具有可预测的温度控制的分析炉的制作方法

文档序号:8032710阅读:220来源:国知局
专利名称:具有可预测的温度控制的分析炉的制作方法
技术领域
本发明涉及一种分析炉,尤其涉及具有预测的温度控制的分析炉。
背景技术
许多实验室分析仪使用燃烧炉或其它类型的炉子,它们加热和/或燃烧试样,以便确定试样中的化学元素。一种类型的分析仪是热解重量分析仪,其使用一种炉子,所述炉子的温度必须被仔细地控制。材料的热解分析提供关于湿气含量、挥发物、灰分、或固定碳以及重量损失或在点燃时的增量的重要信息。例如煤、焦碳、石墨、面粉、生面团、植物组织、饲料、肥料、食品、化学制品、橡胶、塑料、陶瓷、矿石、沉积物和纸等材料都能够利用ASTM标准进行热解重量分析,所述标准详述了关于确定材料的湿气、挥发物、固定碳、灰含量和点火含量的要求。所述确定是这样进行的首先称量要被分析的试样,然后使试样在一个受控的环境中经受一个被很好地控制的时间/温度分布,并在控制的时间间隔期间称量所述试样,以确定在不同温度下的重量损失。然后使用已知的数学公式计算材料的湿气、挥发物、固定碳、灰分和点火含量。第一重要的是精确地知道和精细地控制温度分布,尤其是当试样材料在不同温度下可以损失其重量的离散的百分数时。
进行试样分析的现有技术的分析仪和进行多试样热解重量分析的分析仪一般使用具有一个温度传感器的炉子,其虽然能够提供足够的分析信息,但可能具有操作缓慢和性能比所需的精度低的缺点。因而,需要一种分析炉,例如和热解重量分析仪一道使用,其中在试样保持坩锅内的温度被精确地确定和精细地控制。还需要一种分析炉,其能够改善分析速度、并具有分析之间的可重复性和仪器之间的可再现性,使得可以获得精确而快速的分析。

发明内容
本发明的系统提供一种具有可预测的温度控制的分析炉。在一个实施例中,提供一个批式的大的热解重量分析仪,其借助于在炉子中利用至少一对温度传感器来提供可预测的温度控制,能够快速而精确地分析多个试样。一个传感器以固定的关系被安装在炉子中,第二个传感器被安装在坩锅内,用于训练和调整温度分布,使得其中含有试样的坩锅的温度可以被模拟,并且其对于按照已知的炉子的动态热特性对坩锅施加的能量的响应是可预测的和可控制的。通过使用一对温度传感器,其中一个在坩锅内的温度分布的模拟期间被置于坩锅内,使得炉子可被控制,从而提供更快的更精确的分析,并阻止随着所需的温度稳定段被更快地达到而出现过量的温度过调。
本发明的热解重量分析仪包括一个炉子,位于所述炉子内的具有重量平台的天平,用于多个坩锅的支撑物,其依次把坩锅设置在所述重量平台上,用于加热炉子的加热器,以及一对温度传感器。第一个温度传感器以固定的关系被设置在炉子内,第二个温度传感器被可移动地设置在所述支撑物上的坩锅内。一个控制电路和传感器耦连,并且包括微处理器,其被编程用于在随着炉温的增加来模拟坩锅温度的训练和调整模式期间获得温度数据,并在操作模式期间用于控制炉子的温度。所得的炉温控制是精确的,并提供更快的更精确的和可重复的试样分析。
通过参照附图阅读下面的说明,可以清楚地看出本发明的这些和其它的特征、目的和优点。


图1是现有技术的热解重量分析仪的重量损失对温度的曲线;图2是表示本发明的系统的性能的重量损失对温度的曲线;图3是在本发明的热解重量炉中温度对时间的曲线,表示在分析的初始阶段期间在炉内的测量的和预测的温度;图4是实施本发明的热解重量分析仪的侧视图,其中一部分被剖开了,一部分用假想的方式表示;图5是图4的炉室的顶平面图;图6是图4的炉室的透视图,其中一部分被剖开了;图7是用于热解重量分析仪的控制电路的方块电路图;图8是图7所示的温度控制的详细方块图;图9A,9B是表示用于本发明的分析仪的预测的温度炉控制的概观的流程图;图10是用于温度控制的算法的训练部分的流程图;以及图11A,11B是用于热解重量分析仪的预测的温度控制的训练的程序的流程图。
具体实施例方式
首先参见图1,其中示出了在例如美国专利4522788中披露的现有技术的大的批式的热解重量分析仪中一种典型的试样分析周期,所述试样例如是10克的试样。曲线表示在试样分析期间随着炉温从环境温度增加到接近1000℃的最大温度,在不同地温度值下的重量损失的百分数。可以看出,在不同地温度斜坡率(即每分钟6℃对每分钟24℃)下,在坩锅内的试样对温度分布的报告的重量损失十分不同。
图2的曲线表示由本发明的热解重量分析仪实现的改进的性能,其中使用预测的温度控制,利用两个传感器,一个被固定地设置在炉子内,一个在坩锅模拟模式期间位于坩锅内。如图2所示,对于在每分钟6℃和每分钟12℃的炉温斜坡率,对温度的百分比重量损失形成相当接近的重叠曲线,从而得到独立于温度斜坡率的试样分析。图3的曲线中示出了温度的可预测控制,其中曲线T1相应于由第一温度传感器130(见图5,6,8)在炉子中检测的温度,温度曲线T2相应于由位于坩锅内的第二温度传感器140(也见图5,6,8)检测的温度,预测的模拟坩锅温度由虚线曲线Tp表示,这个曲线是利用软件产生的,该软件将在下面结合图9-11的流程图进行说明。借助于模拟坩锅的温度响应、并预测当达到不同地温度稳定段时坩锅的温度,基本上避免了温度的过调,并且在实际坩锅中的温度T2的估计热延时可以被从反馈通路中除去,使得能够进行响应更快的控制。在简要说明可以由本发明的热解重量分析仪实现的改进的结果之后,下面利用图4-图6说明分析仪、分析仪的控制电路以及用于实现这些结果的计算机编程。
图4示出了按照本发明的优选实施例的热解重量分析仪,用标号10表示。由图4可见,分析仪10包括炉子12,电子天平14,其具有位于炉子内的重量平台16,位于炉子内的试样盘18,以及在炉子内支撑着试样盘18的试样盘操作机构20。试样架18是一个盘子,其具有围绕试样盘的周边均匀分布的多个孔22(见图5,6)。多个含有试样的坩锅24可被置于试样盘18上,使得坩锅中的一个和每个孔22大致对准,并由孔的周边边沿支撑着。然后启动机构20,使得通过使试样盘18转动,按照顺序分别把各个坩锅24设置在重量平台16上,使得孔22中的一个和重量平台16对准,然后使试样盘18降低,从而把相关的坩锅设置在重量平台上。在完成称量之后,试样盘18被向上移动,从而升高称量过的坩锅脱离重量平台16,以相同的方式称量下一个相邻的坩锅。结果,坩锅24在炉子12内被依次称量而不打开炉子。
更特别地参看炉子12的结构,可以看出,所述炉子包括下部包含部件26和盖28,它们共同限定具有3升左右的容积的室34。下部部件26包括基本上是圆柱形的侧壁30,被整体地连接于水平的平面的炉底32。部件26的上端是敞开的,壁30以环形的顶面33终止。盖28基本上是一个平面部件,具有圆的形状,当闭合时,停留在壁30的上表面上。电阻加热元件104(图6,图7)被设置在炉子12内,并由温度控制电路110控制(图7),所述控制电路按照下述操作,用于在大约50℃和大约1000℃之间的所需的温度下如下所述调整炉子的温度。下部部件26和盖28由熟知的难熔的陶瓷材料例如氧化铝制造。
盖28借助于铰链36被以铰链方式固定到部件26上,以便在图4所示的在下部部件26的表面33上停留的闭合位置、以28’假想线所示的加载位置、以及以假想线28”所示的打开位置之间运动。一对常规的气缸38被安装在炉子12的相对侧,并在枢轴点40和42被分别枢轴地安装在部件26和盖28上和它们之间。每个气缸38包括杆44,其被套叠地接收在气缸本体内,并当气动压力被加于气缸时,从气缸向外伸缩,从而使盖28在闭合位置、加载位置28’以及打开位置28”之间运动。当盖28处于其完全打开的位置28”时,气缸38的位置如图4中38”所示。
电子天平14包括被支撑在轴46上的重量平台16。轴46垂直地延伸,并位于在炉底32内形成的基本上是圆柱形的孔48内。孔48的内径比轴46的外径大一些,从而使得轴能够在孔内自由地运动。
试样盘13(图4-6)包括能够经受至少1000℃的温度的基本上是平面的盘状板50。板50包括20个均匀分布的圆孔22,在试样盘的外周边附近贯通地延伸。一个孔被指定为零位置孔,每个孔22具有基本上相等的直径。孔22和板50的圆构型具有公共的垂直轴54(图4),试样盘18围绕该轴线转动。因为每个孔的中心和轴54的距离相同,借助于转动试样盘18,任何一个孔22都可以和重量平台16垂直地对准。
提供升高和转动结构20用于选择地升高、转动试样盘18,并接着降低试样盘,以便按照顺序把试样保持坩锅24置于重量平台16上。结构20(图4)包括支撑着试样盘18的轴56和从电动机58延伸的下部轴62,电动机58被安装在板64上,其可以被启动,以便使试样盘转动而使任何一个孔22位于沿垂直和水平方向和重量平台16对准的位置。轴56垂直延伸通过部件26的底板32中的孔56’,并具有被固定到支撑板50的中心的上端。
结构20还包括升降机构60,其包括水平支撑板64,被固定地固定到板64的下方的杆部件66,以及具有被固定地固定到部件66上的具有轴70的气缸68。因而,当对气缸68施加气动压力时,轴70从气缸向上伸出,使杆部件66和支撑板64移动,在支撑板64上安装着包括电动机58的试样盘转动装置。当气动压力被从气缸68释放时,轴70、部件66和支撑板64向下移动。导向部件75被固定地固定到杆部件66的腿77上,并包括一个孔78用于接收从分析仪10的底部76向上延伸的导杆74。第二导杆72通过板64中的孔可滑动地延伸,使得当试样盘借助于气缸68的启动而被升高和降低时,可转动地与其相连的板64和试样盘18被保持精确的转动对准。
通过控制气缸68,支撑板64可以在图4用实线所示的升高加载位置、有些降低的转动位置64’、和最低的称量位置64”之间垂直地移动。因为转动装置或电动机58和板64一道垂直移动,其也在图4所示的加载位置、转动位置58’、以及称量位置58”之间垂直地移动。最后,因为轴56和转动装置58一道垂直移动,试样盘18便可以在图4所示的加载位置、转动位置18’以及称量位置18”之间垂直地移动。在加载位置,架18接近炉子12的上开口的末端,以便帮助把坩锅24设置在孔22中。
栓锁94在96以枢轴方式被安装在支架98上,并可以在图4所示的未栓锁位置和以假想形式所示的栓锁位置94’之间绕枢轴转动。栓锁94包括锁定边沿95,其当栓锁94处于其未锁定位置时不会妨碍板64的运动。不过,当试样盘18分别处于转动位置18’或称量位置18”时,检锁94可以绕枢轴向下转动到其锁定位置,其中边沿100位于板64的正上方。此时,直到栓锁94被开锁,试样盘18才可被升高到加载位置18’。在美国专利4522788中详细说明了分析仪10的机械操作,该专利的内容被包括在此作为参考。
现在参见图5和图6,图中示出了炉子的详细的透视图,其中温度传感器130位于围绕着试样盘18的炉室100内,并和炉壁102呈固定的关系,如上所述,炉壁由合适的陶瓷材料制成,其中嵌入电阻加热器104(图6和图8)。温度传感器130对控制电路提供表示在炉室100内在这个固定位置的炉子的温度的信号。第二温度传感器140,例如热电偶,由柔性的导体106耦连,所述导体通过炉壁以常规方式延伸,第二温度传感器可被插入坩锅24内,大致离固定的温度传感器130 90度,用于提供实际的坩锅温度信息,用于控制电路的训练,从而允许进行图2和图3所示的改进的预测温度控制。在一个实施例中,导体106大约20英寸长,以便使热电偶140位于和温度传感器130分开的位置,并在分析期间代表坩锅的温度。因而,通过测量坩锅内的实际温度并将其和传感器130检测的炉温比较,可以按照下面的详细说明利用附加的温度信息,以便提供改进的分析结果。
温度传感器130和140可以是热电偶或其它合适的能够经受炉温的温度传感器,炉温大约最高达到1000℃。温度传感器和温度控制电路110(图3)相连,温度控制电路又是整个控制系统200的一部分,如图7所示。控制系统200包括微处理器202,其借助于合适的接口电路和炉加热器104、氧气阀204、被控的氮气阀206、盖致动活塞38、输入键盘208、包括气缸的栓锁机构94、电子天平14、试样盘移动装置60以及转动装置58相连。如图8所示,温度控制电路110分别通过前置放大器108,109、通过A/D转换器111,113向微处理器120的输入端提供来自热电偶130,140的信号输入信息,微处理器借助于数据总线125和计算机202相连。微处理器120可以是Intel 8051。计算机202响应由微处理器120提供的温度信息,以便提供训练和调整以及在炉子内的坩锅温度响应的最终模拟,如结合下面讨论的程序流程图所述。从计算机202到微处理器120的最终的控制信号在输出端122(图8)向固态继电器124提供脉宽调制的信号,所述固态继电器124和操作功率源126相连,操作功率源126通过继电器124向炉子12的加热元件104提供操作功率。计算机202还和打印机210相连,用于向操作者提供分析结果的打印输出,分析结果例如可以包括如图2所示的曲线以及关于被分析的每个试样的专用数据。
在炉子控制系统200的训练和调整之后的含义是要导出关于炉温动态特性的模型,其代表实际的坩锅温度,该温度在若干试样的分析期间在其上具有坩锅的试样盘18的动态运动期间不能被测量,但是可以根据先前的训练和调整以及最终存储的坩锅温度的模拟数据,利用由固定传感器130检测的温度来预测。因为坩锅温度传感器140比传感器130距离加热元件104较远,在140处的温度包括通常使得精确的控制更加困难发传递延时。因此坩锅模型被分成两部分第一部分模拟动态特性,第二部分模拟传递延时。模拟的动态特性和传递延时两个部分是温度相关的,因此,必须在1000℃的最大炉操作温度和室温之间的各个温度下被确定。然后可在室温和1000℃之间的所有温度下连续地内插模型和延时参数。
在训练模式期间,在室温和1000℃之间以100℃的增量以10步使温度逐步增加,第一增量TR为100℃,如图3所示,表示热电偶130和140的温度响应。对于每个温度步,这个信息被两个热电偶130和140记录。已知温度T1和给定的炉子的记录的和处理的数据,可以更快和更精确地达到所需的温度目标。软件利用比例、积分和微分(PID)算法提供用于炉控制电路110的温度控制信号(图8),如在下面结合所述算法的流程图所述。
在图9A,9B中,以流程图300描述基本的训练、调整和操作模式(图9A)。训练模式结合图10被详细说明,调整模式结合11a,11b详细说明。操作模式在图9B中表示,其跟在训练和调整模式之后。
现在参看图9A,其中清楚地阐明了训练和调整模式的操作300,如块302所示,输入训练温度曲线,包括使炉温增加100℃的步骤。算法通过求和节电303进行处理,从而启动训练控制器304,其对炉子104提供控制信号。温度传感器130对训练控制器304的输入端提供温度反馈信号,如线301所示,用于控制对第一温度稳定段的响应。因而,在试样坩锅24中的温度由温度传感器140检测,并把来自两个温度传感器130、140的输入施加到图10和11的训练和调整算法,如块306所示并在下面详细说明。训练和调整算法306产生由图11A,11B的调整算法确定的预测控制器,如块308所示,以及由图10的训练程序确定的坩锅温度模型310,和也由图10的训练程序确定的温度延时模型312。现在结合图10说明训练模式算法,然后说明图11A,11B的调整算法。
图10所示的训练方式中的第一步,其由步400表示,是要确定适合的一系列的目标温度、开始温度、目标保持时间和所需的过调,这些将允许表征在炉子从室温到1000℃的整个操作范围内的坩锅响应,如块400所示。作为例子,一系列的开始温度、目标温度和保持时间示于下表。
表1

由实验确定的保持时间必须足够长,以便使任何震荡稳定下来,使得可以观察和模拟稳态响应。要求训练响应过调5-20℃。此外,模型结构和采样速率以及参数估计算法必须被预先确定,从而可以确定合适的未知的模型参数。对于优选实施例,采样速率是0.5Hz,模型具有以下的结构Yn-d=a1*Yn-d-1+a2*Yn-d-2+b1*Un其中Yn-d在传感器140的测量之前d个采样周期预测的坩锅温度Yn-d-1前一个采样周期预测的坩锅温度Yn-d-2;前两个采样周期预测的坩锅温度Un由传感器130测量的温度d传递延时参数a1,a2自动回归模型参数b1运动平均模型参数许多回归或块处理参数估计算法的任何方法例如最小平方法可用于确定参数d,a1,a2,和b1。参数估计程序一般用这种方式迭代参数的值,使得在由传感器140测量的坩锅响应和观察响应过程期间的估计坩锅响应之间的总的平方误差最小。
接着,把温度传感器140置于参考坩锅中,如步402所示,使得可以测量实际的坩锅响应。允许炉子冷却到室温,如步404所示。训练从第一目标温度(即100℃)100℃开始,并设置由经验确定的缺省的PID常数,如步406所示。在步408使设置点步进到第一目标温度,并在预定的保持时间间隔内采集来自温度传感器130和140的数据,如步410所示。需要使坩锅的响应是略微欠阻尼的,使得坩锅温度过调超过目标至少几度,在本例中,要求5-20℃的过调。需要稍微的温度过调以确定到所述目标温度的一个合适的炉温上升时间标准,并帮助确定合适的模型参数。如果响应不涉及合适度数的过调,如步412“no”所示,则调整PID系数,如步414所示。为了使响应具有较小的阻尼,可以增加P,增加I与/或减少D。为了使响应具有更大的阻尼,可以减小P,增加I与/或增加D。对于训练,通常只有P控制器是合适的,除非稳定性或响应要求更复杂的控制器。然后炉子被冷却到作为目标的开始温度,如步416所示,并重复包括步408-412的环。
一旦传感器140确定坩锅温度已经过调超过目标温度,使得在步412确定为“yes”,则在步415系统确定是否所有的10步(在本实施例中)都被训练过。如果没有,则程序使得增加到下一个温度目标,如步416所示(即从初始循环到200℃),依此类推,直到达到1000℃。在这些时间间隔的每个期间,采集和存储分别作为内部炉温和坩锅温度的温度T1和T2,如步410所示,并进行对PID系数的调整,以便阻止由传感器140检测的温度的过阻尼。应当注意,冷却过程大约需要一个小时,至此所述的训练步骤可能需要几个小时,不过,一旦完成之后,便被存储并用于将来的炉操作。
一旦所有的目标都被训练,算法便进行块418,在其中计算用于训练部分的坩锅模型参数、坩锅延时和初始PID控制参数,并在表1中作为附加的列被存储,如块420所示。因为传感器对于施加的功率的响应通常是非线性的,初始的PID控制参数仅是估计参数,因而通常需要进行迭代调整处理以满足严格的炉性能标准。
然后程序从图10的训练模式进行到图11A,11B所示的调整模式,如步424所示。调整模式细调来自训练模式的PID系数和坩锅模型以及延时参数,以满足一组性能标准。对于本优选实施例,性能标准包括上升时间、误差范围以及控制作用。在训练阶段期间对于每个目标计算上升时间。误差范围是一个在目标温度附近的一个温度范围,在此范围内,对于大于或等于上升时间标准的所有的时间,坩锅的响应必须停住。对于所有目标的误差范围是±2℃。控制作用描述从PID控制块输出的控制信号的外观。希望控制信号具有好的阻尼,使得控制信号的震荡很快地稳定。一个经验条件可以要求等于前一个震荡的振幅的1/3的连续阻尼震荡。
在步426,使用信号Tp作为用于温度控制的反馈信号,并且首先把炉子冷却到室温,如步428所示。如步430所示,第一目标温度(即100℃)和在图10的步413计算的PID系数一道被引入。然后程序使炉子阶跃到第一温度目标(即对于100℃,I=1),如块432所示,能量被施加到炉加热器104,同时采集来自传感器130和140的数据,如步434所示,直到达到目标保持时间。炉子的性能和性能标准比较,以确定炉子的响应是否是满意的,如步450所示。满意的性能被规定为过调在误差范围内、并从标准上升时间直到保持时间结束期间保持温度在误差范围内。此外,控制信号应当具有满意的阻尼。如果目标响应不满意,如步450“no”所示,则程序进行步446,其中坩锅模型被更新,并且调整控制参数,以试图达到标准的阻尼响应。新的参数被存储在由步448所示的系数表中。炉子再次被冷却到由步442所示的目标开始温度,并重复调整处理,直到达到满意的响应,如步450的“yes”所示。此时,程序前进到步452,测试是否所有目标温度都被调整。如果在步352确定是“no”,则在步454选择下一个目标,并对每一个目标温度重复进行调整处理。一旦所有的目标都被调整,如步452的“yes”所示,则程序进行到如步456和图9B的图中所示的操作模式。在操作中,传感器140被从坩锅中除去,被置于远离试样盘18的位置,使得含有试样的坩锅能够进入炉子中,对于一种试样,炉子依次操作通过任何所需的温度分布,同时在编程的温度分布的整个持续时间期间,坩锅被分别称量。
在图9B的步314,操作者对于被分析的试样类型输入给定试样的ASTM或其它的温度分布。因而,数据输入可以包括在不同地温度下保持试样多个不同的时间。此时,计算机202已被编程,不过,为了尽可能快而精确地达到目标温度,这个可预测的温度信息独立于操作者在步314输入的温度分布数据。然后把输入的温度分布施加到求和节点,如步316所示,在那里其和预测的坩锅模型温度比较。然后把误差信号施加到包括程序计算机202(图7,8)和块318的预测控制器,其对炉子加热元件104施加脉宽调制。在炉子加热期间,预测的坩锅温度,如输入131所示,通过内插用于确定块318中的合适的预测控制参数、合适的炉子模型块310和合适的延时模型块312。在整个温度分布的持续时间内,由坩锅模型预测的并由延时模型延迟的估算坩锅温度被向操作者显示,如块320所示。在每个温度稳定段的期间内,重量和温度数据,例如图2所示,由计算机202收集,计算机根据用于被分析的不同试样的ASTM标准,利用标准算法对用于分析结果的打印机210提供输出。
因而,利用本发明的系统,提供了一种炉子的控制,其响应测量的炉温来模拟实际的坩锅温度,使得所需的坩锅温度可以被快速而精确地达到而没有温度过调。借助于提供位于坩锅内的单独的温度传感器,可以确定单个炉子的动态温度响应,并对数据进行存储和操作,如结合上面的算法所述,以便提供一种精确的和可重复的炉温控制系统。
在本发明的优选实施例中,试样尺寸范围为0.5-5克,并达到了从室温到100℃大约每分钟15℃和从100℃到1000℃每分钟40℃的斜坡率。在任何给定的设置点,温度精度在正负2℃以内。制造的每个单个的炉子都按照上述被训练,以便确定对于每个炉子可以是唯一的PID系数。
显然,对于本领域技术人员,不脱离由所附权利要求限定的本发明的构思和范围,可以作出所述的本发明的优选实施例的各种改型。
权利要求
1.一种分析炉,包括具有加热元件的炉子;用于控制对所述加热元件的功率施加的控制电路;第一温度传感器,以固定的关系被设置在所述炉子内,用于检测所述固定位置的炉温;第二温度传感器,可被可除去地设置在坩锅内,所述坩锅以操作关系被设置在所述炉子内;以及其中所述控制电路包括温度模拟周期,用于在炉温步进的周期期间使所述第一和第二温度传感器之间的温度相关联,并作为对此的响应,产生最佳温度控制信号,用于使坩锅温度增加到所需的温度值。
2.如权利要求1所述的分析炉,其中所述控制电路包括处理器,其被编程用于从所述第一温度传感器和所述第二温度传感器测量温度,并使用对由所述传感器获得的温度数据施加的比例、积分和微分(PID)处理,把坩锅的温度分布模拟为检测的温度的函数。
3.如权利要求2所述的分析炉,其中所述计算机顺序地增加炉子的温度通过多个温度稳定段,并确定对于每个温度稳定段的PID数据。
4.如权利要求3所述的分析炉,其中通过使用自动回归运动平均近似,所述模拟数据被进一步确定。
5.一种热解重量分析仪,包括具有加热元件的炉子;第一和第二温度传感器;以及用于控制对所述加热元件的功率施加的控制电路,其中所述控制电路包括处理器,其被编程用于从第一温度传感器和第二温度传感器测量温度,所述第一温度传感器以固定的关系被设置在所述炉子内,用于在测量所述固定位置的炉温,所述第二传感器可被可除去地设置在以操作关系被设置在所述炉子内的坩锅内,并使用对从中获得的温度数据施加的比例、积分和微分(PID)处理,模拟坩锅的温度分布为检测的炉温的函数。
6.如权利要求5所述的分析炉,其中所述计算机顺序地增加炉子的温度通过多个温度稳定段,并确定对于每个温度稳定段的PID数据。
7.如权利要求6所述的分析炉,其中所述模拟数据通过使用自动回归运动平均近似被进一步确定。
8.一种热解重量分析仪,包括炉子;具有位于所述炉子内的重量平台的天平;用于多个坩锅的支撑,该支撑把多个坩埚依次放置在重量平台上;用于加热炉子的加热器;一对温度传感器,包括以固定的关系置于所述炉子内的第一温度传感器和被可移动地设置在所述支撑上的一个坩锅内的第二温度传感器;以及和所述温度传感器相连的控制电路,所述电路包括处理器,其被编程用于获得温度数据,以便随着炉温改变而模拟坩锅的温度,随后在操作期间用于控制炉子的温度。
9.如权利要求8所述的分析仪,其中所述处理器被编程用于从所述第一温度传感器和所述第二温度传感器测量温度,并使用对由所述传感器获得的温度数据施加的比例、积分和微分(PID)处理,模拟坩锅的温度分布为检测的温度的函数。
10.如权利要求9所述的分析仪,其中所述计算机顺序地增加炉子的温度通过多个温度稳定段,并确定对于每个温度稳定段的PID数据。
11.如权利要求10所述的分析仪,其中所述模拟数据通过使用自动回归运动平均近似被进一步确定。
12.一种用于模拟分析炉中的坩锅温度的方法,包括以下步骤由被固定在炉子中的温度传感器检测炉子的温度;由置于坩锅中的可移动温度传感器检测坩锅的温度;在监视被检测的炉子的温度和坩锅的温度的同时,使炉子的温度增加到目标值;使用比例、积分和微分技术来相互关联被检测的温度,以预测何时坩锅温度达到目标值;以及存储并利用所述数据,以便模拟坩锅的温度分布为坩锅温度的函数,从而在分析期间控制所述的炉子。
13.如权利要求12所述的方法,其中相互关联的步骤被重复,直到坩锅温度超过目标温度。
14.如权利要求13所述的方法,其中坩锅温度被增加到多个目标值。
15.一种热解重量分析仪,包括具有加热元件的炉子;用于控制对所述加热元件的功率施加的控制电路;第一温度传感器,以固定的关系被设置在所述炉子内,用于检测所述固定位置的炉子的温度;第二温度传感器,可被可除去地设置在以操作关系置于所述炉子内的坩锅内;以及其中所述控制电路包括温度模拟周期,用于在炉温步进的周期期间使所述第一和第二温度传感器之间的温度相关联,并作为对此的响应,产生最佳温度控制信号,用于使坩锅温度增加到所需的温度值。
16.如权利要求15所述的分析仪,其中所述控制电路包括处理器,其被编程用于从所述第一温度传感器和所述第二温度传感器测量温度,并使用对由所述传感器获得的温度数据施加的比例、积分和微分(PID)处理,模拟坩锅的温度分布为检测的温度的函数。
17.如权利要求16所述的分析仪,其中所述计算机顺序地增加炉子的温度通过多个温度稳定段,并确定对于每个温度稳定段的PID数据。
18.如权利要求17所述的分析炉,其中所述模拟数据通过使用自动回归运动平均近似被进一步确定。
19.一种热解重量分析仪,包括具有加热元件的炉子;以及用于控制对所述加热元件的功率施加的控制电路,其中所述控制电路包括处理器,其被编程用于从第一温度传感器和第二温度传感器测量温度,所述第一温度传感器以固定的关系被设置在所述炉子内,用于在测量所述固定的位置的炉温,所述第二传感器可被可除去地设置在以操作关系设置在所述炉子内的坩锅内,并使用对从中获得的温度数据施加的比例、积分和微分(PID)处理,模拟坩锅的温度分布为检测的炉温的函数。
20.如权利要求19所述的分析仪,其中所述计算机顺序地增加炉子的温度通过多个温度稳定段,并确定对于每个温度稳定段的PID数据。
21.如权利要求20所述的分析仪,其中所述模拟数据通过使用自动回归运动平均近似被进一步确定。
22.一种用于模拟热解重量分析仪中的坩锅温度的方法,包括以下步骤检测在和热解重量分析仪相关联的炉子中的固定的温度传感器的温度;使用被置于位于所述炉子中的坩锅内的可移动的温度传感器来检测温度;在监视被检测的炉子温度和坩锅温度的同时,增加炉子温度到第一目标值;使用比例、积分和微分技术相互关联检测的温度,以预测何时坩锅温度达到目标值;以及存储并利用所述数据,以便模拟坩锅的温度分布为坩锅温度的函数,从而在分析期间控制所述的炉子。
23.如权利要求22所述的方法,其中相互关联的步骤被重复,直到坩锅温度超过目标温度。
24.如权利要求23所述的方法,其中坩锅温度被增加到多个目标值。
25.一种分析炉,包括具有加热元件的炉子;用于控制对所述加热元件的功率施加的控制电路;第一温度传感器,以固定的关系被设置在所述炉子内,用于检测所述固定位置的炉子的温度;第二温度传感器,可被可除去地设置在以操作关系置于所述炉子内的坩锅内;以及其中所述控制电路通过增加温度步进在所述炉子的操作周期期间使所述第一和第二温度传感器之间的温度相关联,以便产生和存储温度控制信号,用于控制对所述加热元件的功率施加。
26.如权利要求25所述的炉子,其中所述控制电路包括处理器,其被编程用于从所述第一温度传感器和所述第二温度传感器测量温度,并使用对由所述传感器获得的温度数据施加的比例、积分和微分(PID)处理,模拟坩锅的温度分布为检测的温度的函数。
27.如权利要求26所述的分析炉,其中所述计算机顺序地增加炉子的温度通过多个温度稳定段,并确定对于每个温度稳定段的PID数据。
28.如权利要求27所述的分析炉,其中所述模拟数据通过使用自动回归运动平均近似被进一步确定。
全文摘要
一种分析炉(12)包括预测温度控制装置,其被训练用于在分析期间模拟坩锅(24)温度,其中使用一对温度传感器,一个传感器(130)以固定的关系被安装在炉子内,第二传感器(140)可以置于坩锅内,用于训练和调整坩锅温度分布,使得试样被置于其中的坩锅的温度被模拟,并且得知按照炉子的动态热特性其对炉子(12)施加的能量的响应。借助于模拟坩锅(24)内的温度分布,所述炉子可被控制,使得提供较快的更精确的分析,并阻止当接近所需的温度稳定段时发生过大的温度超调。
文档编号H05B1/02GK1757263SQ200480006138
公开日2006年4月5日 申请日期2004年3月2日 优先权日2003年3月6日
发明者比德·M·威尔利斯 申请人:莱克公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1