用于通过负载导线进行通信的方法和装置的制作方法

文档序号:7741365阅读:136来源:国知局
专利名称:用于通过负载导线进行通信的方法和装置的制作方法
技术领域
本发明涉及通信系统,所述通信系统包括控制单元,所述控制单元通过用于电能传输的负载导线(Lastleitimg)与一个或多个负载模块(Lastmodule)进行通信。此外本发明还涉及用于这样的通信系统的负载模块以及控制设备。此外本发明还涉及用于在控制设备和一个或多个负载模块之间进行通信的方法。
背景技术
用于建筑物自动化的通信系统通常包括中央控制单元以及设有要电驱动的消耗装置(负载)的负载模块。通过供电电网向负载模块供给电能。同时供电电网用于将数据发送到负载模块。典型的应用例如是照明设备控制,在此应单独地调节多个灯的光强度。对此对于复杂的照明系统如下可能是必需的可借助于共同的控制单元调节许多照明装置。在这种情况下,负载模块除了各自的发光元件外还需要具有功率调节器,功率调节器通过预定义的协议与共同的控制单元进行通信。由于技术的进步,通过控制设备对多个负载的共同控制明显也适于在家庭范围中的小型应用。例如商业上可获得的LED-灯已经含有功率调节器,功率调节器借助于脉冲宽度调制向LED提供功率。通过对脉冲宽度调制的填充系数的控制可能的是,改变LED-灯的光强度。此外在控制单元和功率调节器之间的通信信道也可应用于传输应答,该功率调节器集成在负载模块中,应答可使电能的更有效利用、实际负载的监视和更高的可靠性成为可能。对于传统的布线系统(Installation)(例如建筑物中的照明布线系统),在(例如可处在传统的光开关的位置处的)控制单元侧,通常不提供零线。取而代之,控制单元通过开关的闭合和断开来控制灯,该开关开关相导线。只是在要控制的、包括各自的负载的负载模块处,提供开关的或受控的相导线和零线。这种配置阻止了当不会设置附加的连接线时以电平对数据进行编码的可能性。此外,对于设置多个负载模块有意义的是,可单独地编址或控制要控制的负载模块的消耗装置。这需要如下识别方法,通过所述识别方法各个负载模块通知控制单元关于它们的存在以及通过所述识别方法可将逻辑地址分配给负载模块。对此双向通信是必需的。附加地,负载模块需要到控制单元的信息信道,以传递它们的状态,例如用于诊断-和测量目的,或者,以便确认控制单元的重要指令。在现有技术中已知许多用于在这种控制单元和负载之间进行通信的方法和协议。虽然在发展的开始阶段应用模拟的控制方法(在该方法中为各个负载提供在0-10V范围中的、相应于确定的功率的模拟电压),但同时多个数字控制方法是已知的。对于所谓的DMX 512-标准,设置控制设备与直至512个负载模块或接收器的单工通信。8-比特-信息在分组中被发送到各个负载模块,其中每个设有固定的地址。作为其他的标准已知的是DALI-标准。
两个上述的数字标准除了电源之外还需要在控制单元和负载模块之间设置控制导线。当这种附加的控制导线并非已经设置在建筑物中时,这意味着附加的安装费用。作为KNX标明的其他标准规定,在控制设备和负载模块之间的信息通过电源导线上的电压信号传输。对此不仅控制设备而且功率调节器必须与相和零导线连接。此外KNX-电源导线调制解调器由于它的复杂性而不适于集成在灯中。在专利文献DE 196 03 680 Cl中描述了一种用于通过电源导线将信息从编码器传输至译码器的简单方法。通过交变电压的相位截止(Wiasenanschnitt)对信息进行编码。在此正半波的相位截止角相应于译码器的地址,而负半波的相位截止角相应于要控制的灯的亮度信息。通过供电电源导线在控制设备和多个功率调节器之间进行简单的单向通信的另一个例子在美国专利7,265, 654 Bl中描述。在专利申请US 2009/0027175中提出的是,在一个或多个负载模块中调制有效功率,以便通过电源导线传输信息。也由WO 2009/133489A1获知一种用于在电网交变电压的许多连续半波的极性中对LED-灯的亮度信息进行编码的方法,在此碥码的执行使得功率-RMS-值不改变。在上述的例子中,信息对应于电压信号变化曲线,以致于相导线和零导线不仅在控制设备的该侧而且在负载模块的该侧上是必需的。此外通信只是单向的。与此相反US-专利文献6211624B1中规定,通过对电源导线上的电压的零交叉附近的电流幅度的进行调制传输数字信息且应用这些信息,以便控制输送给灯的功率。由此尤其可调节荧光灯的亮度。在文献US 6225759B1中所描述的方法与前述的相似指出在于,其同样在零交叉附近包含交变电压信号的半波的修剪。设置用于串联在相导线中的调光器,以致于到零导线的连接不是必需的,在此给出控制多于一个灯的可能性。专利文献DE 101 63 957 Al描述了一种用于荧光灯的电子附加模块,可通过控制单元对其响应。也提到的是,经过电源导线传输颜色-和亮度信息。控制单元是与相导线和零导线连接的并且这些灯处的电子模块的地址必须借助于机械开关进行预调节。专利文献US 6867558 B2涉及的如下可能性,通过电源导线控制一组灯,而无需关于传统的照明系统的改变布线。上述的公开总的来说用于一组负载模块的单向控制并且没有提供如下解决方案, 其中对于负载模块可能的是将信息传输回控制单元。所以本发明的目的在于,提供一种通信方法和通信系统,其中控制单元在没有零导线的情况下也是足够的并且在控制设备和多个负载模块之间的双向通信是可能的。

发明内容
该目的通过根据权利要求1的通信系统以及通过根据并列权利要求的控制设备, 负载模块、通信方法,用于驱动控制设备的方法和用于驱动负载模块的方法而实现。此外有利的实施方案在从属权利要求中给出。根据第一方面提供一种通信系统,其包括-控制设备,所述控制设备在相导线和负载导线之间串联到电源导线 (Netzleitung)中,以便仅在能量传输时间窗期间准许在至少一个负载处的供电电流并且
6仅在不与能量传输时间窗重叠的通信时间窗期间通过检测和/或调制经过负载导线的通信电流而执行双向通信;以及-一个或多个设有负载的负载模块,它们互相并联并且与负载导线和电源导线的零导线之间的控制设备串联,以便仅在能量传输时间窗期间从负载导线取得电能并向相应的负载提供电能,以及以便仅在通信时间窗期间通过检测和/或调制经过负载导线的通信电流而执行双向通信。根据另一方面提供了用于在通信系统中的控制设备和一个或多个负载模块之间进行通信的方法。通信系统具有串联到电源导线中的控制设备和一个或多个设有负载的负载模块,这些负载模块互相并联并且与负载导线中的控制设备串联。该方法包括下列步骤-驱动控制设备,以便在时间上连续地仅在能量传输时间窗期间准许用于驱动负载的供电电流以及以便在不与能量传输时间窗重叠的通信时间窗期间通过检测和/或调制经过负载导线的通信电流而执行双向通信;以及-驱动一个或多个负载模块,以便仅在能量传输时间窗期间从负载导线取得电能并向相应的负载提供电能,以及以便仅在通信时间窗期间通过检测和/或调制经过负载导线的通信电流而执行双向通信。上述的通信系统和通信方法规定,经过负载导线的通信在时间上与能量传输分开。在优选位于电网电压的电压变化曲线的最大值周围的能量传输时间窗期间,通过负载的电流消耗成为可能。此外在通信时间窗期间,在控制设备和负载模块之间提供双向通信,在此监视由控制设备和负载模块构成的电流回路中的电流并且以合适的方式通过控制设备和/或负载模块的内部阻抗而调节该电流。此外控制设备可具有功率开关,以便在能量传输时间窗期间闭合该功率开关并且在能量传输时间窗之外断开该功率开关,在此所述至少一个负载模块具有功率块,以便在能量传输时间窗期间从负载导线取得电能。根据一种实施方式,控制设备和一个或多个负载模块可分别具有电流调制解调器(Strommodem),在此每个电流调制解调器在能量传输时间窗期间是去激活的,以致于所述电流调制解调器基本上不具有导电性,并且在通信时间窗期间为了接收而被置于“听”-状态,在“听”-状态中电流调制解调器的阻抗调节成使得通信电流限制到预先给定的最大电流值,或被置于“说”-状态,在“说”-状态中电流调制解调器的阻抗是可变的,使得为了发送要在负载导线上传输的信息通信电流在预先给定的第一电流值和预先给定的第二电流值之间变动。尤其可设置多个如下的负载模块,所述负载模块的电流调制解调器将“听”-状态中的电流流动分别限制到相同的预先给定的最大电流值,在此构造控制设备,以便执行对连接的负载模块的数量的估算,其方式是在接通阶段(Einschaltphase)中将所有负载模块的电流调制解调器置于“听”-状态,通过控制模块的电流调制解调器测量在负载导线中调节的电流并且将负载模块的数量作为测量的电流与对于该状态在控制模块中预先给定的最大电流值的比例来测定。此外,通信系统可以构造成以便仅在控制设备和所述一个或多个负载模块其中之一之间执行双向通信。
控制设备和所述一个或多个负载模块可以构造成以便在地址分配期间在协议层面上和/或在应用频率调制时依据信号变化曲线的扭曲或依据通过负载导线上的电流超出最大电流值识别由于同时发送要传输的信息引起的冲突。可以规定的是,通信时间窗相应于其中电源电压在量值上大于第一阈值且在量值上小于第二阈值的时间窗,并且在此能量传输时间窗相应于其中电源电压在量值上大于第二阈值的时间窗。控制设备和所述一个或多个负载模块可分别构造成以便识别电源电压的零交叉以及以便取决于零交叉的时间点进行同步。根据另一方面设置用于在电源导线中串联的、用于通信系统的控制设备。控制设备包括-功率开关,用于开关负载导线中供电电流;-电流调制解调器,用于通过检测和/或调制经过负载导线的通信电流来执行双向通信;-微处理器和/或数据处理单元,其构造为以便仅在能量传输时间窗期间闭合功率开关,以便准许用于至少一个负载的供电电流,以及以便仅在不与能量传输时间窗重叠的通信时间窗期间通过检测和/或调制该通信电流来执行双向通信。根据另一方面提供用于串联在负载导线和电源导线的零导线之间以便传输电能的、用于通信系统的负载模块。负载模块包括-负载,尤其是电消耗装置;-功率块,以便从负载导线取得电能以及向负载提供电能;-电流调制解调器,用于通过检测和/或调制经过负载导线的通信电流来执行双向通信;-微处理器和/或数据处理单元,其构造成以便仅在能量传输时间窗期间从负载导线取得电能以及向负载提供电能以及以便仅在不与能量传输时间窗重叠的通信时间窗期间通过检测和/或调制该通信电流来执行双向通信。对于该方法可规定,控制设备和所述一个或多个负载模块在通信时间窗期间为了接收数据而被置于“听”-状态,在“听”-状态中电流调制解调器的阻抗调节成使得将通信电流限制到预先给定的最大电流值,或者被置于“说”-状态,在“说”-状态中电流调制解调器的阻抗是可变的,使得为了发送要在负载导线上传输的信息通信电流在预先给定的第一电流值和预先给定的第二电流值之间变动。此外在接通阶段期间所述一个或多个负载模块可将“听”-状态中的通信电流分别限制到相同的预先给定的最大电流值,在此控制设备执行对连接的负载模块的数量的估算,其方式是在接通阶段中将所有负载模块的电流调制解调器置于“听”-状态,通过控制模块的电流调制解调器测量在负载导线中调节的电流并且将负载模块的数量作为测量的电流与对于该状态在控制模块中预先给定的最大电流值的比例来测定。根据一种实施方式可执行地址分配,其方式是控制设备通过所述一个或多个负载模块发送用于要求地址的请求,负载模块在随机数量的通信时间窗之后向控制设备发送随机标识码以及控制设备发送设有逻辑地址和该随机标识码的信息,以致于依据发送的随机标识码将其逻辑地址指配给该涉及的负载模块。利用本发明可获得的优点尤其在于,可保留在生活用电设施中传统的通过光开关可接通/可关断的照明设备的布线,在其中电源导线的相导线和负载导线(“开关的相 (geschaltete Phase)")在光开关处存在,而在照明设备处存在电源导线的零导线和负载导线,也就是不仅在光开关处而且在照明设备处只存在两个金属线/导线。所以有利地并且在无需重新铺设附加的导线的情况下也可能的是常规地通过光开关所驱动的照明设备改换成根据本发明所提出的、具有代替光开关的控制设备和代替照明设备中传统灯的负载模块的装置。对于在应用者方面的错误使用,例如在通过传统的光开关驱动根据本发明的负载模块时或在结合传统的照明工具(如白炽灯)驱动根据本发明的控制设备时,也根本不会出现问题,也就是说,传统的光开关可接通/关断根据本发明的负载模块并且根据本发明的控制设备可接通/关断传统的照明工具。不言而喻,在这种错误的使用中通信是不可能的。通过对唯一导线上流动的电流进行调制能够实现经过该导线在控制设备和负载模块之间的双向通信。附加的控制导线不是必需的。在此各个负载模块可以彼此独立地且在对不同的需求(例如关于在照明设备中的亮度和/或颜色)的规定下由控制设备控制。 此外从负载模块到控制设备的应答是可能的。因为调制仅在控制设备和负载模块之间的负载导线上进行,所以生活用电设施的其他消耗装置根本不会受其影响。


以下根据附图来更详细地说明本发明的优选实施方式。附图示出图1示出通信系统的示意图,在此通信经过负载导线进行;图2示出图1的通信系统的控制设备和负载模块的详细示图;图3示出不仅应用于控制设备中而且应用于负载模块中的电流调制解调器的示图;图4示出用于图解在电源电压的一个周期上电源电压和电流的变化曲线的信号时间图;以及图5示出用于图解根据示例性实施方式的通信方法的流程1示出通信系统1,在该系统中在控制设备2和一个或多个(在本示例中为三个)负载模块3之间提供双向通信。负载模块3分别包括可电驱动的负载34,经过负载导线L’向负载34供应电能。对于通信系统1,负载模块3在负载导线L’和电源导线4的零导线N之间彼此并联。对此,控制设备2在相导线L和负载导线L’之间串联。L’也表征称作负载导线的、在控制设备2和负载模块3之间的相导线的开关的/受控的部段。在控制设备2和负载模块3之间的通信例如根据半双工方法进行,也就是通信仅在一个方向是可能同时的并且只能在控制设备2的参与下执行。此外,在不同的时间窗中执行电能到负载模块3的传输和在控制设备2和负载模块3之间的数据通信。图2示出布置在相导线L和负载导线L’之间的控制设备2和布置在电源导线4 的负载导线L’和零导线N之间的负载模块3其中之一的详细示图。控制设备2包括微处理器21,其与电流调制解调器22、功率开关23和电流供电块24连接。电流调制解调器22、功率开关23和供电块M在相导线L和负载导线L’之间彼此并联。供电块M用于在需要时从相导线L取得电能,尤其是用于驱动微处器21、电流调制解调器22和功率开关23。供电块M由微处理器21控制,以致于当通过微处理器21对如下预先给定时,则只从相导线L取得电能。其他情况下,供电块M,至少在控制设备2和负载模块3之间的通信期间应保持在高阻抗状态。电流调制解调器22用于监视该电流通路中的电流以及对此调节所期望的阻抗,以致于以下所描述的通信是可能的。控制设备2的电流调制解调器22连接在相导线L和负载导线L’之间的电流通路中且用于控制和监视负载导线L’中的电流水平。功率开关23由微处理器21控制,使得所述功率开关23在经过负载导线L’进行的通信期间被断开并且为了向负载模块3传输电能而在通信时间窗外在能量传输时间窗期间闭合。功率开关23可以构造成具有半导体构件,例如MOSFET或类似物。借助于微处理器21通过匹配电流调制解调器22的阻抗调制数据比特以便传递信息,在此电流在通信阶段期间在最小的电流值Imin和最大电流值Imax之间的范围中改变。对于信息传输的过程调制信息和/或数据所用的方式基本上是不重要的。所以不对要传输的信号的调制方式做进一步解释。为了描述以下的通信方法足够的是,在通信时间窗KF内根据预先给定的调制方法通过适当地将电流信号在预先给定的最小电流值Imin和预先给定的最大电流值Imax之间变动来表示数据比特。结合通信方法更详细地说明对阻抗改变的功能的使用。此外电流调制解调器22可通过测量电流通路中的电流、例如借助于微处理器21而接收数据和/或信息。负载模块3以类似的方式构成。负载模块3包括微处理器31、电流调制解调器32、功率块33和负载34。电流调制解调器32和功率块33在负载导线L’和电源导线4的零导线N之间并联。负载34可以例如以灯的形式或其他的消耗装置的形式构造。功率块33用于从负载导线L’取得电能,以便一方面给微处理器31和电流调制解调器32供电而另一方面驱动负载34。如上对于供电块M所描述的那样,功率块33在通过微处理器31控制的情况下取得电能。用于驱动消耗装置的从负载导线L’的分接的电能可由现有技术获知并且因而对此不加以更详细的说明。微处理器31可控制负载34,以便预先给定功率消耗和/或驱动参数等等。在灯作为负载的情况下对于单色灯可以改变亮度或者对于彩色灯可以改变亮度和颜色并且可以从灯获得关于灯的状态(例如关于灯中缺陷、其功率消耗和类似物的信息)的应答。在上述配置中具有控制设备2和负载模块3的通信系统1可应用于在控制设备2和负载模块3之间实现数字通信,以便控制负载34。在图3中示出电流调制解调器22或32的详细示图。电流调制解调器22、32串联到相应的电源导线和/或负载导线中且具有用于与相导线L和/或与负载导线L’连接的第一接头51和用于与负载导线L’连接和/或与电源导线4的零导线N连接的第二接头52。在接头51、52之间有电流通路,在该电流通路中串联地设置第一功率开关(例如第一增强型η沟道MOSFET 53)和第二功率开关(例如第二增强型η沟道MOSFET 54) 0此外与MOSFET 53,54串联地设置第一感测电阻55和第二感测电阻56。详细地讲,第一 MOSFET 53的第一接头(漏极接头)与电流调制解调器22、32的第一接头51相连接,而第一 MOSFET 53的第二接头(源极接头)与第一感测电阻55的第一接头相连接。第一感测电阻55的第二接头与地电位或其他的确定的电位以及与第二感测电阻56的第一接头相连接。第二感测电阻56的第二接头与第二 MOSFET M的第一接头 (源极接头)相连接。第二 MOSFET M的第二接头(漏极接头)与电流调制解调器22、32 的第二接头相连接。MOSFET 53 J4的控制接头(栅极接头)彼此连接且与运算放大器57 的输出端相连接。在输入侧在运算放大器57的未反相的输入端处施加TX-信号TX以及在运算放大器57的反相的输入端处施加RX-信号RX。TX-信号TX由微处理器21、31提供,而RX-信号RX相应于与在电流调制解调器的第一接头和第二接头51、52之间的电流绝对值成比例的电压信号。这通过两个半波整流放大器58、59获得,它们在第一感测电阻55的第一接头处和在第二感测电阻56的第二接头处分接(abgreifen)电压电位,它们取决于通过电流调制解调器22、32的电流通路的电流流动。经放大的电压电位在求和元件60中相加,以致于获得与在电流调制解调器22、32的第一接头和第二接头51、52之间的电流通道中电流绝对值成比例的电压信号。RX-信号RX作为反馈信号应用在调节回路中,调节回路控制MOSFET 53J4的控制电压。以这种方式可以通过电流调制解调器将电流通道中的电流调节到与TX-信号TX成比例的值。在图4中示出的是信号时间图,该信号时间图示出能量传输时间窗EF和通信时间窗KF中信号-和能量传输之间的分离。上部的正弦形的变化曲线示出在电源导线4的相导线L和零导线N之间电源电压U的变化曲线。电压的周期性变化曲线划分到连续的时间窗中,也就是到在其中传输电能的能量传输时间窗EF中以及到在其中为了在控制设备2和负载模块3之间进行通信而进行信号传输的通信时间窗KF中。通信时间窗KF是关于电压变化曲线定义的并且处在如下范围中,在所述范围中电压值小于第一预先给定的阈值^且大于第二预先给定的阈值US2。由此,电压表的关于电压变化曲线的周期持续时间的角度范围 φι ’ φ2; 180。_ φ2, 180。_ Cp1 ; 180。+ Cp1, 180。+ φ2; 360°- φ2, 360°- Cp1 被定
义为通信时间窗KF。能量传输时间窗EF是关于电压变化曲线定义的并且处于如下范围中,在该范围中电压值大于第二预先给定的阈值US2。由此,定义角度范围 ψ2, 180° - φ2; 180° + φ2, 360°- φ2
ο优选地,电压的第一阈值Usi相应于电源电压的峰值的30%与70%之间的电压,优选相应于该峰值的40%与60%之间的电压,例如50%。优选地,电压的第二阈值^相应于电源电压的峰值的5%与25%之间的电压,尤其是电源电压的峰值的10%与20%之间的电压,例如15%。原则上应规定的是,能量传输时间窗延伸通过电源电压变化曲线的峰值。作为对于上述的能量传输时间窗的对称布置的备选也可设置能量传输时间窗关于电源电压的峰值的非对称布置。在电源电压的零交叉周围的范围中,在该范围中电压在量值上小于第二阈值Us2, 设置了同步时间窗SYNC,其分成两个通信时间窗KF。同步时间窗SYNC不用于在控制设备 2和负载模块3之间传输信息,因为在负载导线L’上用于提供最大电流值Imax和用于向负载;34传输电能的可用电压太小。在这种情况下,控制设备2和负载模块3的所有电流调制解调器22、32都处在被动的“听”-状态下。此外,可以合适的方式通过微处理器21、31检测电源电压的零交叉,以便关于供电系统的网络频率同步微处理器的内部时钟。检测可借助于合适的电压测量仪和/或借助于电流调制解调器22、32的感测电阻55、56进行。此外供电块M和功率块33应在同步阶段期间被去激活并且功率开关23应同样地断开或是高阻抗的,因为在零交叉期间无法向负载;34传输在相当大的范围中的能量。在相应于零交叉之后的相角Cp1的持续时间后,通信在另一个通信时间窗中重新开始,在此功率开关23继续保持断开。对于电源电压的零交叉之后相应于相角φ2的转换时间点,结束通信且开始能量传输时间窗的能量传输阶段。在通过同步的微处理器21、31控制的情况下关断所有电流调制解调器22、32以及闭合功率开关23,以便在能量传输时间窗期间向负载模块3传输电能。功率块33也通过微处理器21、31激活且通过以下方式开始,对供电电流形式的电能分路用于相应的负载34。合适的是,在电流调制解调器22、32的关断和功率开关23的闭合之间设有合适的缓冲时间范围。在该缓冲时间范围中闭合功率开关23且电流调制解调器22、32处在具有尽可能大的阻抗的关闭-状态,以便避免能量传输时间窗和通信时间窗的相交,该相交可导致电流调制解调器22、32的过载以及导致解调错误。根据同样在图4中示出的在负载导线L’上的电流的电流变化曲线识别在能量传输时间窗期间供电电流的在量值上高的电流值和通信电流的为了传输数字信息而在两个电流值Imax,Imin之间变动的电流值,其符号分别取决于电源电压是正的还是负的。在零交叉之后的确定的持续时间之后,尤其是在超出电源电压的幅度的最大值或最小值之后,功率开关23又断开且通信在随后的通信时间窗KF中接收(aufnehmen)。因而,在电源电压的每个周期期间四个其中可进行通信的通信时间窗是可用的。下文中详细地描述通信方法。该通信(例如如上所述)基于电流调制且原则上能够驱动多个负载模块3。对通信方法提高了的要求在于,负载模块3必须在负载导线L’和电源导线4的零导线N之间彼此并联且与控制设备2串联。这通过可用的(例如建筑物中的)导线基础设施(leitungsinfrastruktur)预先给定。在这种情形下控制设备2作为“主设备(master),,向作为“从设备(slave),,的所有负载模块3传递信息,其方式是调制电路中在最小的电流值Imin和最大电流值Imax之间的总电流。此外每个负载模块3只能以较小量为导线网络(Leitimgsnetz)中的电流做贡献,尤其是在负载模块3数量多的情况下。出于该原因,通信方法规定,仅设备2、3可同时发送。此外应规定的是,当负载模块3发送时,其他的负载模块3将其电流调制解调器32与负载导线L’分开,也就是置于关闭-状态中和/或高阻抗地连接。为了避免在负载导线L’上的数据传输冲突,负载模块3应仅当通过控制设备2明确地向负载模块3对此提出请求时才发送。在图5中示出用于图解通信方法的流程图。步骤Sl涉及当电源电压接通(einschalten)时的接通阶段。在这个状态中所有电流调制解调器22、32被置于关闭-状态,在该状态中通过电流调制解调器22、32的电流通路具有高阻抗。对此,通过相应的微处理器21、31将TX-信号TX设为零,以便通过所得到的控制信号打开MOSFET 53,54且将涉及的电流调制解调器22、32与电路分开。功率开关23在接通阶段期间同样断开。供电块24以及功率块33只从负载导线L’取得供电电流,以致于可在控制设备2和负载模块3中的每个中构成足够的直流电压电源。一旦达到该状态,启动控制设备2和负载模块3的微处理器21、31并且控制设备的供电块M和/或功率块33可被置于高阻抗状态。一旦在步骤S2中相应的微处理器21、31接管控制设备2或所涉及的负载模块3的控制,则微处理器21、31将各自的电流调制解调器21、31置于“听”-状态。在“听”-状态中应用TX-信号TX,以便将电流调制解调器的电流通路中的电流限制到预先给定的最大电流值1_。对此TX-信号TX作为电压信号由微处理器31预先给定以及通过与RX-信号RX 的差值形成(Differzenzbildimg)而形成调节。TX-信号TX相应于当具有最大电流值Imax 的电流流经感测电阻阳、56时其电压值相应于感测电阻55、56上的电压降的电压。RX-信号RX相应于感测电阻55、56上的实际电压降。调节在运算放大器57的输出端处的控制电压,使得与TX-信号TX的电压成比例的电流,也即Imax,流经该电流通路。因而,负载模块3的微处理器31控制它的电流调制解调器32,以便将通过每个电流调制解调器32的电流流动限制到最大电流值1_。控制设备2调节它的电流调制解调器21,以便将负载导线L’中的电流限制到标称最大值。当例如具有最大数量的负载模块nmax的控制设备2应工作时,那么应将电流调制解调器限制到nmaxX Imax的电流。这在交变电压的至少一个完整周期期间进行。零交叉可通过微处理器21、31来识别,以便构成对于控制设备2以及所有负载模块3共同适用的时间基准。借助于RX-信号RX在控制设备2的微处理器21中所测定的导线电流Imess可由控制设备2应用,以便估计连接的(angeschlossen)负载模块3的数量n,其方式是导线电流Imess的测量值除以最大电流Imax的标称值(其优选对于每个负载模块3是相同地预调节的)。对此,应尽可能使所有负载模块3的预给定的最大导线电流选择为相同。应用于步骤 S2的电源电压的周期的数量可预先给定。在步骤S3中确定微处理器21、31的同步性以及估计连接的负载模块的数量η。 通信现在相应于上述的操作方式仅在通信时间窗KF内执行。所有负载模块3则保持在 “听”-状态中且控制设备3可根据“说”-状态开始数据的传输。“说”状态规定,应用TX-信号ΤΧ,以便将最小电流值Imin和最大电流值Imax之间的整个范围中的相电流(den Strom der Phase)用于数据传输。通过测量在感测电阻55、56上下降的电压可监视该电流,以便识别冲突。当相应于RX-信号RX的电流值超出最大电流值Imax时,识别冲突。可将传输的数据用于传输指令,例如负载的接通,或信号传输可以是复杂的握手方法的一部分,例如用于识别每个单独的负载模块3和用于分配地址。以下描述一种用于识别连接的负载模块3和用于分配地址的方法,以便可通过控制设备2适宜地响应每个负载模块3。在以前所描述的开始序列(Martsequenz)结束后控制设备2可在步骤S4中发送指令ID_请求,以便请求负载模块3,提供自己识别。控制设备 2在发送ID_请求指令后被置于“听”-状态中(步骤S5)。一旦连接的负载模块3从控制设备2接收ID_请求指令,则其在步骤S6中生成临时标识符,例如随机的或取决于相应的负载模块3的序列号。该临时标识符在步骤S6中由每个负载模块3在随机数量的通信时间窗KF后传输到控制设备2。当控制设备2在步骤S7中已从负载模块3之一接收答复后,控制设备2重新传输相同的临时标识符以及附上对应的逻辑地址。在控制设备2中根据预先给定的模式选择或随机地选择该逻辑地址。逻辑地址是唯一的且每个负载模块3获得独一无二的逻辑地址。当负载模块3已经从控制设备2接收答复后,负载模块3检验临时标识符。当该临时标识符与以前传输的一致时,那么负载模块3在其存储器中存储追加的逻辑地址(步骤S8)。自此开始所涉及的负载模块3可直接通过逻辑地址来响应。一旦所有负载模块3以上述的方式分配了逻辑地址,则在步骤S9中可占用如下状态,在该状态中可在通信时间窗KF期间在控制设备2和各个负载模块3之间根据预先给定的协议实施通信。优选地,在通信时间窗KF期间总是只进行两个设备2、3之间的单向通当两个负载模块3在相同的时间传输临时标识符作为对ID_请求-指令的答复时,控制设备2对有错误的信息解码。在这种情况下应用错误检测方法。例如可将控制设备2构造成以便识别校验和是错误的,由此控制设备2丢弃接收的消息。只要负载模块3在预先确定的时间内没有获得答复,则负载模块3分别在随机数量的通信时间窗KF之后重复传输临时标识符。负载模块3以相同的方式检测何时出现冲突以及未指配地址。然后负载模块3在随机数量的通信时间窗KF之后重复传输它的临时标识符。例如可以在ASK-调制中(幅移键控)识别冲突。在ASK-调制中在量值上低的电流值(最小电流值Imin)主导。可以实现冲突检测,其方式是在发送期间电路中电流值通过电流调制解调器22、32监视。当例如测量到低电流值时,尽管控制设备2或负载模块3其中之一为了发送信息而尝试将最大电流值Imax加到负载导线L’上,会检测到冲突并且控制设备2和/或涉及的负载模块3中断该传输。冲突的出现可相应地在控制设备2和/或负载模块3中引起在随后的通信时间窗KF中启动重新传输。在FSK-调制(频移键控)的情况下,信号变化曲线通常扭曲(Verzerren),以致于可通过信号的扭曲识别冲突。为了减小两个负载模块3选择相同临时标识符的概率,该临时标识符可以以足够长度的比特序列的形式存在,例如16比特,24比特或32比特。根据另外的实施方式,可设置组地址,以便同时对负载模块3的组或子集进行编址。因而,该协议可规定组标识符,其除了负载模块3的简单地址之外还能够实现通过组地址响应负载模块3。组地址到负载模块3的分配可基本上以相同方式执行,如逻辑地址的分
配一样。此外,可构造控制设备2,以便识别何时连接没有电流调制能力的传统负载,由此阻碍了根据上述的通信方法的数字通信。这可能在步骤Sl中在接通阶段期间已经确定,其方式是监视导线电流。未根据上述方法驱动的负载导致电流的异常变化。还要补充的是,不仅控制设备而且负载模块配备有存储介质,所述存储介质将控制设备和负载模块之间一次性确定的配属关系在网络故障时也持久地存储。即使前面示例性和详细地描述振幅调制,不言而喻地也可应用频率调制。优选地,可应用任意的、通常已知的调制方式。附图标记列表1通信系统2控制设备3负载模块
4电源导线21微处理器22 电流调制解调器23 功率开关24供电块31微处理器32 电流调制解调器33 功率块34 负载51第一接头52第二接头53第一 MOSFET54第二 MOSFET55第一感测电阻56第二感测电阻57运算放大器58、59半波整流放大器60 求和元件L 电源导线的相导线L’负载导线N 电源导线的零导线。
权利要求
1.一种通信系统(1),包括:-控制设备O),所述控制设备⑵在相导线(L)和负载导线(L’ )之间串联到电源导线中,以便仅在能量传输时间窗(EF)期间准许至少一个负载(34)上的供电电流以及仅在不与所述能量传输时间窗(EF)重叠的通信时间窗(KF)期间通过检测和/或调制经过所述负载导线(L’ )的通信电流执行双向通信;以及-一个或多个设有所述负载(34)的负载模块(3),所述负载模块C3)彼此并联且在所述负载导线(L’ )与所述电源导线的所述零导线(N)之间与所述控制设备O)串联, 以便仅在所述能量传输时间窗(EF)期间从所述负载导线(L’ )取得电能以及向相应负载 (34)提供电能,以及以便仅在所述通信时间窗(KF)期间通过检测和/或调制经过所述负载导线(L’) 的通信电流来执行所述双向通信。
2.根据权利要求1所述的通信系统(1),在此所述控制设备(2)具有功率开关(23), 以便在所述能量传输时间窗(EF)期间闭合所述功率开关03)以及在所述能量传输时间窗 (EF)外断开所述功率开关03),以及在此所述至少一个负载模块(3)具有功率块(33),以便在所述能量传输时间窗(EF)期间从所述负载导线(L’ )取得电能。
3.根据权利要求1或2所述的通信系统(1),在此所述控制设备( 和所述一个或多个负载模块C3)分别具有电流调制解调器02、32),在此每个电流调制解调器(22、3幻在所述能量传输时间窗(EF)期间去激活,以致于所述电流调制解调器基本上不具有导电性,以及在所述通信时间窗(KF)期间为了接收而被置于“听”-状态,在所述“听”-状态中所述电流调制解调器02、32)的阻抗调节成使得将所述通信电流限制到预先给定的最大电流值(Imax),或被置于“说”-状态,在所述“说”-状态中所述电流调制解调器02、32)的阻抗是可变的,使得为了发送要在所述负载导线(L’ )上传输的信息所述通信电流在预先给定的第一电流值和预先给定的第二电流值之间改变。
4.根据权利要求3所述的通信系统(1),在此设有多个负载模块(3),所述负载模块的电流调制解调器(3 将“听”-状态中的电流流动分别限制到相同的预先给定的最大电流值,在此所述控制设备( 构造成以便执行对连接的负载模块(3)的数量的估算,其方式是在接通阶段中将所有负载模块(3)的所述电流调制解调器(3 置于所述“听”-状态, 通过所述控制模块( 的所述电流调制解调器0 测量在所述负载导线(L’)中调节的电流并且将所述负载模块(3)的数量作为测量的电流与对于该状态在所述控制模块中预先给定的最大电流值的比例来测定。
5.根据权利要求1-4之一所述的通信系统(1),在此所述通信系统(1)构造成以便仅在所述控制设备( 和所述一个或多个负载模块( 其中之一之间执行所述双向通信。
6.根据权利要求1-5之一所述的通信系统(1),在此所述控制设备( 和所述一个或多个负载模块C3)构造成一旦校验和是错误的或未指配地址,在所述地址分配期间在协议层面上识别由于同时发送要传输的信息引起的冲突。
7.根据权利要求1-6之一所述的通信系统(1),在此所述控制设备( 和所述一个或多个负载模块(3)构造成在应用频率调制时依据所述信号变化曲线的扭曲识别由于同时发送要传输的信息而引起的冲突。
8.根据权利要求1-6之一所述的通信系统(1),在此所述控制设备( 和所述一个或多个负载模块C3)构造成依据通过所述负载导线(L’ )上的电流超出所述最大电流值(Imax)而识别由于同时发送要传输的信息引起的冲突。
9.根据上述权利要求之一所述的通信系统(1),在此所述通信时间窗(KF)相应于其中所述电源电压在量值上大于第一阈值且在量值上小于第二阈值(Usi)的时间窗,以及在此所述能量传输时间窗(EF)相应于其中所述电源电压在量值上大于所述第二阈值(Usi)的时间窗。
10.根据上述权利要求之一所述的通信系统(1),在此所述控制设备( 和所述一个或多个负载模块C3)分别构造成以便识别所述电源电压的零交叉以及以便取决于所述零交叉的时间点进行同步。
11.一种用于串联在相导线(L)和负载导线(L’)之间的、用于通信系统(1)的控制设备O),所述控制设备( 包括-功率开关(23),用于开关所述负载导线(L’ )中的供电电流,-电流调制解调器(22),用于通过检测和/或调制经过所述负载导线(L’)的通信电流执行双向通信;-微处理器和/或数据处理单元,其构造成以便仅在能量传输时间窗期间闭合所述功率开关03),以便准许用于至少一个负载(34)的供电电流,以及以便仅在不与所述能量传输时间窗重叠的通信时间窗期间通过检测和/或调制所述通信电流执行所述双向通信。
12.一种用于串联在负载导线(L’ )和电源导线⑷的零导线(N)之间以便传输电能的、用于通信系统(1)的负载模块(3),所述负载模块C3)包括-负载(34),尤其是电消耗装置;-功率块(33),以便从所述负载导线(L’ )取得电能以及向所述负载(34)提供电能;-电流调制解调器(32),用于通过检测和/或调制经过所述负载导线(L’)的通信电流执行双向通信;-微处理器和/或数据处理单元,其构造成以便仅在能量传输时间窗期间从所述负载导线(L’ )取得电能以及向所述负载(34)提供电能,以及以便仅在不与所述能量传输时间窗重叠的通信时间窗期间通过检测和/或调制所述通信电流执行所述双向通信。
13.一种用于在通信系统(1)中的控制设备( 和一个或多个负载模块C3)之间通信的方法,在此所述通信系统⑴具有串联到电源导线⑷中的控制设备O),以及一个或多个设有所述负载(34)的负载模块(3),所述负载模块C3)彼此并联并且与所述负载导线(L’ )中的所述控制设备O)串联,所述方法具有下列步骤-驱动所述控制设备0),以便在时间上连续地仅在能量传输时间窗期间准许用于驱动负载(34)的供电电流以及以便仅在不与所述能量传输时间窗重叠的通信时间窗(KF)期间通过检测和/或调制经过所述负载导线(L’ )的通信电流执行双向通信;以及-驱动所述一个或多个负载模块(3),以便仅在所述能量传输时间窗(EF)期间从所述负载导线(L’ )取得电能以及向所述相应负载(34)提供电能,以及以便仅在所述通信时间窗(KF)期间通过检测和/或调制经过所述负载导线(L’)的通信电流执行所述双向通信。
14.根据权利要求13所述的方法,在此所述控制设备( 和所述一个或多个负载模块 ⑶在所述通信时间窗(KF)期间为了接收数据而被置于“听”-状态,在所述“听”-状态中所述电流调制解调器的阻抗调节成使得将所述通信电流限制到预先给定的最大电流值,或被置于“说”-状态,在所述“说”-状态中所述电流调制解调器的阻抗是可变的,使得为了发送要在所述负载导线(L’ )上传输的信息所述通信电流在预先给定的第一电流值和预先给定的第二电流值之间改变。
15.根据权利要求14所述的方法,在此在接通阶段期间所述一个或多个负载模块(3) 将所述“听”-状态中的所述通信电流分别限制到相同的预先给定的最大电流值(Imax),在此所述控制设备( 执行对连接的负载模块C3)的数量的估算,其方式是在接通阶段中将所有负载模块(3)的所述电流调制解调器(3 置于所述“听”-状态,通过所述控制模块(2) 的所述电流调制解调器0 测量在所述负载导线(L’)中调节的电流并且将所述负载模块 (3)的数量作为测量的电流与对于该状态在所述控制模块中预先给定的最大电流值(Imax) 的比例来测定。
16.根据权利要求13-15之一所述的方法,在此执行地址分配,其方式是所述控制设备( 通过所述一个或多个负载模块C3)发送用于要求地址的请求,所述负载模块(3)在随机数量的通信时间窗(KF)之后向所述控制设备(2)发送随机标识码作为答复以及所述控制设备( 发送设有逻辑地址和所述随机标识码的信息,以致于依据发送的随机标识码将其逻辑地址指配给该涉及的负载模块(3)。
17.一种用于在用于串联在电源导线(4)中的、用于通信系统(1)的控制设备(2)中执行的方法,在此所述控制设备( 包括-功率开关(23),用于开关所述负载导线(L’ )中的供电电流;以及-电流调制解调器(22),用于通过检测和/或调制经过所述负载导线(L’)的通信电流执行双向通信;在此所述方法规定,仅在能量传输时间窗(EF)期间闭合所述功率开关(23),以便准许用于至少一个负载的供电电流,以及仅在不与所述能量传输时间窗(EF)重叠的通信时间窗(KF)期间通过检测和/或调制所述通信电流执行所述双向通信。
18.一种用于在用于与负载导线(L’)串联以便传输电能的、用于通信系统(1)的负载模块(3)中执行的方法,在此所述负载模块C3)包括-负载(34),尤其是电消耗装置;-供电块(33),以便从所述负载导线(L’ )取得电能以及向所述负载(34)提供电能;以及-电流调制解调器(32),用于通过检测和/或调制经过所述负载导线(L’)的通信电流执行双向通信;在此所述方法规定,仅在能量传输时间窗(EF)期间从所述负载导线(L’ )取得电能以及向所述负载提供电能,以及仅在不与所述能量传输时间窗(EF)重叠的通信时间窗(KF) 期间通过检测和/或调制所述通信电流执行所述双向通信。
全文摘要
本发明的名称为用于通过负载导线进行通信的方法和装置,涉及一种通信系统(1),包括控制设备(2),其在相导线(L)和负载导线(L’)之间串联到电源导线(4)中,以便仅在能量传输时间窗(EF)期间准许在至少一个负载(34)上的供电电流并且仅在不与能量传输时间窗(EF)重叠的通信时间窗(KF)期间通过检测和/或调制经过负载导线(L’)的通信电流而执行双向通信;以及一个或多个设有负载(34)的负载模块(3),其彼此并联且在负载导线(L’)中与控制设备(2)串联,以便仅在能量传输时间窗(EF)期间由负载导线(L’)取得电能以及向相应负载(34)提供电能,以及以便仅在通信时间窗(KF)期间通过检测和/或调制经过负载导线(L’)的通信电流来执行双向通信。
文档编号H04B3/54GK102377456SQ20111022043
公开日2012年3月14日 申请日期2011年7月26日 优先权日2010年7月27日
发明者A·埃克莱贝, D·戈尔迪恩, F·齐梅克, G-L·马多纳, H·林德, M·西米诺, P·鲁梅纳普夫, R·布洛克, T·鲁希瓦尔 申请人:Abb股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1