磁性石榴石单晶膜形成用基板及其制造方法、光学元件及其制造方法

文档序号:8032798阅读:147来源:国知局
专利名称:磁性石榴石单晶膜形成用基板及其制造方法、光学元件及其制造方法
技术领域
本发明涉及用以使例如铋置换稀土类铁石榴石(Bi-RIG)单晶体等的磁性石榴石单晶膜液相外延生长的磁性石榴石单晶膜形成用基板的制造方法、用该制造方法所制造的基板、用该基板来进行晶体生长的单晶膜的制造方法、用该制造方法所制造的单晶膜及光学元件。
背景技术
作为被用于光隔离器、光循环器、光磁场传感器等的法拉第旋转器等的光学元件的材料,一般使用在单晶体基板上使磁性石榴石单晶膜外延生长的材料。作为在基板上所生长的磁性石榴石单晶膜,希望有大的法拉第旋转系数,使其能得到必需的法拉第效应。另外,为用外延生长成膜优质的单晶膜,在从成膜温度到室温的温度区域,要求极力减小基板单晶体与生长的单晶膜之间的晶格常数差。
已经知道,通过用铋置换稀土类成分的一部分,磁性石榴石单晶膜的法拉第旋转系数会显著增加。同时,由于铋置换量的增加也带来磁性石榴石单晶膜的晶格常数的增加,用于成膜的基板材料也要求更大的晶格常数,例如,作为单晶体基板材料,使用添加Ca、Zr、Mg等增大晶格常数的钆·镓石榴石(GGG)(参照专利文献1、特公昭60-4583号公报)。

但是,想要在添加了Ca、Zr、Mg等的GGG单晶体基板上使铋置换稀土类铁石榴石单晶体生长为厚膜状(例如200μm以上的膜厚)的场合,成膜中及成膜后的基板和单晶膜上容易产生翘曲和裂纹,这是导致成膜时及加工时的制造成品率降低的原因。
为解决这个问题,本发明人等提案了具有,在从室温至850℃的温度范围内,正交于结晶方位<111>的面内的热膨胀系数极接近于铋置换稀土类铁石榴石单晶体的值的特定组成的石榴石单晶体基板(参照专利文献2、特开平10-139596号公报)。由于使用这个单晶体基板,可以用液相外延生长形成不发生结晶缺陷和翘曲、裂纹等的厚膜状的铋置换稀土类铁石榴石单晶膜。
但是,由本发明人等发现,这个特定组成的石榴石单晶体基板,对于在使铋置换稀土类铁石榴石(Bi-RIG)单晶膜液相外延生长时,作为析出溶媒质所用的氧化铅熔剂是不稳定的,所谓得到优质的铋置换稀土类铁石榴石单晶体的成品率差的问题。特别是已判明在含Nb或Ta的基板组成中,这个倾向尤为大。
这里,本发明人等先前开发了,在由对熔剂不稳定的石榴石系单晶体构成的衬底基板的基板培养面上,形成由对熔剂稳定的石榴石系单晶体薄膜构成的缓冲层,并已提出了专利申请(参照专利文献3、PCT/JP02/06223)。
作为在衬底基板的结晶培养面上形成缓冲层的手段,可以适用溅射法等的种种薄膜形成法。但是,现在,用薄膜形成法形成缓冲层时,为了缓冲层的结晶质量良好,认为必需将成膜时的基板温度设置在600℃以上的高温。因此,基板的加热和冷需要长时间(数小时~十数小时),同时,作为基板加热用的加热器必需采用高性能的加热器,这构成了制造工程时间的增长及制造装置的高价化等制造成本增大的问题。
本发明正是鉴于这样的实际情况而作的发明,其目的在于,提供可以用高质量良好的成品率的液相外延生长,以稳定、低成本地形成不发生结晶缺陷和翘曲、裂纹、剥离等的厚膜状的磁性石榴石单晶膜的磁性石榴石单晶膜形成用基板、光学元件及其制造方法。

发明内容
为达成上述目的,有关本发明的第1观点的磁性石榴石单晶膜形成用基板的制造方法是为了制造用以使磁性石榴石单晶膜液相外延生长的磁性石榴石单晶膜形成用基板的方法,其特征在于包括形成由对于用以使液相外延生长使用的熔剂不稳定的石榴石系单晶构成的衬底基板的工序;在上述衬底基板的至少一个结晶培养面上,形成由对上述熔剂稳定的石榴石系单晶膜构成的缓冲层的工序;在上述衬底基板上形成上述缓冲层时,不用主动加热上述基板,在上述衬底基板上形成上述缓冲层。
有关本发明的第2观点的磁性石榴石单晶膜形成用基板的制造方法,是为了制造用以使磁性石榴石单晶膜液相外延生长的磁性石榴石单晶膜形成用基板的方法,其特征在于包括形成由对于用以使液相外延生长使用的熔剂不稳定的石榴石系单晶体构成的衬底基板的工序;在上述衬底基板的至少一个结晶培养面上,形成由对上述熔剂稳定的石榴石系单晶体薄膜构成的缓慢冲层的工序;在上述衬底基板上形成缓冲层时,将上述基板的温度在从室温至不足600℃的温度范围内进行管理并在上述衬底基板上形成上述缓冲层。
作为上述熔剂,无特别限定,而可以是含有例如氧化铅和/或氧化铋的熔剂。再者,在本发明中,所谓「对熔剂不稳定」,指的是熔剂中的溶质成分将对象物(衬底基板或缓冲层)作为核开始结晶化,是在所谓过饱和状态中,构成对象物的材质的至少一部分相对熔质溶出及/或熔质成分的至少一部分扩散到对象物中,这意味着阻碍单晶膜的液相外延生长。另外,所谓「对熔剂稳定」意指与「对熔剂不稳定」相反的现象。
依据本发明,选择构成由液相外延生长形成的对象的磁性石榴石单晶,例如包含极接近于铋置换稀土类铁石榴石单晶的热膨胀系数的特定成分的石榴石单晶基板,该基板对熔剂是不稳定的,但也可以进行稳定、液相外延生长。原因是在衬底基板上形成了对熔剂稳定的缓冲层。
因此,在本发明中,可以抑制结晶缺陷和翘曲、裂纹、剥离等的发生,使法拉第旋转器等的光学元件所用的铋置换稀土类铁石榴石单晶膜以高质量、高成品率液相外延生长。亦即,依据本发明,用液相外延生长,可以得到以较厚的厚膜(例如200μm以上)、大面积(例如直径3英寸以上)的磁性石榴石单晶膜。
特别是在本发明中,在形成缓冲层时,不用主动地加热基板,或作为加热,也是在从室温至不足600℃、或更理想的室温~300℃、或特别理想的室温~100℃的温度范围内进行管理,在衬底基板上形成缓冲层。因而,在本发明中,可以大幅度地减少基板加热及冷却需要的时间。另外,由于不需要使用高性能的加热器,可以降低由新的制造设备投资引起的制造成本的增大。
再者,发明人首次发现,不用主动加热基板也可以形成优质的缓冲层。在不用主动加热基板的溅射法等的薄膜形成方法中基板的温度上升,但在本发明中,这并不构成主动加热基板。
最好,在上述衬底基板上形成缓冲层之后,将上述缓冲层在600~900℃的温度下进行退火处理。退火的温度过低时,会造成缓冲层的结晶化不充分,有难于得到优质缓冲层的倾向,若温度过高,则有缓冲层的结晶质量差的倾向。
最好,上述缓冲层用溅射法等的薄膜形成法形成。本发明人等发现,对衬底基板用溅射法等的薄膜形成法形成缓冲层时,都不用主动加热基板,通过在后工序中退火处理缓冲层,可以形成优质的缓冲层。
最好,用溅射法形成上述缓冲层时,在溅射时的气氛气体(Ar等的惰性气体)中,包含35%体积以下的氧(O2),更理想的是10~30%体积的氧。在完全不含氧的气氛气体中,有缓冲层的结晶质量变差的倾向,若氧的含量过多,则有会发生异常放电等而难以得到优质缓冲层的倾向。
最好,在用溅射法形成上述缓冲层时,将溅射时的输入电功率控制在2~10W/cm2,更理想的是3~6W/cm2。由于将输入电功率控制在这个范围内,可以形成优质的缓冲膜。如果输入电功率过小,则有成膜速度变慢,生产率低的倾向,如果过大,则会给衬底基板带来损坏且结晶性降低,同时还会有靶极发生裂纹的倾向。

最好,上述衬底基板具有与上述磁性石榴石单晶膜的热膨胀系数大致相等的热膨胀系数。例如,在0℃~1000℃的温度范围内,上述衬底基板的热膨胀系数相对上述磁性石榴石单晶膜的热膨胀系数处在±2×10-6/℃以下的范围内。
由于将衬底基板的热膨胀系数取值在与磁性石榴石单晶膜大致相等,可以有效防止外延生长后的膜对基板剥离或裂纹或缺陷等(以下,也称为「裂纹等」)的质量下降。原因是,用外延生长形成磁性石榴石单晶膜时,由于温度上升至接近1000℃后再返回室温,如果热膨胀系数有差异,则容易在外延生长膜上发生裂纹。
再者,缓冲层的热膨胀系数不一定必需与磁性石榴石单晶膜的膨胀系数大致相等。原因是,缓冲层的膜厚相对于衬底基板的厚度极其薄时,相对于外延生长膜的热膨胀差的影响较小。
最好,上述衬底基板具有与上述磁性石榴石单晶膜的晶格常数大致相等的晶格常数。例如,上述衬底基板的晶格常数相对于上述磁性石榴石单晶膜的晶格常数在±0.02以下的范围内。
由于将衬底基板的晶格常数取值为与磁性石榴石单晶膜的晶格常数大致相等,容易使磁性石榴石单晶膜在缓冲层上液相外延生长。
最好,上述衬底基板含有Nb或Ta。由于在上述衬底基板上含有Nb或Ta,容易达到将上述衬底基板的热膨胀系数和/或晶格常数与上述磁性石榴石单晶膜的晶格常数大致相等。但是,一旦让上述衬底基板含有Nb或Ta,就会对熔剂的稳定性有劣化的倾向。
最好,上述缓冲层是基本不含Nb和Ta的石榴石系单晶薄膜。因为基本不含Nb和Ta的石榴石系单晶薄膜对熔剂比较地稳定。
最好,上述缓冲层是用通式R3M5O12(式中,R是稀土类金属的至少1种,M是从Ca,Fe中选出的1种)表示的,或者是X置换钆·镓石榴石(式中,X是Ca、Mg、Zr中的至少1种)。
由这样的材质构成的缓冲层对熔剂是比较稳定的,而且最好具有接近于磁性石榴石单晶膜的晶格常数的晶格常数。
最好,上述缓冲层的厚度是1~10000nm,更理想的是5~50nm,上述衬底基板的厚度是0.1~5mm,更理想的值是0.2~2.0mm。如果缓冲层的厚度过薄,则本发明的效果减小,如果过厚,则成本变高,同时,由于膨胀系数的差异,会有对外延生长膜带来裂纹等的不良影响。另外,如果衬底基板的厚度过薄,则有机械强度不足、操作性差的倾向,如果过厚,则有裂纹等的发生增多的倾向。
有关本发明的磁性石榴石单晶膜的制造方法包括用本发明的磁性石榴石单晶膜形成用基板,在上述缓冲层上用液相外延生长法使磁性石榴石单晶膜生长的工序。
有关本发明的光学元件的制造方法包括用本发明的磁性石榴石单晶膜的制造方法形成上述磁性石榴石单晶膜后,除去上述衬底基板及缓冲层,形成由上述的磁性石榴石单晶膜构成的光学元件的工序。
最好,除去上述衬底基板及缓冲层,仅剩下被形成在上述衬底基板的结晶培养面上的磁性石榴石单晶膜,形成由上述磁性石榴石单晶膜构成的光学元件。
在本发明中,不仅衬底基板的结晶培养面上、在与该结晶培养面交叉的侧面上也可以形成缓冲层。在这种情况下,在衬底基板的侧面上也形成磁性石榴石膜。在本发明中,被形成在衬底基板的侧面上的磁性石榴石膜比起被形成在衬底基板的结晶培养面上的磁性石榴石单晶膜来,由于质量差,理想的做法是将这一部分除去作为光学元件使用。
有关本发明的光学元件,可由本发明的光学元件的制造方法获得。
附图的简单说明 以下,根据附图示出的实施例说明本发明。


图1A及图1B是表示有关本发明的一实施例的磁性石榴石单晶膜形成用基板的制造过程的概略剖面图,图1C是表示在磁性石榴石单晶膜形成用基板上形成单晶膜的过程的概略剖面图。
图2是溅射装置的概略图。
图3是用以进行结晶生长的装置的概略图。
图4是使用有关本发明的一实施例的磁性石榴石单晶膜形成用基板来使结晶生长时的表面光学显微镜照片。
图5是表示有关本发明的另一个实施例的磁性石榴石单晶膜形成用基板和用它生长的单晶膜的剖面图。
图6是使用图5所示的磁性石榴石单晶膜形成用基板来使结晶生长时的表面光学显微镜照片。
图7是在有关本发明的比较例的磁性石榴石单晶膜形成用基板的表面上成膜单晶膜后的状态的表面SEM像。
发明的最佳实施方式 第1实施例如图1B所示,本实施例中的磁性石榴石单晶膜形成用基板2具有衬底基板10、在该衬底基板10的结晶培养面上所形成的缓冲层11。衬底基板10具有由极接近于由图1C所示的铋置换稀土类铁石榴石单晶构成的磁性石榴石单晶膜12的值的晶格常数及热膨胀系数,但对氧化铅熔剂是不稳定的。缓冲层11由对氧化铅熔剂稳定的石榴石系单晶薄膜构成。
在基板2的缓冲层11上,如图1C所示,液相外延生长铋置换稀土类铁石榴石单晶膜12。衬底基板10使缓冲层11介于中间,用以使磁性石榴石单晶膜12生长,具有与单晶膜12的晶格匹配性良好,且线热膨胀系数接近于单晶膜12的线热膨胀系数特性。
衬底基板10由例如通式M1xM2yM3zO12所表示的非磁性石榴石系单晶构成。在该通式中,M1是从例如Ca、Sr、Cd及Mn中所选择出的金属。M1以+2价稳定存在,可以取配位数8,在该状态下的离子半径的理想值处在0.096~0.126nm的范围。M2是从例如Nb、Ta及Sb中选出的金属。M2以+5价稳定存在,可以取配位数6,在该状态下的离子半径的理想值处在0.060~0.064的范围内。M3是从例如Ga、Al、Fe、Ge、Si及V中选择出的金属。M3以+3、+4或+5价稳定存在,可以取配位数4,在该状态下的离子半径的理想值处在0.026~0.049nm的范围内。再者,这些离子半径是由香农(R.D.Shannon)确定的有效离子半径值。这些M1、M2及M3可以各自单独存在的金属,也可以是2种以上金属的组合。

再有,M1的金属用以调整价数及晶格常数,根据需要,也可以在不足50%原子的范围内将其一部分用与其组成中的Ca或Sr可置换的金属M4置换。作为M4,是从例如Cd、Mn、K、Na、Li、Pb、Ba、Mg、Fe、Co、稀土类金属及Bi中选择的至少1种,最好是可取配位数8的金属。
另外,M2与M1的情况相同,在不足50%原子的范围,也可以将其一部分用可与其组成中的Nb、Ta或Sb置换的金属M5置换。作为M5,是从例如Zn、Mg、Mn、Ni、Cu、Cr、Co、Ga、Fe、Al、V、Sc、In、Ti、Zr、Si及Sn中选择的至少1种,最好是例示的可取配位数6的金属。
这样组成的单晶基板,热膨胀系数近似于所生长的铋置换稀土类铁石榴石单晶的热膨胀系数,另外,与该单晶的晶格匹配性良好。特别是,在上述通式中,x取2.98~3.02、y取1.67~1.72以及z取3.15~3.21范围的值是合适的。
这样组成的基板10热膨胀系数在室温~850℃的范围内是1.02×10-5/℃~1.07×10-5/℃的程度,非常接近于铋置换稀土类铁石榴石单晶膜的相同温度范围的线热膨胀系数1.09×10-5/℃~1.16×10- 5/℃。
另外,对于该衬底基板10的厚度无特别限制,但在成膜膜厚为200μm以上的铋置换稀土类铁石榴石单晶膜的场合,在成膜时抑制基板及单晶膜的裂纹和翘曲等的发生并可得到质量良好的单晶膜方面,以厚度在1.5mm以下为好。如果衬底基板的厚度超过1.5mm,则伴随厚度的增加,可见到在基板与单晶膜的界面附近裂纹增加的倾向。另外,如果单晶基板10的厚度太薄,则机械强度变小,操作性变差,所以,厚度最好在0.1mm以上。
被形成在单晶基板上的缓冲层11由石榴石系单晶薄膜构成。作为该石榴石系单晶薄膜,是用通式R3M5O12(式中,R是稀土类金属的至少1种,M是从Ga、Fe选择出的1种)表示的单晶膜,或者,是例示的X置换钆·镓石榴石(式中,X是Ca、Mg、Zr的至少1种)等。
在这些材料中,最好使用从钕·镓石榴石、钐·镓石榴石、钆·镓石榴石以及X置换钆·镓石榴石(X是Ca、Mg、Zr的至少1种)中所选择出的1种,而如果是对氧化铅熔剂稳定的石榴石系材料,则不受此限定。
对于本发明的磁性石榴石单晶膜形成用基板中的衬底基板10的制造方法无特殊限制,可以采用现在的GGG单晶基板等的制造中惯用的方法。
例如,首先,将从上述通式中用M1表示的金属、用M2表示的金属和用M3表示的金属中,各自1种或2种以上被选中的金属,以及视场合使用的从用M4所表示的金属及用M5所表示的金属中各自选出的1种或2种以上的金属,按照各自规定的比例调制含有均质的熔融混合物。接着,在该熔融混合物中,将例如长轴方向<111>的GGG籽晶等相对液面垂直浸渍,通过一边缓慢旋转,一边提升,使多晶体形成。
由于该结晶体上存在多数裂纹,从其中选择没有裂纹的单晶部分,确认结晶方位之后,作为种子,再度在上述熔融混合物中,结晶方位<111>相对液面垂直地浸渍,一边使其缓慢旋转,一边提升,使其形成不存在裂纹的结晶。接着,将该单晶在与生长方向垂直的方向上以规定的厚度切断,将两面作镜面研磨之后,进行例如热磷酸等的侵蚀处理,得到图1A所示的衬底基板10。
在这样得到的衬底基板10上,在本实施例中,用溅射法、CVD法、脉冲激光蒸镀法或其它的薄膜成膜技术,如图1B所示,成膜由上述组成的石榴石系单晶薄膜构成的缓冲层11。再者,理想的做法是,在缓冲层11形成前,用研磨等对衬底基板10的结晶培养面进行平坦化。
用溅射法成膜缓冲层11的场合,使用例如图2所示的溅射装置30。该溅射装置30设有真空室32、被保持在真空室32内部的靶34、与靶34相对地配置在真空室内的衬底基板10的保持机构35。从电源36在靶34上加高频电压。在真空室32内,通过管子38导入溅射气体,真空室32内部用连接在排气口的真空泵等保持在规定的真空度上。
本实施例中,溅射时,真空室32的内部保持在0.1~10Pa,最好保持在0.5~3Pa,在靶34上,由电源36外加2~10W/cm2,更理想的是3~6W/cm2的输入功率。在该范围内控制输入功率,可以形成优质的缓冲层。
另外,在真空室32的内部,通过管子38导入溅射气体,该气体的成分是,在Ar等惰性气体中导入含氧(O2)35%体积以下、更理想的是为10~30%体积的溅射气体(气氛气体)。在完全不含氧的溅射气体(气氛气体)情况下,缓冲层11的结晶质量有变坏的倾向,如果氧的含量过多,则会发生异常放电,有难于得到优质缓冲层11的倾向。
本实施例中,溅射时,保持机构35不主动加热衬底基板10。再者,由于溅射处理的影响,基板的温度会随时间上升,其结果,基板的温度被管理在从室温至600℃以下,更理想的值是室温~300℃,特别理想的值是室温~100℃。
通过这样的溅射处理,在基板10的上面形成的缓冲层11的厚度的理想值在1~10000nm的范围内,更理想的值是在5~50nm的范围内。如果这些缓冲层11的厚度过薄,则本发明的效果减小,如果过厚,则成本增加,同时会有因热膨胀系数的差异等对外延生长膜带来裂纹等不良影响的倾向。
如图1C所示,使用这样构成的磁性石榴石单晶膜形成用基板2,通过液相外延生长法形成由铋置换稀土类铁石榴石单晶膜构成的磁性石榴石单晶膜12。
构成该磁性石榴石单晶膜12的铋置换稀土类铁石榴石单晶膜的组成用通式BimR3-mFe5-nmnO12来表示(式中的R是稀土类金属的至少1种、M是从Ga、Al、In、Sc、Si、Ti、Ge及Mg选择出的至少1种金属,m和n在0<M<3.0、0≤n≤1.5的范围)。
在该通式中,作为用R所表示的稀土类金属可举例如Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等,它们可以包含1种,也可以包含2种以上。
在该单晶中,用R表示的稀土类金属的一部分是用铋置换的,这个由铋置换的比例用m表示,该m的值在0<M<3.0的范围,特别是在0.5~1.5的范围,由于单晶的热膨胀系数与单晶基板的线热膨胀系数极为接近,是有利的。另外,M是可与Fe置换的非磁性金属元素,可以是Ga、Al、In、Sc、Si、Ti、Ge、Mg,它们可以包含1种,也可以包含2种以上。该非磁性金属元素与Fe的置换的比例n可选择在0~1.5的范围内。
按照液相外延生长法,为了形成铋置换稀土类铁石榴石单晶膜,首先要将例如(1)氧化铋、(2)至少1种的稀土类金属氧化物、(3)氧化铁、(4)根据情况从使用的Ga、Al、In、Sc、Si、Ti、Ge及Mg中选择的至少1种金属氧化物,按各自规定的比例调制均质的熔融混合物。作为析出用溶质,通常使用作为主要成分的氧化铅,但也可以用氧化铋等的其它析出用介质。另外,需要时也可含有氧化硼等,作为结晶生长促进剂。
接着,通过在该熔融混合物(图3所示的坩埚20内的溶质熔剂22)中浸渍本发明的基板2,在基板2的缓冲层11的表面从熔融混合物中使单晶外延生长,成膜磁性石榴石单晶膜12。这时的熔融混合物的温度因原料混合物的组成等不同而异,通常选择在600~1000℃的范围。另外,也可将基板2在熔融混合物中静置使其外延生长,也可用图3所示的旋转轴24一边适当旋转一边使其外延生长。使基板2旋转时,其转速在10~200rpm左右是有利的。另外,成膜带度通常是0.08~0.8μm/分左右。浸渍时间随成膜速度及希望的膜厚等而不同,不能一概而论,而通常在10~100小时左右。
外延生长结束后,将基板2从熔融混合物中提拉,充分甩脱附着的熔融混合物后,在室温下冷却。接着,在稀硝酸等的无机酸水溶液中浸渍,除去附着在形成的单晶膜表面上的熔融混合物的固化物后,进行水洗、干燥。这样一来,由被形成在基板2上的铋置换稀土类铁石榴石单晶构成的磁性石榴石单晶膜12的厚度通常在100~1000μm的范围。另外,在室温~850℃的范围内其热膨胀系数为1.0×10-5/℃~1.2×10-5/℃左右。
这样,在基板2上形成的铋置换稀土类铁石榴石单晶膜的结晶构造及组成可以分别用X线衍射及荧光X线的组成分析方法等进行鉴定。另外,用研磨加工等从单晶膜12上除去基板2(衬底基板10+缓冲层11),其后,研磨加工处理单晶膜12的两面之后,在该两面上设置无反射膜,通过求出法拉第旋转系数、透过损失及温度特性,从而可以评价该单晶膜12的性能。
第2实施例如图5所示,在本实施例中,不仅在衬底基板10的底面(结晶培养面)10a上,而且也在其侧面10b的全部周边连续形成缓冲层11。其它的结构和作用由于与第1实施例相同,其详细说明省略。
在本实施例中,缓冲层11由形成在衬底基板10的底面10a上的底面缓冲层11a和形成在基板10的侧面10b的侧面缓冲层(侧面保护膜)11b构成。
在本实施例中,缓冲层11不仅在衬底基板10的底面形成10a,也在衬底基板10的侧面形成10b。因此,在本实施例中,不仅要研磨衬底基板10的底面10a,也要研磨侧面10b,在侧面10b上也按形成缓冲层11的条件进行成膜。例如,在采用溅射法的情况下,将成膜压强取为0.1~10Pa,理想值是1~3Pa,不仅衬底基板10的底面10a,侧面10b上也形成侧面保护膜。或,如果用MOCVD法,在一般的成膜条件下,不仅衬底基板10的底面10a,在侧面10b上也形成缓冲层11b。

本实施例中,形成在衬底基板10的底面10a上的底面缓冲层11a的材质与形成在衬底基板10的侧面10b的侧面缓冲层11b的材质可以不同,也可以相同。但是,理想的情况是这些缓冲层11a和11b同时形成。这种方式可以削减缓冲层11的形成工序。
再者,与底面缓冲层11a相比,侧面缓冲层11b的膜质可以较差。因为构成形成在侧面缓冲层11b的表面上的侧面培养膜12b是也可由后工序除去的部分。例如,仅底面缓冲层10a用第1实施例所示的溅射法成膜,而侧面缓冲层11b可以采用溶胶-凝胶法等的化学溶液法来形成。或者,也可以用笔或喷涂等涂敷用以形成侧面缓冲层(侧面保护膜)11b的溶液。
本实施例中,底面缓冲层11a的厚度与侧面缓冲层11b的厚度可以相同,也可以不同。但是,这些缓冲层11a及11b的厚度理想值是1~1000nm,更理想的值是在5~50nm的范围。如果这些缓冲层11a及11b的厚度过薄,则本发明的效果减小,如果过厚,则成本增高的同时,会有由于热膨胀系数的差异等给外延生长膜带来裂纹等的不良影响。
使用这样构成的磁性石榴石单晶膜形成用基板2,用液相外延生长法形成由铋置换稀土类铁石榴石单晶膜构成的磁性石榴石单晶膜12。在本实施例中,不仅在磁性石榴石单晶膜形成用基板2的底面上形成单晶膜,而且在侧面上也形成侧面培养膜(不限于单晶膜)12b。但是,被形成在基板2的侧面的侧面培养膜12b比起形成在底面的底面单晶膜一般来说膜质差,在后工序中被去除。
在本实施例中,将单晶膜12作为光学元件使用时,在基板2的侧面形成的侧面培养膜12b用研磨加工等除去,最好仅用在基板2的底面形成的单晶膜12a来形成光学元件。
特别是在本实施例中,缓冲层11除了衬底基板10中的结晶培养面以外,由于在与结晶培养面交叉的衬底基板的侧面上也形成缓冲层,衬底基板10的侧面不与熔剂反应,磁性石榴石单晶膜12的质量得到提高,制造成品率也提高。
再者,本发明不受限于上述实施例,在本发明的范围内可以有种种变更。例如,在图5所示的实施例中,仅在衬底基板10的底面10a及侧面10b形成缓冲层,而在本发明中,也可在包含衬底基板10的上面10c的衬底基板10的全部外周面上形成缓冲层。
[实施例]以下,再根据详细的实施例说明本发明,本发明不限定于这些 实施例1为了得到组成为Ca3Nb1.7Ga3.2O12的熔融液,称量CaCO3、Nb2O5及Ga2O3,在大气中以1350℃煅烧,确认石榴石单相后,装入铱坩埚内,在氮气为98%容量、氧气为2%容量的混合气体气氛中,用高频感应加热至1450℃并使其熔融。然后,在该熔融液中,将长轴方向为<111>的5mm棱柱状的上述组成的籽晶对液面垂直浸渍,在20rpm的转速下,以3mm/小时的速度提拉,就可以得到完全不存在裂纹的透明单晶。
然后,从该结晶的上部和下部切出各约1g的试样,用荧光X线分析装置就各成分金属元素进行定量分析,确认结晶上部及结晶下部都有Ca3Nb1.7Ga3.2012(CNGG)的组成。

将所得到的单晶在与生长方向垂直的方向上切断成规定的厚度,将两面作镜面研磨之后,用热磷酸侵蚀处理,制作CNGG单晶基板(衬底基板10)。该单晶基板在室温~850℃的热膨胀系数(α)是1.07×10-5/℃。该CNGG单晶基板的厚度是0.6mm。
在该CNGG单晶基板的结晶培养面上,用溅射法形成了Nd3Ga5O12(NGG)薄膜(缓冲层11)。具体是,将NGG烧结体用作为靶,在下列的成膜条件下进行溅射成膜,其后,进行退火。
(溅射成膜条件)基板温度20℃(不加热,室温)输入功率3.7W/cm2气氛Ar+O2(10%容积)、1Pa、成膜时间30分缓冲层11的膜厚50nm。
(退火处理)气氛O2、1个大气压温度800℃时间30分。
对这样得到的NGG膜用荧光X线进行组成分析,可以确认得到大致化学计量组成的Nd3Ga5O12(NGG)薄膜。另外,为了研究NGG膜的结晶性,用X线逆晶格空间映射法研究了CNGG基板的峰值位置和NGG膜的峰值位置,这些峰值位置接近,而且,NGG膜的峰值幅度(摇摆曲线半值幅)也小于0.03°,可以确认是非常优良的结晶质量。
使用带有这样得到的NGG膜的CNGG基板(基板2),用液相外延生长法形成了铋置换稀土类铁石榴石单晶膜。具体做法是,在白金坩埚内装入,H02O35.747g、Gd2O36.724g、B2O343.21g、Fe203126.84g、PbO989.6g、Bi2O3826.4g、在约1000℃熔融,搅拌均质化之后,以120℃/hr的速度降温,保持在832℃的过饱和状态。接着,在该熔融液中浸渍用上述方法得到的基板2,一边用100rpm的转速旋转基板,一边进行单晶膜的液相外延生长,如此经过40小时,在基板2的底面(结晶培养面)上形成膜厚约450μm的铋置换稀土类铁石榴石单晶膜12。
用荧光X线法分析该基板2的底面上形成的单晶膜的组成后,可以确认是Bi1.1Gd1.1Ho0.8Fe5.0O12(Bi-RIG)。该单晶膜12的表面的光学显微镜照相的结果示于图4。
从这些结果可以确认,可以使表面平滑致密的优质的大致化学计量组成的Bi-RIG单晶膜没有裂纹或剥离等发生地外延生长。另外,从图4所示的照片用面积比研究了表面缺陷(腐蚀坑/图4所示的黑点)密度是0.16%,可以确认缺陷是少的。
另外,测量了该单晶膜的晶格常数和作为衬底基板的CNGG基板的晶格常数的差异后,可以确认是0.009,在±0.02以内。再者,测量了该单晶膜的晶格常数和作为缓冲层的NGG薄膜的晶格常数的差异后,确认是0.007。晶格常数的测量采X线衍射法。
另外,利用研磨加工,从该单晶膜12除去基板2(衬底基板10和缓冲层11)并研磨加工单晶膜12的两面,在该两面附着上由SiO2或Ta2O5构成的无反射膜,评价在波长1.55μm的法拉第旋转角、在法拉第旋转角为45deg时的透过损失及温度特性,其值是法拉第旋转系数是0.125deg/μm,透过损失是0.05dB,温度特性是-0.065deg/℃,均为可满足作为光隔离器的光学特性的程度。
再者,法拉第旋转角的求法是使波长1.55μm的偏振光的激光照射到单晶膜上,测量出射光的偏振面的角度。透过损失由透过单晶膜的波长1.55μm的激光强度与没有单晶膜时的光强度之差求出。温度特性是使试样的温度从-40至85℃变化,测量其旋转角,由该测量值算出。
另外,该单晶膜在室温~850℃的热膨胀系数(α)是1.10×10-5/℃。衬底基板与单晶膜的膨胀系数的差异是0.03×10-5/℃。另外,没有看到在所得到的单晶膜上有裂纹的发生。
实施例2在衬底基板上形成缓冲层后,除了将缓冲层在600℃及900℃的温度下退火处理以外,其余与实施例1相同,在作为衬底基板的CNGG基板的表面上形成了NGG膜作为缓冲层。
与实施例1同样,研究了NGG膜的峰值幅度(摇摆曲线半值幅度),在600℃的退火条件下,不能检测出峰值,在900℃的条件下,成为0.1~0.2°。确认了在退火处理的温度过低的情况下,缓冲层的结晶化变得不充分,有难于得到优质的缓冲层的倾向,如果温度过高,则有缓冲层的结晶质量变差的倾向。
实施例3用溅射法形成缓冲层时,除了使溅射时的气氛气体(Ar等惰性气体)中的氧(O2)的%体积变化为0%体积、20%体积、30%体积、35%体积以外,其余与实施例1相同,在作为衬底基板的CNGG基板的表面上形成了NGG膜作为缓冲层。
与实施例1同样,研究了NGG膜的峰值幅度(摇摆曲线半值幅度),在0%体积的条件下,成为0.2°、在20%体积的条件下,成为0.03°、在30%体积的条件下,成为0.03°、在35%体积的条件下,成为0.1°。
从这些结果可确认,在完全不含氧的气氛气体中,缓冲层的结晶质量有劣化的倾向,如果氧的含量过多,则发生异常放电,有难于得到优质缓冲层的倾向。
实施例4用溅射法形成缓冲层时,除了使溅射时的输入功率按2、6、8、10W/cm2变化以外,其余与实施例1相同,在作为衬底基板的CNGG基板的表面上形成了NGG膜作为缓冲层。
与实施例一样,研究了NGG膜的峰值幅度(摇摆曲线半值幅度),在2W/cm2的条件下,成为0.03°、在6W/cm2的条件下,成为0.15°、在8W/cm2的条件下,成为0.3°、在10W/cm2的条件下,成为0.4°。
从这些结果可以确认,通过将溅射时的输入功率控制在2~10W/cm2或更理想的3~6W/cm2,可以形成优质的缓冲膜。如果输入功率过小,则成膜速度缓慢,有生产率低的倾向,如果过大,则会给基板带来损坏及结晶性降低,同时有发生靶的裂纹的倾向。
实施例5用与上述实施例1同样的方法制作了CNGG单晶基板。
在这个CNGG单晶基板(衬底基板10)的底面上,用脉冲激光蒸镀法形成了Gd2.65Ca0.35Ga4.05Mg0.3Zr0.65O12(GCGMZG)薄膜(缓冲层11)。具体地说,在GCGMZG单晶靶上,将KrF准分子激光器以照射激光密度2.0J/cm2进行照射,在氧分压1Pa、照射时间5分钟的条件下,在被保持在基板温度20℃的CNGG基板的底面上形成了膜厚约10nm的GCGMZG薄膜。之后,用与实施例1相同的条件进行退火处理。进行了该GCGMZG薄膜的荧光X线分析,确认了是与靶相同组成的GCGMZG。
使用带有这样得到的GCGMZG薄膜的CNGG单晶基板,采用与实施例1同样的液相外延生长法,形成了铋置换稀土类铁石榴石单晶膜。在所得到的单晶膜上未见有裂纹发生。
实施例6用与上述实施例1同样的方法制作了带NGG薄膜的单晶基板。用该带NGG薄膜的CNGG单晶基板,通过液相外延生长法形成了铋置换稀土类铁石榴石单晶膜。
具体而言,在白金制坩埚内装入Tb4O712.431g、Yb2O31.464g、B2O343.21g、Fe2O3121.56g、PbO989.6g、Bi2O3826.4g,在约1000℃下熔化,搅拌均质化之后,以120℃/hr的速度降温,保持在840℃的过饱和状态。接着,在该熔液中浸渍在基板厚度0.6mm的CNGG基板的底面形成250nm的NGG薄膜构成的单晶基板材料,一边以100rpm的转速使基板旋转,一边使单晶膜作液相外延生长,这样生长43小时后在基板的底面上形成了膜厚560μm的铋置换稀土类铁石榴石单晶膜。
所得到的单晶膜及单晶基板的两方均未见有裂纹发生。用荧光X线法分析了该单晶膜的组成,确认是Bi1.0Tb1.9Yb0.1Fe5.0O12。

另外,测量了该单晶膜的晶格常数和作为基板的CNGG基板的晶格常数的差异是0.005,确认为在±0.02以内。再者,测量了该单晶膜的晶格常数和作为缓冲层的NGG薄膜的晶格常数的差异是0.004。
另外,对于该单晶膜,与实施例1一样,评价了波长1.55μm的法拉第旋转角、在法拉第旋转角45度时的透过损失以及温度特性,法拉第旋转系数是0.090deg/℃,透过损失是0.15dB,温度特性是-0.045deg/℃。再有,这个单晶膜的热膨胀系数是1.09×10-5/℃。衬底基板与单晶膜的热膨胀系数的差异是0.02×10-5/℃。另外,所得到的单晶膜上未见有裂纹的发生。
实施例7用与上述实施例1相同的方法制作了带NGG薄膜的CNGG单晶基板。使用该带NGG薄膜的CNGG单晶基板,用液相外延生长法形成了铋置换稀土类铁石榴石单晶膜。
具体而言,在白金制坩埚内,装入Gd2O37.653g、Yb2O36.778g、B2O343.21g、Fe2O3113.2g、Ga2O319.02g、Al2O33.35g、PbO869.7g、Bi2O3946.3g,在约1000℃下熔化,搅拌均匀后,以120℃/hr的速度降温,保持829℃的过饱和状态。接着,在该熔液中,浸渍在基板厚度0.6mm的CNGG基板的底面形成了250nm的NGG薄膜的单晶基板材料,一边以100rpm的转速使基板旋转,一边使单晶膜液相外延生长,在这样生长43小时后在基板的表面上形成膜厚520μm的铋置换稀土类铁石榴石单晶膜。
所得到的单晶膜和单晶基板两方均未见有裂纹发生。用荧光X线法分析了该单晶膜的组成,是Bi1.3Gd1.2Yb0.5Fe4.2Ga0.6Al0.2O12。
另外,测量了该单晶膜的晶格常数和作为衬底基板的CNGG基板的晶格常数的差异是0.014,可确认在±0.02以内。再者,测量了该单晶膜的晶格常数和作为缓冲层的NGG薄膜的晶格常数的差异是0.013。
另外,将该单晶膜进行与实施例1同样处理,评价了波长1.55μm的法拉第旋转角、在法拉第旋转角45度时的透过损失以及温度特性,法拉第旋转系数是0.113deg/℃,透过损失是0.05dB、温度特性是-0.095deg/℃。还有,该单晶膜的热膨胀系数是1.05×10-5/℃。衬底基板和单晶膜的热膨胀系数的差异是0.02×10-5/℃。另外,在所得到的单晶膜上未见有裂纹的发生。
实施例8对于作为衬底基板的CNGG基板,用溅射法形成作为缓冲层的NGG膜时,使真空室内的压强变化3Pa,如图5所示,除了在作为衬底基板的CNGG基板的侧面也形成缓冲层以外,与实施例1同样,制作了带NGG薄膜的CNGG单晶基板。用该带NGG薄膜的CNGG单晶基板,与实施例1同样,通过液相外延生长法形成了铋置换稀土类铁石榴石单晶膜。
用光学显微镜拍摄该单晶膜表面的结果示于图6。从图6所示的结果用面积比研究了表面缺陷(腐蚀坑/图6所示的黑点)密度,是0.04%。可以确认,图6所示的结果比图4所示的结果缺陷密度下降。
用与实施例1同样的方法制作CNGG单晶基板,其上没有完全形成由对氧化铅稳定的单晶膜构成的缓冲层,用与实施例1同样的液相外延生长法形成了铋置换稀土类铁石榴石单晶膜。
图7是实验后的基板的表面SEM图像,可以确认表面被相当多地侵蚀。另外,通过荧光X线分析得知,没有形成铋置换稀土类铁石榴石单晶膜。
上述的实施形态及实施例全部是本发明的例示,并不构成对本发明的限制,本发明可以用各种变形与变更的方式实施。
发明的效果如以上所述,依据本发明,可以提供用具有高质量、良好成品率的液相外延生长,以稳定、低成本地形成不发生结晶缺陷和挠曲、裂纹、剥离等的厚膜状的磁性石榴石单晶膜的磁性石榴石单晶膜形成用基板、光学元件及其制造方法。
权利要求
1.一种制造用以使磁性石榴石单晶膜液相外延生长的磁性石榴石单晶膜形成用基板的制造方法,其特征在于,包含形成由对用以使其液相外延生长的熔剂不稳定的石榴石系单晶构成的衬底基板的工序;以及在所述衬底基板的至少一个结晶培养面上,形成由对所述熔剂稳定的石榴石系单晶薄膜构成的缓冲层的工序;在所述衬底基板上形成所述缓冲层时,不主动加热所述基板地在所述衬底基板上形成所述缓冲层。
2.一种制造用以使磁性石榴石单晶膜液相外延生长的磁性石榴石单晶膜形成用基板的制造方法,其特征在于,包含形成由对用以使其液相外延生长的熔剂不稳定的石榴石系单晶构成的衬底基板的工序;以及在所述衬底基板的至少一个结晶培养面上,形成由对所述熔剂稳定的石榴石系单晶薄膜构成的缓冲层的工序;在所述衬底基板上形成所述缓冲层时,将所述基板的温度控制在从室温至不足600℃的温度上,在所述衬底基板上形成所述缓冲层。
3.如权利要求1或2所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于在所述衬底基板上形成缓冲层后,将所述缓冲层在600~900℃的温度下进行退火处理。
4.如权利要求1~3中的任意一项所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于用薄膜形成法形成所述缓冲层。
5.如权利要求4所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于用溅射法形成所述缓冲层。
6.如权利要求5所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于用溅射法形成所述缓冲层时,使溅射时的气氛气体中含氧在30%体积以下。
7.如权利要求5或6所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于用溅射法形成所述缓冲层时,将溅射时的输入功率控制在2~10W/cm2。
8.如权利要求1~8中的任意一项所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于作为所述熔剂的主要成分,使用含有氧化铅和/或氧化铋的熔剂。
9.如权利要求1~8中的任意一项所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于所述衬底基板具有与所述磁性石榴石单晶膜的热膨胀系数大致相等的热膨胀系数。
10.如权利要求9所述的磁性石榴石单晶膜形成用基板的的制造方法,其特征在于在0℃~1000℃的温度范围内,所述衬底基板的热膨胀系数在所述磁性石榴石单晶膜的热膨胀系数±2×10-6/℃以下的范围内。
11.如权利要求1~10中的任意一项所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于所述衬底基板具有与所述磁性石榴石单晶膜的晶格常数大致相等的晶格常数。
12.如权利要求11所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于所述衬底基板的晶格常数在所述磁性石榴石单晶膜的晶格常数±0.02以下的范围内。
13.如权利要求1~12中的任意一项所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于所述衬底基板含有Nb或Ta。
14.如权利要求1~13中的任意一项所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于所述缓冲层是基本不包含Nb或Ta的石榴石系单晶薄膜。
15.如权利要求1~8中的任意一项所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于所述缓冲层是用通式R3M5O12(式中,R是稀土金属的至少1种、M是从Ga、Fe中选择的1种)表示的材料;或者是X置换钆·镓石榴石(式中,X是Ca、Mg、Zr中的至少1种)。
16.如权利要求1~15中的任意一项所述的磁性石榴石单晶膜形成用基板的制造方法,其特征在于所述缓冲层的厚度是1~10000nm,所述衬底基板的厚度是0.1~5mm。
17.用如权利要求1~16中的任意一项所述的制造方法制造的磁性石榴石单晶膜形成用基板。
18.一种磁性石榴石单晶膜的制造方法,含有采用如权利要求17所述的磁性石榴石单晶膜形成用基板,在所述缓冲层上用液相外延生长法使磁性石榴石单晶膜生长的工序。
19.一种光学元件的制造方法,含有在采用如权利要求18所述的磁性石榴石单晶膜的制造方法形成所述石榴石单晶膜后,除去所述衬底基板和缓冲层,形成由所述磁性石榴石单晶膜构成的光学元件的工序。
20.一种光学元件,通过如权利要求19所述的光学元件的制造方法而获得。
全文摘要
一种制造用以使磁性石榴石单晶膜液相外延生长的磁性石榴石单晶膜形成用基板2的方法。首先,形成由对用以使液相外延生长使用的熔剂不稳定的石榴石系单晶构成的衬底基板10。接着,在衬底基板10的至少一个结晶培养面上形成由对熔剂稳定的石榴石系单晶薄膜构成的缓冲层11。在该衬底基板10上形成缓冲层11时无需主动地加热基板,用溅射法等薄膜形成法在衬底基板10上形成缓冲层11。
文档编号C30B19/12GK1768167SQ200480008878
公开日2006年5月3日 申请日期2004年1月28日 优先权日2003年2月4日
发明者内田清志, 坂下幸雄, 大井户敦 申请人:Tdk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1