驱动电路13、列处理器14、水平驱动电路15等。另外,用于控制像素阵列12中的像素11的驱动的外围驱动电路和信号处理电路部分,即垂直驱动电路13、列处理器14、水平驱动电路15、水平信号线16、输出电路17、定时控制电路18等集成在与形成像素阵列12的基板相同的半导体基板(芯片)19上。
在像素阵列12中,像素11以m行×n列的形式二维地排列。在图1中,为了简要说明起见,仅示出了10行×12列的像素结构。在该m行×n列的像素结构中,以行为单位提供了行控制线(未示出),并以列为单位提供了垂直信号线121(121-1至121-n)。垂直驱动电路13包括移位寄存器。垂直驱动电路13以行为单位顺序地选择像素阵列12中的像素11,并经由一个行控制线将必要的脉冲提供给所选择行中的像素11。
从所选择行中的像素11输出的信号经由垂直信号线121而提供给列处理器14。列处理器14包括与像素阵列12中的各列像素11对应的列信号处理电路141。对于每列像素11,在接收到对于每行像素而从像素11输出的信号之后,列信号处理电路141对上述信号进行处理。该处理包括用于消除只有像素11才有的固定图形杂波的相关二次抽样(CDS)、信号放大,并且如果有必要还包括模数转换。
水平驱动电路15包括移位寄存器。水平驱动电路15顺序地选择列处理器14中的每个列信号处理电路141,并将从列信号处理电路141输出的信号提供给水平信号线16。输出电路17对经由水平信号线16从列信号处理电路141顺序供给的信号进行各种类型的信号处理,并输出处理了的信号。关于输出电路17的具体信号处理,例如,可仅进行缓冲,或可进行缓冲之前的黑色电平调节、每列的偏差校正、信号放大、和颜色相关处理(color-relatedprocessing)。
第一实施例图2是示出了根据本发明第一实施例的CMOS图像传感器的基本部分的电路图。换句话说,图2示出了一个像素和列信号处理电路141的一部分。具体地,图2是仅示出像素11A中之一和一个列信号处理电路141一部分的电路图,该列信号处理电路141与像素11A所属列中的一个垂直信号线121连接。
如图2所示,像素11A包括光电变换元件,例如光电二极管21,和四个晶体管,即传输晶体管(transfer transistor)22、复位晶体管23、放大晶体管24、和选择晶体管25。图2示出了其中N沟道MOS晶体管用作传输晶体管22、复位晶体管23、放大晶体管24、和选择晶体管25的情况。然而,可使用P沟道晶体管。
光电二极管21的阳极与例如地相连以具有第一电源电势。光电二极管21将入射光光电转换为具有对应于入射光量的数量的电荷的信号电荷(光电子),并存储该信号电荷。传输晶体管22具有连接到浮动扩散区(floatingdiffusion)FD的漏极、连接到光电二极管21的阴极的源极、和连接到传输线(transfer wire)26的栅极。当将来自垂直驱动电路13的传输脉冲(transferpulse)TRF经由传输线26提供给传输晶体管22的栅极时,传输晶体管22进入导通状态(导电态),并将存储在光电二极管21中的信号电荷传送到浮动扩散区FD。
复位晶体管23具有连接到具有例如电源电势VDD(例如,2.5V)的第二电源电势的电源线27的漏极、连接到浮动扩散区FD的源极、和连接到复位线28的栅极。当将来自垂直驱动电路13的复位脉冲RST经由复位线28提供给复位晶体管23的栅极时,复位晶体管23进入导通状态,并通过将浮动扩散区FD的信号电荷移动到电源线27而复位该浮动扩散区FD。
放大晶体管24具有连接到电源线27的漏极、和连接到浮动扩散区FD的栅极。放大晶体管24输出与浮动扩散区FD的电势对应的信号。选择晶体管25具有连接到放大晶体管24的源极的漏极、连接到垂直信号线121的源极、和连接到选择线29的栅极。当将来自垂直驱动电路13的选择脉冲SEL经由选择线29提供给选择晶体管25的栅极时,选择晶体管25进入导通状态以选择像素11A,并将从放大晶体管24输出的像素11A的信号提供到该垂直信号线121。
为同一行中的像素11A共同地提供了传输线26、复位线28、和选择线29。如果必要,垂直驱动电路13将传输脉冲TRF、复位脉冲RSF、和选择脉冲SEL分别供给传输线26、复位线28、和选择线29,由此控制从光电二极管21向浮动扩散区FD传输信号电荷的操作、复位浮动扩散区FD的操作、和选择像素11A的操作。
在列信号处理电路141的输入级,例如,提供N沟道MOS晶体管作为负载晶体管31。负载晶体管31具有连接到垂直信号线121的漏极、和接地的源极。通过利用垂直信号线121,负载晶体管31与像素11A中的放大晶体管24合作以用作恒流源,从而形成源跟随器。当将负载脉冲LOAD提供给负载晶体管31的栅极时,负载晶体管31进入导通状态,并允许放大晶体管24将像素11A的信号输出到垂直信号线121。
例如,列信号处理电路141进一步包括P沟道MOS晶体管32(以下称为“固定晶体管(fixing transistor)32”),作为将像素11A进入工作周期之前获得的垂直信号线121的电势固定为电源线27的电势VDD和地电势之间的预定中间电势Vmid的器件。固定晶体管32具有连接到垂直信号线121的源极和连接到具有中间电势Vmid的漏极。当将“L”(低)电平的固定脉冲FIX提供给固定晶体管32的栅极时,固定晶体管32进入导通状态。通过将中间电势Vmid提供给垂直信号线121,固定晶体管32将垂直信号线121的电势固定到中间电势Vmid。例如,当电源电势VDD等于2.5伏时,将1.5伏的电压设置为电源电势VDD的中间电势Vmid。
图3是示出驱动根据本发明第一实施例的CMOS图像传感器所用时序的时序图。图3不仅示出了负载脉冲LOAD、固定脉冲FIX、选择脉冲SEL、复位脉冲RST、和传输脉冲TRF,而且示出了垂直信号线121的电势的示意波形。为了说明,用于垂直信号线121的电势的波形的纵坐标与用于其它脉冲的纵坐标不同。参考图3,当固定脉冲FIX处于“L”电平时,它处于激活状态。当其它脉冲,即负载脉冲LOAD、选择脉冲SEL、复位脉冲RST、和传输脉冲TRF处于“H”电平时,这些脉冲处于激活状态。负载脉冲LOAD的“H”(高)电平是负载晶体管31用作恒流源的电压(大约1V)。
在像素11A工作之前,固定脉冲FIX处于激活状态。因此,固定晶体管32进入导通状态,以将中间电势Vmid提供给垂直信号线121。因此,在像素11A工作之前,将垂直信号线121的电势固定到电源电势VDD和地电势之间的中间电势Vmid(在该情况下为1.5V)。即使固定脉冲FIX从固定状态改变为非激活状态,垂直信号线121的电势也很快被保持在中间电势Vmid的附近。
之后,当负载脉冲LOAD和选择脉冲SEL变为激活且同时供给复位脉冲RST时,通过复位晶体管23使像素11A中的浮动扩散区FD复位。复位后,通过放大晶体管24将浮动扩散区FD的电势作为复位电平输出给垂直信号线121。
输出复位电平之后,提供传输脉冲TRF,由此通过传输晶体管22将光电二极管21的信号电荷(光电子)传输到浮动扩散区FD,并通过放大晶体管24将在传输光电二极管21的信号电荷之后获得的浮动扩散区FD的电势作为信号电平输出给垂直信号线121。上述复位电平和信号电平通过垂直信号线121而顺序地发送到列信号处理电路141。
例如,通过检测复位电平和信号电平之间的差值,列信号处理电路141进行各种类型的信号处理,如用于消除只有像素11A才有的固定图形杂波的CDS处理、CDS处理后的信号维持、和放大。
之后,当负载脉冲LOAD和选择脉冲SEL变为非激活的且固定脉冲FIX变为激活时,固定晶体管32进入导通状态以将中间电势Vmid提供给垂直信号线121,从而将垂直信号线121的电势固定到中间电势Vmid。在该状态之后的周期(有效周期)中,通过列信号处理电路141输出信号。
在上述情况下,当信号从像素11A输出到垂直信号线121且垂直信号线121的电势改变时,电容耦合使像素阵列12的势阱波动。如上所述,当像素阵列12的势阱在从像素11A输出复位电平和信号电平的周期中波动时,势阱的波动影响了复位电平和信号电平,由此引起杂波和寄生信号。因此,在根据第一实施例的CMOS图像传感器中,正好在像素11A具有工作周期之前,固定晶体管32的操作将垂直信号线121的电势固定到中间电势Vmid,以便防止像素阵列12的势阱波动。
此时最重要的一点是,在像素11开始工作之前的垂直信号线121的电势的大小(以电压计)。例如,当垂直信号线121的电势为0伏或VDD电平且复位电平从这些电平快速改变时,垂直信号线121的电势显著改变,由此引起像素阵列12的势阱波动。因此,势阱的波动影响了复位电平和信号电平,由此产生了杂波和寄生信号。
在相关技术的CMOS图像传感器中,在像素11A开始工作之前获得的垂直信号线121的电势为0伏和电源电势VDD中的一个或处于浮置状态。该浮置状态不是优选的,因为由于从光电二极管21流入垂直信号线121的扩散层的光电子,所以当光的量大时,垂直信号线121的电势降低到0伏附近。
因此,在根据第一实施例的CMOS图像传感器中,通过将在像素11A进入工作状态之前获得的垂直信号线121的电势固定到电源电势VDD和地电势(0V)之间的中间电势Vmid,具体地,当电源电势VDD等于2.5伏时例如固定到1.5伏的电势,使得当垂直信号线121改变为复位电平时出现的垂直信号线121的电势的波动(变化)最小化。这能够使得由于垂直信号线121的电势波动引起的像素阵列12的势阱波动对复位电平和信号电平的负面影响减到最小。因此,可以使由势阱波动引起的杂波和寄生信号的产生减到最小。
为了使垂直信号线121的电势波动减到最小,最好将中间电势Vmid设置在复位电平的附近。例如,复位晶体管23和浮动扩散区FD之间的耦合使垂直信号线121的电势改变了大约0.3伏。在图3示出的情况下,由于复位脉冲RST处于激活状态时获得的垂直信号线121的电势为1.6伏,且其后的复位电平为1.3伏,所以中间电势Vmid被设置为1.6伏和1.3伏之间的中间值,即1.5伏。
如上所述,最好将中间电势Vmid设置在1.6伏和1.3伏之间。然而,显然,如果中间电势Vmid不在它们之间而是在电源电势VDD和地电势(0V)之间的值,则获得以下优点,即在改变到复位电平的情况下,通过抑制像素阵列12的电势波动来防止像素阵列12的势阱波动。
第一实施例描述了这样的情况,其中正好在像素11A的工作周期结束之后,垂直信号线121的电势被固定到像素阵列12的势阱波动。然而,没有必要正好在像素11A的工作周期结束之后进行该固定。稍微在像素11A具有工作周期之前,尤其是大约直到像素阵列12的势阱波动的时间常数,通过将垂直信号线121的电势固定到中间电势Vmid,就可以获得所希望的功能。
第二实施例图4是示出根据本发明第二实施例的CMOS图像传感器的基本部分的电路图。换句话说,图4示出了像素和列信号处理电路的一部分。具体地,图4是仅示出了像素11B中之一和连接到像素11B所属列中的一个垂直信号线121的一个列信号处理电路141的一部分的电路图。
如图4所示,像素11B包括光电变换元件,例如光电二极管41,和三个晶体管,即传输晶体管42、复位晶体管43、和放大晶体管44。图4示出了其中使用N沟道MOS晶体管作为传输晶体管42、复位晶体管43、和放大晶体管44的情况。代替地,可使用P沟道MOS晶体管。
光电二极管41具有接地的阳极。光电二极管41将入射光转换为具有与入射光量对应的电荷量的信号电荷(光电子),并存储该信号电荷。传输晶体管42具有连接至浮动扩散区FD的漏极、连接至光电二极管41的阴极的源极、和连接至传输线46的栅极。当将传输脉冲TRF通过传输线46提供给传输晶体管42的栅极时,传输晶体管42进入导通状态,以将存储在光电二极管41中的信号电荷传输到浮动扩散区FD。
复位晶体管43具有连接到漏极驱动线47的漏极、连接到浮动扩散区FD的源极、和连接到复位线48的栅极。当为复位晶体管43的栅极提供复位脉冲RST时,复位晶体管43进入导通状态并通过将浮动扩散区FD处的信号电荷移动到漏极驱动线47来复位该浮动扩散区FD。为漏极驱动线47提供漏极脉冲DRN。放大晶体管44具有连接到漏极驱动线47的漏极和连接到浮动扩散区FD的栅极。放大晶体管44将与浮动扩散区FD的电势对应的信号输出到垂直信号线121。
为同一行中的像素11B共同提供传输线46和复位线48。如上所述,如果必要,垂直驱动电路13分别将传输脉冲TRF和复位脉冲RST提供给传输线46和复位线48,由此进行从光电二极管41向浮动扩散区FD传输信号电荷的操作和复位浮动扩散区FD的操作。
第二实施例中具有三个晶体管的像素11B与第一实施例中具有四个晶体管的像素11A相比有两个区别。根据以上描述可明显看出,一个区别是像素11B不包括选择晶体管25。另一个区别是像素11B使用漏极驱动线47,代替电源线27。为整个像素阵列12共同提供漏极驱动线47。
基于以上区别,第一实施例中的像素11A使用选择晶体管25以进行像素选择,而第二实施例中的像素11B通过控制浮动扩散区FD的电势来进行像素选择。具体地,通过一般将浮动扩散区FD的电势设置为“L”电平,并且,当选择像素11B时通过将被选择的像素的电势设置为“H”电平,放大晶体管44将被选择像素的信号输出到垂直信号线121。
在列信号处理电路141的输入级,例如,提供N沟道MOS晶体管作为负载晶体管51。负载晶体管51具有连接至垂直信号线121的漏极和接地的源极。通过使用垂直信号线121,负载晶体管51与像素11B中的放大晶体管44合作以用作恒流源,从而形成源跟随器。当为负载晶体管51的栅极提供负载脉冲LOAD时,负载晶体管51进入导通状态,并允许放大晶体管44将像素11B的信号输出到垂直信号线121。
例如,列信号处理电路141进一步包括P沟道MOS晶体管52(以下称为“固定晶体管52”),作为将像素11B具有工作周期之前获得的垂直信号线121的电势固定到电势VDD和地电势之间的预定中间电势Vmid的器件。固定晶体管52具有连接至垂直信号线121的源极和连接具有预定中间电势Vmid的漏极。当固定晶体管52的栅极提供有“L”电平的固定脉冲FIX时,固定晶体管52进入导通状态。通过将中间电势Vmid提供给垂直信号线121,固定晶体管52将垂直信号线121的电势固定到中间电势Vmid。例如,当电源电势VDD等于2.5伏时,将1.5伏的电压设置为电源电势VDD的中间电势Vmid。
图5是示出驱动根据第二实施例的CMOS图像传感器所用时序的时序图。图5不仅示出了负载脉冲LOAD、固定脉冲FIX、选择脉冲SEL、复位脉冲RST、和传输脉冲TRF,而且示出了垂直信号线121的电势的示意波形。为了说明,垂直信号线121的电势波形的纵坐标不同于其它脉冲的纵坐标。参考图5,当固定脉冲FIX处于“L”电平时,它处于激活状态。当其它脉冲,即负载脉冲LOAD、漏极脉冲DRN、复位脉冲RST、和传输脉冲TRF处于“H”电平时,这些脉冲处于激活状态。负载脉冲LOAD的“H”电平是负载晶体管31用作恒流源的电压(大约1V)。
在像素11B具有工作周期之前,漏极脉冲DRN和固定脉冲FIX处于激活状态。因此,固定晶体管52进入导通状态,以将中间电势Vmid提供给垂直信号线121。因此,在像素11B具有工作周期之前,将垂直信号线121的电势固定到电源电势VDD和地电势之间的中间电势Vmid(在该情况下为1.5V)。即使固定脉冲FIX从固定状态变化为非激活状态,垂直信号线121的电势也能很快被保持在中间电势Vmid的附近。
之后,当负载脉冲LOAD变为激活状态且同时提供复位脉冲RST时,复位晶体管43复位像素11B中的浮动扩散区FD。复位后,放大晶体管44将浮动扩散区FD的电势作为复位电平而输出到垂直信号线121。
在输出复位电平并提供传输脉冲TRF后,由此通过传输晶体管42将光电二极管41的信号电荷(光电子)传输到浮动扩散区FD,并且通过放大晶体管44将传输光电二极管41的信号电荷之后获得的浮动扩散区FD的电势作为信号电平输出给垂直信号线121。以上复位电平和信号电平通过垂直信号线121被顺序地发送到列信号处理电路141。列信号处理电路141对所发送的信号进行与第一实施例类似的信号处理。
之后,当负载脉冲LOAD和漏极脉冲DRN变为非激活且复位脉冲RST同时变为激活时,复位晶体管43进入导通态,使得浮动扩散区FD的电势具有“L”电平。之后,漏极脉冲DRN变为激活的。随后,当固定脉冲FIX变为激活时,固定晶体管52进入导通态,以将中间电势Vmid提供给垂直信号线121。因此,再次将垂直信号线的电势固定到中间电势Vmid。之后,在该状态后的周期(有效周期)中,通过列信号处理电路141输出该信号。
通过利用固定晶体管52以将正好在像素11B的工作周期之前获得的垂直信号线121的电势固定到中间电势Vmid并在复位电平附近设置该中间电势Vmid所获得的操作和优点与第一实施例中的类似,即,当从像素11B输出信号到垂直信号线121时,防止像素阵列12的势阱波动。
然而,如上所述,在具有三个晶体管的像素11B中,为整个像素阵列12共同提供的漏极驱动线47的电势没有固定不变,但为了控制浮动扩散区FD,将漏极脉冲DRN提供给漏极驱动线47。因此,漏极驱动线47的电势改变。因此,同样当漏极驱动线47的电势改变时,通过耦合影响像素阵列12的势阱波动。
因此,如果使漏极驱动线47的电势从非激活电平(“L”电平)返回到激活电平(“H”电平)所用的定时处于像素11B具有工作周期之前,则漏极驱动线47的电势变化一直保持到像素11B的工作周期,由此导致由于像素阵列12的势阱波动而产生的杂波和寄生信号。当考虑到这一点时,在根据第二实施例的CMOS图像传感器中,在像素11B的工作周期结束之后,尤其在读取复位电平和信号电平之后完成复位操作后,进行将漏极脉冲DRN从非激活电平返回到激活电平的操作。在该情况下,术语“之后”意味着避免像素工作周期“之前”的时间,并表示如下时间,即在某行中的像素操作完成之后,没有转到正好在下一行的像素操作之前的时间。优选地,术语“之后”表示有效周期开始之前的时间。
如上所述,在根据第二实施例的CMOS图像传感器中,通过将像素11B具有工作周期之前获得的垂直信号线121的电势固定到电源电势VDD和地电势(0V)之间的中间电势Vmid,并采用用于在像素11B的工作周期结束后进行将漏极驱动线47的电势从非激活电平返回到激活电平的操作的结构,能够尽可能地防止像素阵列12的势阱波动影响复位电平和信号电平。因此,能够尽可能地防止由于势阱波动而产生的杂波和寄生信号。
在复位晶体管43中,当它被复位时,为了使设置的浮动扩散区FD的电势最大,一般设置低阈值Vth。因此,如果在读取来自像素11B的信号之后,执行将漏极驱动线47的电势设置为“H”电平,那么之后,在其中设置了低阈值Vth的复位晶体管43中生成了泄漏电流,且泄漏电流使浮动扩散区FD的电势增加了例如200毫伏。在该情况下,上述增加起到阻碍电源电势VDD减小的作用。
因此,当复位脉冲RST为非激活时供给复位晶体管43的栅极的复位脉冲RST的电平(“L”电平)最好被设置为负电压。这确保了复位晶体管43被设置为断开状态,由此防止复位晶体管43的电流泄漏,从而能够执行电源电势VDD的减小。显然,当光电二极管为空穴存储类型且为P沟道MOS晶体管时,当它处于非激活时的复位脉冲RST的电平(“H”电平)必须被设置为等于或大于电源电势VDD。
另外,优选的是,为了确保工作范围,通过将复位晶体管43的阈值Vth设置为其中可以忽略泄漏的值,具体为,比像素阵列12的外围电路(如垂直驱动电路13和列处理器14)中使用的晶体管的值低的值,复位脉冲RST的“H”电平被设置为等于或大于电源电势VDD。当使用多个电源时,最好将复位脉冲RST的“H”电平设置为等于或大于用作漏极驱动线47的“H”电平的电源电压。
变型上述第一和第二实施例描述了这样的情况,其中在像素11A或11B具有工作周期之前,将提供给垂直信号线121的中间电势Vmid预先设置为固定值(优选地,在复位电平附近)。然而,可以采用其中无论像素11A或11B何时工作,最佳值都被设置为中间电势Vmid的结构。
具体地,如图6所示,取样与保持电路61连接至一个垂直信号线121,最好是,在最外端处的垂直信号线121e。在取样与保持电路61中,取样并保持通过垂直信号线121e从像素11A或11B提供的复位电平,并通过缓冲器62将保持值(复位电平)作为中间电势Vmid而提供给固定晶体管32或52。例如,如果取样和保持的值接近于复位电平,则该值可以是在复位脉冲RST为激活的同时所获得的垂直信号线121e的电压值。
通过采用该结构,无论像素11A或11B何时工作,都可以设置中间电势Vmid的最佳值,即,复位电平。因此,可以使在改变为复位电平的情况下出现的垂直信号线121的电势波动减到最小。因此,确保了防止由于垂直信号线121的电势波动而引起像素阵列12的势阱波动和防止由于势阱的波动而引起杂波和寄生信号的产生。在以上变型中,为在最外端的垂直信号线121e提供了取样与保持电路61。然而,在一种结构中,可以为每一条垂直信号线121中提供该取样与保持电路61。根据该结构,对于每一条垂直信号线121,可以将最佳值设置为中间电势Vmid。
除了图1中示出的结构外,根据本发明的实施例的CMOS图像传感器还可具有其它结构。图7是根据本发明实施例的模块类型的成像器件的方框图,其包括用于处理来自像素的信号的信号处理单元71和光学系统72。
本领域技术人员应当理解,在所附权利要求或其等价物的范围内,可根据设计要求和其它因素,而发生各种变型、组合、子组合和替换。
权利要求
1.一种固态成像器件,包括像素阵列,其包括二维排列的像素,在排列的每列像素中提供有信号线,每个像素都包括光电变换元件;以及固定单元,将在像素具有工作周期之前获得的信号线的电势固定到第一电源电势和第二电源电势之间的中间电势。
2.根据权利要求1的固态成像器件,其中该中间电势是通过像素的复位操作从像素输出的复位电平附近的电势。
3.根据权利要求2的固态成像器件,其中该固定单元取样并保持从像素输出的复位电平的值或与所输出的复位电平的值接近的电压值,并使用所保持的值作为中间电势。
4.根据权利要求1的固态成像器件,其中该像素包括传输晶体管,将通过光电变换元件中的光电变换获得的电荷传输给浮动扩散区;复位晶体管,连接在浮动扩散区和为该像素提供的漏极驱动线之间,该复位晶体管控制浮动扩散区的电势;以及放大晶体管,输出与浮动扩散区的电势对应的信号,以及其中在该像素的工作周期结束之后,该漏极驱动线的电势从非激活电平返回到激活电平。
5.根据权利要求4的固态成像器件,其中如果复位晶体管为N沟道晶体管,则将提供给复位晶体管栅极的复位脉冲的非激活电平设置为负电压,以及如果复位晶体管是P沟道晶体管,则将提供给复位晶体管栅极的复位脉冲的非激活电平设置为等于或大于电源电压。
6.根据权利要求4的固态成像器件,其中该复位晶体管的阈值电压被设置为低于像素阵列的外围电路中使用的晶体管的阈值电压。
7.一种用于固态成像器件的驱动方法,该固态成像器件包括以矩阵形式二维排列的像素,在排列的每列像素中提供有信号线,每个像素都包括光电变换元件,其中,在像素具有工作周期之前,将信号线的电势固定到第一电源电势和第二电源电势之间的中间电势。
8.根据权利要求7的驱动方法,其中该中间电势是通过像素的复位操作从像素输出的复位电平附近的电势。
9.根据权利要求8的驱动方法,其中取样并保持从像素输出的复位电平的值或与所输出的复位电平的值接近的电压值,并使用所保持的值作为中间电势。
10.根据权利要求7的驱动方法,其中该像素包括传输晶体管,将通过光电变换元件中的光电变换获得的电荷传输给浮动扩散区;复位晶体管,连接在浮动扩散区和为像素提供的漏极驱动线之间,该复位晶体管控制浮动扩散区的电势;以及放大晶体管,输出与浮动扩散区的电势对应的信号,以及其中在像素的工作周期结束之后,将漏极驱动线的电势从非激活电平返回到激活电平。
11.根据权利要求10的驱动方法,其中如果复位晶体管为N沟道晶体管,则将提供给复位晶体管栅极的复位脉冲的非激活电平设置为负电压,以及如果复位晶体管是P沟道晶体管,则将提供给复位晶体管栅极的复位脉冲的非激活电平设置为等于或大于电源电压。
12.根据权利要求10的驱动方法,其中将复位晶体管的阈值电压设置为低于像素阵列的外围电路中使用的晶体管的阈值电压。
13.一种模块类型的固态成像器件,包括像素阵列,其包括二维排列的像素,在排列的每列像素中提供有信号线,每个像素都包括光电变换元件;以及固定单元,将在像素具有工作周期之前获得的信号线的电势固定到第一电源电势和第二电源电势之间的中间电势;以及信号处理单元,处理来自在与形成所述像素阵列的基板不同的基板上形成的像素阵列的信号。
全文摘要
一种固态成像器件,包括像素阵列,其包括以矩阵形式二维排列的像素,在排列的每列像素中提供有信号线,每个像素都包括光电变换元件;以及固定单元,将在像素具有工作周期之前获得的信号线的电势固定到第一电源电势和第二电源电势之间的中间电势。
文档编号H04N5/369GK1691347SQ20051007921
公开日2005年11月2日 申请日期2005年4月26日 优先权日2004年4月26日
发明者马渕圭司, 若野寿史, 小关贤 申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1