干细胞分化成为视网膜细胞的方法

文档序号:393154阅读:456来源:国知局
专利名称:干细胞分化成为视网膜细胞的方法
技术领域
本发明涉及在短期内使干细胞以高产量分化成为视网膜细胞的方法。更具体而言,本发明涉及通过在特别适合于分化步骤的不同培养基和时间内培养,使干细胞分化成为神经视网膜祖细胞、感光细胞前体细胞、感光细胞和其它视网膜细胞的方法。本发明还涉及按照所述方法产生的神经视网膜祖细胞、感光细胞前体细胞、感光细胞和其它视网膜细胞,包含所述细胞的用于治疗视网膜退化相关疾病的组合物,以及利用所述组合物治疗视网膜退化相关疾病的方法。
背景技术
失明是由于生理学或神经学原因而丧失视觉感知的医学病症。数以千万计的人(占世界人ロ的O. 2-0. 5%)受到失明的影响,并且在个人、社会和经济方面正遭受巨大的损失。视网膜光受体退化是先天或通过其它多种因素引起的失明的更占主导地位的病因之一,包括视网膜发育异常、视网膜退化、老年黄斑退化、糖尿病视网膜病变、视网膜色素变性、先天性视网膜失养症、Leber先天性黑朦、视网膜脱落、青光眼、视神经病变和外伤。迄今还没有开发出用于对这类疾病进行基础治疗的药物。到目前为止,用新的感光细胞替换这些视网膜疾病的α型和ω型异常感光细胞被认为是唯一有前景的疗法。感光细胞植入被认为通过延迟或抑制视网膜退化、再生退化的视网膜以及增强视网膜功能来预防失明或恢复有缺陷的视力。干细胞已经成为用于视网膜疾病的细胞疗法的有用备选者,所述干细胞包括骨髄干细胞(BMSC)、脐带血干细胞、羊水干细胞、脂肪干细胞、视网膜干细胞(RSC)、胚胎干细胞(ESC)、诱导型多能干细胞(iPSC)和体细胞核移植细胞(SCNT)。对于干细胞分化成为视网膜细胞(尤其是感光细胞)以及基于此的细胞疗法还没有得出有意义的研究結果。这些干细胞向视网膜细胞的分化可使以下几点成为可能I)保证了用于有效细胞疗法的无限细胞来源,2)识别尚不清楚的由胚胎细胞和视网膜前体细胞成为视网膜细胞的分化机制,3)发现视网膜分化相关基因和分子及其损伤,4)理解视网膜退化性疾病的发病机理,以及5)开发用于预防视网膜退化和保护视网膜的药物。自从其首次确立,人胚胎干细胞系就被认为具有分化成为用于多种疾病的细胞疗法的有用的各种类型细胞的能力。当人胚胎干细胞允许在临床治疗中精确检查发病机理并提供能够替代异常细胞的新鮮细胞时,其似乎具有高潜能。在完全确定的可再生条件下产生人ESC来源的视网膜感光细胞及其在移植法中的用途保证了其是用于视网膜感光细胞相关疾病的极其有力且有效的疗法。假设人ESC来源的细胞与通过正常分化过程所形成的细胞具有相同的性质和功能。基于这种假设,以与产生以下细胞的发育阶段相似的条件下诱导分化表达胰激素的内分泌细胞(D’Amour, et al.,Nat. Biotechnol.,2006 ;24:1392-401)、神经元(Pankratz, et al. , Stem Cells 2007;25:1511-20)、肌细胞(Barberi et al. , Nat. Med. , 2007 ; 13:642-8)和血管内皮细胞(Wang, et al. , Nat.Biotechnol. , 2007 ;25:317_8)。并且,已经进行多次尝试来将人ESC分化成为可有效用于治疗视网膜疾病的感光细胞,但是大多数情况都以失败告終。
实际上,从人胚胎干细胞分化成为视网膜祖细胞是在该领域内迄今为止所作出的最大成就,但是从视网膜祖细胞分化成为感光细胞却失败了(分化率低于O. 01%)(Lamba, Proc. Natl. Acad. Sci. USA, 2006 ; 103:12769-74)。一项报道称,人胚胎干细胞被成功诱导分化成为感光细胞,但是其中所用的方法对于分化总共需要超过200天,而其中的分化率低至8%,因此不可能用于临床治疗失明(Osakada et al. , Nat. Biotechnol. , 2008 ;26:215-24)。发明概述技术问题由本发明人对人ESC分化成为感光细胞进行了广泛且深入的研究而产生了本发明,产生以下发现在既不用基因植入也不用与视网膜组织共培养的条件下,化学限定的用于分化成为感光细胞的体外条件允许人干细胞在四周内以高产量分化成为感光细胞,所述体外条件与体内条件相似。并且最終分化的细胞群体比起始人胚胎干细胞更高260倍,因而可应用于临床移植。解决问题的方案因此,本发明的目的是在无需基因植入和与视网膜组织共培养的条件下,通过在化学限定的条件下实施与体内胚胎发育相似的分化过程,提供诱导干细胞在较短的时间内以高产量分化成为视网膜细胞(包括大量的感光细胞及其祖细胞)的方法。本发明的另一目的是提供根据所述方法所产生的感光细胞及其祖细胞,以及包括它们的视网膜细胞,当这些细胞被植入退化或受损的视网膜时,能够在其中植入并融合。本发明的又一目的是提供包含视网膜细胞的用于治疗视网膜退化相关疾病的组合物,所述视网膜细胞包括感光细胞及其祖细胞和其它类型的视网膜细胞。本发明的还ー目的是提供用于治疗视网膜退化相关疾病的方法,所述方法包括将所述组合物给予有需要的个体。发明的有益效果如上文所述,通过实施与体内胚胎发育相似的分化过程能够使干细胞在短时间内以高产量分化成为大量感光细胞,当所分化的感光细胞被植入到退化或受损的视网膜吋,能够在视网膜内植入并融合,从而预防或治愈视网膜退化。并且由本发明所发现的參与视网膜分化的新基因和分子能用于检查由此引起的视网膜退化相关疾病的病因,井能开发出用于预防视网膜退化并保护视网膜神经元的药物。附图简要说明图I是细胞形态的显微镜照片(A)左图,来自第28代的细胞在培养5天之后,处于未分化状态的hESC的典型细胞絮凝物(29代;40X放大倍数)。通过与邻近的MEF饲养细胞明确分离来表征。具有光滑的表面和均匀的形态。(A)右图,从图IA左图的hESC絮凝物分离之后,在超低吸附平板培养4天的悬浮聚集物(40X放大倍数)。球形形态,每个悬浮聚集物由大约292±53个细胞组成。(B)-(D).分化成为视网膜细胞的细胞形态的显微镜照片。
⑶.诱导分化后第14天,即在悬浮聚集物被转移至聚D赖氨酸/层粘连蛋白包被的平板并在其中培养10天的细胞,其为诱导未分化的hESC分化后的第14天。观察到细胞从悬浮聚集物分离并经历分化。分化早期的细胞形态具有较少的细胞质和既圆又大的细胞核。(C).诱导分化后第19天的细胞,即未分化的hESC在诱导分化19天后的细胞。这些细胞分化成为视网膜祖细胞,并伴随活性増殖。活性増殖和分化状态下的细胞絮凝物形成漩涡排列或玫瑰样结构。(D).诱导分化后第21天的细胞,显示出由活性增殖导致的细胞数量的増加。这些细胞变得更富含细胞质,且它们的细胞核大小比图IC中进行分化的细胞的细胞核更小。这些细胞似乎起对光响应的作用。(E)-(H).诱导分化后第29天的细胞絮凝物的各种形态。(E).大多数细胞,尤其是在细胞密集区所观察到的细胞的形态。随着分 化的进行,与诱导后第21天的细胞相比,细胞显示出相同的细胞结构,但具有更丰富的细胞质和更小且更致密的细胞核。(F).细胞稀少区的细胞的形态。细胞絮凝物表现出方向性井向依赖于细胞簇的某个点移动。观察到更丰富的向两端聚集的细胞质和纺锤样的细胞核。(G).细胞絮凝物,某些具有多个神经束。(H)左图,细胞絮凝物,某些显示出长的神经轴突。(H)右图,细胞絮凝物,某些表现出分化的神经元的形态。*显微镜视野(A)(左图,右图40X放大倍数);(B)_(G)(左图50X放大倍数;右图200 X放大倍数);(H)(左图和右图200 X放大倍数)。图2显示视网膜细胞标志物Crx、恢复蛋白(recoverin)、视紫红质(rhodopsin)、外周蛋白2(peripherin2)和Ki67的表达水平随培养时间的变化。图3是ー组显示向视网膜细胞分化29天所获得的细胞并对恢复蛋白和视紫红质(二者指示感光细胞)进行免疫染色的显微镜照片。在hESC被诱导分化成为感光细胞之后,对感光细胞特异性蛋白的表达进行检测。受试的分化细胞中超过80%对恢复蛋白(通用感光细胞标志物)和视紫红质(视杆细胞特有的)为阳性。(A)和(B).分化的感光细胞絮凝物。(C).细胞稀少区的个体细胞恢复蛋白和视紫红质在分化的感光细胞中表达不同。*显微镜视野(A) 100 X放大倍数;(B) 200 X放大倍数;(C) 400 X放大倍数。*合并对恢复蛋白和视紫红质进行荧光免疫染色的细胞的叠加照片。表达两种抗原的细胞显黄色(緑+红)。+合并/DAPI =DAPI是细胞核染色的细胞群。合并/DAPI图像是用于检测恢复蛋白和视紫红质表达以及DAPI表达的叠加荧光照片,同时显示了细胞轮廓和两种抗原的表达模式。图4是诱导向视网膜细胞分化29天之后所获得的细胞的荧光显微镜照片,显示了感光细胞标志物视紫红质、rom-1和外周蛋白2的表达。观察到分化的感光细胞表达Rom-I和外周蛋白2 ( 二者是视紫红质阳性的视杆细胞外段特有的)。
(A).对视紫红质和rom-1都为阳性的细胞絮凝物。(B).对视紫红质和rom-1都为阳性的个体细胞。在每个细胞中,视紫红质和!·om-1在明显不同的位置处表达。随着分化的进行,视紫红质在内部细胞质中表达,而rom-1定位在最外部的细胞质。(C).对视紫红质和外周蛋白2都为阳性的分化的感光细胞的絮凝物。(D).对视紫红质和外周蛋白2都为阳性的个体细胞。*显微镜视野(A) 100X放大倍数;(B)400X放大倍数;(C) 100X放大倍数;(D)400X放大倍数。图5是诱导向视网膜细胞分化29天后所获得的细胞的荧光显微镜照片,显示了感光细胞标志物视紫红质、光导蛋白(phosducin)和Pde6b的表达。这些蛋白负责对光响应, 表明分化的感光细胞表现出其特有的功能。(A).对视紫红质和光导蛋白都为阳性的分化的感光细胞的絮凝物。 ⑶.对视紫红质和光导蛋白都为阳性的个体细胞。(C).对视紫红质和Pde6b都为阳性的分化的感光细胞的絮凝物。⑶.对视紫红质和Pde6b为阳性的个体细胞。*显微镜视野(A) 100X放大倍数;(B)400X放大倍数;(C) 100X放大倍数;(D)400X放大倍数。图6是诱导向视网膜细胞分化29天后所获得的细胞的荧光显微镜照片,显示了感光细胞标志物视紫红质和突触蛋白(synaptophysin)的表达。(A).对视紫红质和突触蛋白都为阳性的分化的感光细胞的絮凝物。这些蛋白的表达表明,分化的感光细胞与其它视网膜神经元发生突触相互作用,并參与视网膜神经回路的形成。(B).对视紫红质和突触蛋白为阳性的个体细胞。*显微镜视野㈧100 X放大倍数;⑶400 X放大倍数。图7是诱导向视网膜细胞分化29天后所获得的细胞并针对视锥细胞进行免疫染色的荧光显微镜照片。左图,对蓝视蛋白(blue opsin)为阳性的细胞絮凝物。右图,对蓝视蛋白为阳性的个体细胞。蓝视蛋白的表达表明分化的细胞是蓝视蛋白-视锥细胞。*显微镜视野(左)100 X放大倍数;(右)400 X放大倍数.图8是诱导向视网膜细胞分化29天后所获得的细胞的并对典型的感光细胞进行免疫染色的荧光显微镜照片。观察到已经历进ー步分化的各种类型的细胞。左图,对恢复蛋白和视紫红质都为阳性的细胞,显示了感光细胞的特有形态。中图,对突触蛋白和视紫红质为阳性的细胞,显示了进ー步的成熟分化。右图,通过细胞质内丰富的视紫红质分子表征的视紫红质阳性细胞。*显微镜视野400 X放大倍数。图9是诱导向视网膜细胞分化29天后所获得的细胞并针对神经视网膜祖细胞和感光细胞前体细胞进行免疫染色的荧光显微镜照片。(A).对Rax和Pax6都为阳性的细胞絮凝物。
(B).对Rax和Pax6都为阳性的个体细胞。观察到大多数细胞都表达两种抗原,但是它们之间的表达水平不同,这表明分化诱导29天后所获得的视网膜细胞来源于神经视网膜祖细胞。(C).对增殖性标志物Ki67和感光细胞前体细胞标志物Crx为阳性的细胞絮凝物。(D).对Ki67和Crx都为阳性的个体细胞。大多数Crx阳性细胞不表达Ki67。这与感光细胞前体细胞离开细胞增殖周期后立即表达Crx这一事实相符。有吋,少量Crx阳性细胞仍继续表达Ki67。*显微镜视野(A)IOOX放大倍数;(B)400X放大倍数;(C) 100X放大倍数;(D)400X放大倍数。

图10是诱导向视网膜细胞分化29天后所获得的细胞并针对视网膜细胞而非感光细胞进行免疫染色的荧光显微镜照片。(A).对Islet-I和NF-200都为阳性的细胞絮凝物(左)和个体细胞,这证实为视网膜神经节细胞,因为细胞核和轴突分别对Islet-I和NF-200为阳性。(B).对PKC-α为阳性的细胞絮凝物(左)和个体细胞(右),这证实为双极细胞。(C).对Prox-I为阳性的细胞絮凝物(左)和个体细胞(右),这证实为水平细胞。⑶.对GFAP为阳性的细胞絮凝物(左)和个体细胞(右),这证实为米勒胶质细胞。(E).对Rpe65和Z0_1都为阳性的细胞絮凝物(左)和个体细胞(右),这证实为视网膜色素上皮。*显微镜视野(A).左,100 X放大倍数,右,400 X放大倍数;(B)左,100 X放大倍数,右,400 X放大倍数;(C)左,100X放大倍数,右,400 X放大倍数;(D)左,100X放大倍数,右,400 X放大倍数;(E)左,100X放大倍数,右,400 X放大倍数。图11是分别用BIO和purmorphamine而不是Wnt3a和Shh诱导向视网膜细胞分化29天所产生的细胞并针对感光细胞前体细胞和感光细胞进行免疫染色的荧光显微镜照片。(A).对增殖性细胞标志物Ki67和感光细胞前体细胞特异性抗原Crx都为阳性的细胞絮凝物。(B).对Ki67和Crx都为阳性的个体细胞。(C).对感光细胞标志物恢复蛋白和视紫红质为阳性的细胞絮凝物。(D).对恢复蛋白和视紫红质为阳性的个体细胞。*显微镜视野(A)IOOX放大倍数;(B)400X放大倍数;(C) 100X放大倍数;(D)400X放大倍数。图12是分别用BIO和purmorphamine而不是Wnt3a和Shh诱导向视网膜细胞分化29天所产生的细胞并针对感光细胞标志物视紫红质、外周蛋白2和rom-1进行免疫染色的荧光显微镜照片。(A).对视紫红质和外周蛋白2都为阳性的细胞絮凝物。(B).对视紫红质和外周蛋白2都为阳性的个体细胞。(C).对视紫红质和rom-1都为阳性的细胞絮凝物。⑶.对视紫红质和IOm-I都为阳性的个体细胞。
*显微镜视野(A) IOOX放大倍数;(B)400X放大倍数;(C) 100X放大倍数;(D)400X放大倍数。图13是分别用BIO和purmorphamine而不是Wnt3a和Shh诱导向视网膜细胞分化29天所产生的细胞并针对视锥细胞进行免疫染色的荧光显微镜照片。左图,蓝视蛋白阳性的细胞絮凝物。右图,蓝视蛋白阳性的个体细胞。*显微镜视野(左)100X放大倍数;(右)400X放大倍数。图14是人iPSC的显微镜照片。(A).细胞形态显微镜照片。(A)左图,来自第43代的细胞在培养6天后处于未分化状态的人iPSC的典型细胞絮凝物(第43代;显微镜视野40X放大倍数)。通过与邻近 的MEF饲养细胞明确分离来表征。具有光滑的表面和均匀的形态,这也是未分化的hESC所特有的。(A)右图,从图14A左图的人iPSC絮凝物分离后,在超低吸附平板培养4天的悬浮聚集物(显微镜视野40X放大倍数)。(B)对特征标志物进行免疫染色的未分化的人iPSC的荧光显微镜照片。细胞絮凝物中的大多数细胞对SSEA4和Nanog都为阳性,这证实保持在未分化状态。*显微镜视野(最左)40X放大倍数;(其它)100X放大倍数。图15是ー组显示诱导人iPSC向视网膜细胞分化29天所获得的细胞并对恢复蛋白和视紫红质(二者均为感光细胞特有的)进行免疫染色的显微镜照片。分析由人iPSC分化的感光细胞的感光细胞特异性蛋白的表达。(A).分化的感光细胞絮凝物。(B).低细胞密度区的个体细胞。(C).细胞稀少区的个体细胞。恢复蛋白和视紫红质在分化的感光细胞中表达不同。*显微镜视野(A) 100 X放大倍数;(B) 400 X放大倍数;(C) 400 X放大倍数.图16是显示对视网膜细胞特异的基因的RT-PCR照片。利用RT-PCR測定通过诱导未分化的hESC向视网膜细胞分化29天所产生的细胞中与视网膜祖细胞、感光细胞和其它视网膜细胞相关的基因的mRNA表达水平。(A).视网膜祖细胞特异的基因 RAX (495bp)、PAX6 (275bp)、SIX3 (307bp)、SIX6 (272bp)、LHX2 (285bp)和 CHXlO (281bp)的 RT-PCR 产物。其中,RAX 和 PAX6 的表达程度同定量对照基因GAPDH (PCR产物大小302bp) —样高。相比之下,在RT-PCR产物中未见发育中的大脑皮层相关基因ARX(462bp),发育中的中胚层基因T(541bp)或发育中的内胚层基因AFP (318bp),这表明本发明的方法特异地针对视网膜相关基因的mRNA表达。(B).感光细胞和其它视网膜细胞相关基因的RT-PCR产物。通过RT-PCR扩增观察到感光细胞相关基因 CRX(353bp)、NRL(206bp)、RCVRN (150bp)、RH0(258bp)、PDE6B(409bp)、SAG(400bp)和OPNlSW(206bp)。在RT-PCR产物中还发现视网膜神经节细胞基因ATH07(246bp)和P0U4F2 (175bp),无长突细胞基因NEUR0D1 (523bp)和双极细胞基因ASCLl(467bp)。感光细胞相关基因的特征如下CRX和NRL分别为感光细胞前体细胞和视杆细胞特有的转录基因。RCVRN(恢复蛋白)是对视锥细胞和视杆细胞测试均为阳性的通用感光细胞基因。RHO(视紫红质)是视杆细胞特异的。PDE6B和SAG (人arrestin)參与感光细胞的光转换。这些基因的表达证实感光细胞自身功能的发育和成熟。OPNlSW是短波(蓝视蛋白)_视锥细胞特有的。M :标志物。图17显示了感光细胞特征基因的RT-PCR和碱基测序結果。对诱导未分化的hESC向视网膜细胞分化29天所产生的细胞进行RT-PCR,以便能够检测感光细胞特异性基因RCVRN(NM_002903. 2)和RHO (NM_000539. 3)。通过碱基测序鉴定RT-PCR产物为RCVRN和RH0。(A). RT-PCR产物的琼脂糖凝胶电泳显示RCVRN为150bp,RHO为258bp。M :标志物。(B).喊基测序分析的色谱图,显不RCVRN的喊基序列(顶图)和RHO的喊基序列(底图)。发现RCVRN和RHO基因的碱基序列与人类标准序列(http://www. ncbi. nlm. nih.gov/)完全一致,这表明感光细胞表达人RCVRN和RHO基因。
图18是已植入hESC来源的感光细胞或未植入hESC来源的感光细胞的视网膜退化小鼠rd/SCID的视网膜电图。(A). 8周龄未植入小鼠的视网膜电图。未发现特征ERG波形。ERG b_波对于右眼的振幅为6. 29 μ V,对于左眼为O. 0542 μ V。(B). 8周龄小鼠在植入后4周的视网膜电图。与未植入的右眼相比,来自感光细胞植入的左眼的ERG b-波形成了特征波形,振幅高达74. 5 μ V。如视网膜电图描记术所测量,植入了 hESC来源的感光细胞的rd/SCID小鼠对光刺激表现出明确应答。图19是对已植入或未植入hESC来源的感光细胞的视网膜退化rd/SCID小鼠之间的b-波振幅进行比较的图。来自植入感光细胞的rd/SCID小鼠的ERG b_波形成了特征波形,振幅为48. 4(±3. 4) μ V(样品大小=13)。相比之下,在未植入组的ERG中没有发现任何ー处形成特征波形,其显示b-波振幅为10. 3 (±2. 5) μ V (样品大小=17),这在统计学上显著不同于植入组(Ρ〈0· 0001)(表 6,图 19)。图20是hESC来源的感光细胞被植入视网膜退化的小鼠模型(rd/SCID)后的荧光显微镜照片。植入后4周,利用视紫红质和恢复蛋白(二者是人线粒体和感光细胞特有的)分析hESC来源的感光细胞是否植入视网膜。当视紫红质和恢复蛋白阳性细胞对人线粒体抗原表现出阳性应答时,可以确定这些细胞是hESC来源的感光细胞。(A).对植入组中的人特异的线粒体和视紫红质进行的免疫染色。所形成的新的外核层(ONL)为视紫红质阳性感光细胞层的4或5倍。(B).对作为対照的同龄(8周龄)的未植入组rd/SCID小鼠的人特异的线粒体和视紫红质进行的免疫染色。观察到仅有ー层外核层,主要由视锥细胞组成。由于退化几乎没有观察到视杆细胞,而仅检测到正在进行退化的两个残留细胞。(C).对植入组中的人特异的线粒体和恢复蛋白进行的免疫染色。4或5倍的恢复蛋白阳性细胞层形成了新的外核层。在植入组中,在外核层和内核层(INL)中形成了 4或5倍的恢复蛋白阳性细胞层。(D).对作为対照的未植入组中的人特异的线粒体和恢复蛋白进行的免疫染色。在全部40个细胞中检测到阳性应答。单层恢复蛋白阳性外核层由视锥细胞组成,而恢复蛋白阳性内核层由锥形双极细胞形成。*显微镜视野(A)和(C)左图,200 X放大倍数;(A) - (D) :400 X放大倍数。*0NL:外核层INL:内核层RGC:视网膜神经节细胞图21是显示人ESC来源的感光细胞被植入视网膜退化的小鼠模型(rd/SCID)后的植入结果的图。在未植入组中,在每个所观察的显微镜视野的共199个细胞中,只有2个检测到 视紫红质(阳性率1.0%)。另ー方面,在植入组中,每个显微镜视野的共215个细胞中,有88个为视紫红质阳性(阳性率40. 8%) (p〈0. 0001)。因此,发现植入的视杆细胞占视网膜切片总面积的大约40%。在未植入组中,在每个显微镜视野的共168个细胞中,有40个检测到对恢复蛋白的阳性应答(阳性率23. 8%),但在植入组中,在每个显微镜视野的共292个细胞中,有120个检测到对恢复蛋白的阳性应答(阳性率41.0%),具有统计学显著性(ρ〈0· 0001)。图22是hESC来源的感光细胞被植入视网膜退化的小鼠模型(rd/SCID)后的荧光显微镜照片。植入后4周,对人线粒体和感光细胞抗原突触蛋白进行免疫染色和分析。在未植入组中,恢复蛋白表示内核层的双极细胞和外核层的视锥细胞。在植入组中,发现4或5倍的突触蛋白阳性细胞层形成新的外核层,这表明新形成的外核层中的感光细胞与植入小鼠视网膜的其它视网膜内细胞发生突触相互作用。*显微镜视野左.200 X放大倍数;其它为400 X放大倍数。实施发明的最佳方式一方面,本发明涉及用于诱导干细胞分化成为视网膜细胞的方法,其包括(a)在含有IGFlR(胰岛素样生长因子-1受体)活化剂、BMP(骨形态发生蛋白)信号转导途径抑制剂、FGF(成纤维细胞生长因子)信号转导途径活化剂和Wnt信号转导途径活化剂的培养基中培养干细胞来源的视网膜祖细胞,从而使它们分化成为神经视网膜祖细胞;(b)在含有IGFlR活化剂、Wnt信号转导途径活化剂和Shh (音猬因子)信号转导途径活化剂的培养基中培养所述神经视网膜祖细胞,从而使它们分化成为感光细胞前体细胞;以及(c)在含有IGFlR活化剂、Wnt信号转导途径活化剂、Shh信号转导途径活化剂和RA (视黄酸)的培养基中培养所述感光细胞前体细胞,从而使它们分化成为包括感光细胞在内的视网膜细胞。在所述方法的实施方案中,当在存在IGFlR活化剂、BMP信号转导途径抑制剂、FGF信号转导途径活化剂和fct信号转导途径活化剂的条件下培养时,干细胞来源的视网膜祖细胞被诱导分化成为神经视网膜祖细胞。此外,在某些培养条件下(例如,组成培养基的成分、成分的含量、培养时间等),神经视网膜祖细胞被诱导分化成为视网膜细胞。没有对培养技术和条件给予具体限定,只要这些技术和条件可有效用于将神经视网膜祖细胞分化成为感光细胞前体细胞、感光细胞和其它视网膜细胞。本文所用的术语“干细胞”指能够产生三种原胚层(内胚层、中胚层和外胚层)的所有衍生物的多能细胞或能够分化成为在组织类型和功能上密切相关的成熟细胞的多能细胞。本文所用的术语“动物”意图包括人类、灵长类动物、牛、猪、绵羊、马、狗、小鼠、大鼠和猫,优选人类。本文所用的术语“胚胎干细胞”指来源于受精卵刚要着床于子宫壁之前的胚泡内细胞团的多能细胞,其能够分化成为任何类型的动物细胞,并且更广泛的含义意图包括干细胞样细胞如类胚体和诱导型多能干细胞(iPS)。
本文所用的术语“成体干细胞”意指从组织分离并离体培养的多能细胞,并且意图包括骨髄干细胞、脐带血干细胞、羊水干细胞、脂肪干细胞、视网膜干细胞、视网膜内的米勒胶质细胞和神经干细胞。本文所用的术语“视网膜”指感光组织。视网膜是眼球内最深处的(感觉)透明层,且与视觉直接相关。正好在感觉神经性视网膜外侧的是由色素细胞组成的视网膜色素上皮。在更广泛的含义上,视网膜包括内部感觉层和外部视网膜色素上皮。视网膜位于眼后面,并且在胚胎发育中作为发育大脑的副产物而产生。视网膜像一块五层的蛋糕,由三层核心层和穿插在它们之间的两层网络层组成。三层核心层是由感光细胞组成的最外层的核心层;由水平细胞、双极细胞、无长突细胞和米勒胶质细胞组成的内核层;以及由视网膜神经节细胞核心组成的最内层的视网膜神经节细胞层。通过眼睛的眼角膜和晶状体之后,光线依次通过视网膜神经节细胞层和内层达到外核层,在感光细胞处产生神经冲动。这些神经冲动向反方向转换。即,当感光细胞受神经冲动刺激时,神经电流传导至内核层,然后通过视网膜神经节细胞层进入视神经纤维。本文所用的术语“祖细胞”或“前体细胞”指能够进行不对称分裂的细胞。不对称分裂指这样的情况,其中祖细胞或前体细胞或者能够以特定概率产生另外的两个祖细胞或前体细胞,或者能够分化,使得尽管它们经历相同轮数的传代,但是所产生的细胞可具有不同的年龄和性质。本文所用的术语“视网膜祖细胞”意指能够分化成为存在于视网膜中的细胞和视网膜色素上皮细胞的多能祖细胞。通常,视网膜祖细胞可经历对称或不对称分裂,因而或者可分化成为多种类型的视网膜细胞或视网膜色素上皮细胞,或者可产生另外两个视网膜祖细胞。因此,应当理解的是,培养步骤中所用的用于分化成为视网膜祖细胞的细胞包括在干细胞分化成为视网膜细胞期间所产生的多种类型的细胞以及视网膜祖细胞。视网膜祖细胞包括神经视网膜祖细胞和视网膜色素上皮祖细胞,并且通过选自以下的至少ー种、两种或三种标志物来表征Rax、Pax6、ChxlO、0tx2、Sox2、Lhx2、Six3、Six6 和 Mitf0如上文提到的与视网膜发育相关,视网膜祖细胞能够分化成为多种类型的视网膜内细胞(视杆细胞和视锥细胞、视网膜神经节细胞、水平细胞、双极细胞、无长突细胞、米勒胶质细胞等)和视网膜色素上皮,特征为诸如Crx、恢复蛋白、视紫红质、红绿视蛋白(red/green opsin)、蓝视蛋白、外周蛋白 2、PDE6B、SAG、Isletl/NF200、ProxU PKC_a、Hu C/D、GFAP和RPE65的标志物为阳性表达。然而,这些标志物的表达水平和阳性率在视网膜祖细胞中变得比在成熟视网膜细胞或视网膜色素上皮中更弱。本文所用的术语“神经视网膜祖细胞”意图表示偏爱神经元的视网膜祖细胞。SP,本文的神经视网膜祖细胞是决定分化成为视网膜内神经元(视杆细胞和视锥细胞、视网膜神经节细胞、水平细胞、双极细胞、无长突细胞及米勒胶质细胞)的祖细胞。通常,神经视网膜祖细胞可经历对称或不对称分裂,或者分化成为多种类型的视网膜细胞或视网膜色素上皮细胞,或者产生另外的两个视网膜祖细胞。因此,应当理解的是,在分化成为神经视网膜祖细胞的培养步骤中包括干细胞分化成为视网膜细胞以及神经视网膜祖细胞期间所产生的各种类型的细胞。神经视网膜祖细胞通过表达选自以下的至少ー种、两种或三种标志物来表征Rax、Pax6、ChxlO 和 Crx。除了表达这些标志物之外,神经视网膜祖细胞还可以通过表达Crx、恢复蛋白和视紫红质的能力来表征,所述Crx、恢复蛋白和视紫红质是下一分化阶段的细胞,即感光细胞前体细胞和感光细胞的标志物。相反,观察到神经视网膜祖细胞的以下标志物的表达水平降低0tX2、SOX2、Lhx2、SiX3、SiX6和Mitf,这些是表明它们自身为前一分化阶段的视网膜祖细胞的特征标志物。 本文所用的术语“视网膜色素上皮祖细胞”意指偏爱视网膜色素上皮的分化的视网膜祖细胞。视网膜色素上皮祖细胞通过表达选自Mift和Pax6的一种或多种标志物来表征。在优选实施方案中,干细胞的实例包括但不限于,骨髄干细胞(BMSC)、脐带血干细胞、羊水干细胞、脂肪干细胞、视网膜干细胞(RSC)、视网膜内米勒胶质细胞、胚胎干细胞(ESC)、诱导型多能干细胞(iPSC)和体细胞核移植细胞(SCNTC),最优选的是人ESC或iPSC。在一实施方案中,iPSC以及人ESC通过本发明的分化方法被成功诱导分化成为包括感光细胞在内的视网膜细胞。本文所用的术语“IGF1R(胰岛素样生长因子I受体)活化剂”用来指这样的物质,其能够结合并活化IGF-I (胰岛素样生长因子-1)受体(IGFlR),该受体为酪氨酸激酶受体家族的成员。与IGFlR结合启动细胞内信号转导途径活化的IGFlR与胰岛素受体底物(IRS)相互作用,胰岛素受体底物反过来充当两条途径的活化剂由PI3k、Akt和mTOR组成的一条途径;由Raf、MEK和ERK组成的另一条途径(Ryan & Goss, Oncologist. 2008 ; 13:16-24)。IGF-I和IGF-2落入本发明所用的IGFlR活化剂的范围内。IGF-1具有与胰岛素相似的分子结构,參与细胞生长、细胞増殖、分化和细胞死亡。只要其能活化IGFlRJiM IGFlR活化剂都可不受限制地用于本发明的实施方案中。优选IGF-I或IGF-2,更优选IGF-I。在优选实施方案中,用于使视网膜祖细胞分化成为神经视网膜祖细胞的培养基含有量为O. 01至100ng/ml,优选量为0. I至50ng/ml,更优选量为I至20ng/ml,以及最优选量为 10ng/ml 的 IGFlR0本文所用的术语“BMP(骨形态发生蛋白)信号转导途径抑制剂”表示一组能够抑制BMP信号转导途径的物质。BMP属于ー组称为TGF-β (转化生长因子-β )超家族的生长因子,并且參与胎儿早期分化、胎儿组织形成和成体组织的动态平衡。当胚胎发育吋,BMP的水平尤其在胎儿早期的背腹轴形成中起关键作用。此外,BMP的抑制对于脊椎动物和无脊椎动物胎儿阶段的神经元形成是必不可少的。细胞外分泌的BMP与I型和II型丝氨酸/苏氨酸激酶受体结合,启动BMP信号转导途径。当活化吋,II型受体募集并磷酸化I型受体。然后,I型受体磷酸化细胞内底物受体调节的Smad(R-Smad),介导BMP信号转导途径。R-Smad中有Smad_l、2、3、5和8。憐酸化的R-Smad立即结合共同伴侣Smad (Co-Smad)Smad-4。R-SMAD/co-SMAD复合物迁移入细胞核并在其中累积,在那里该复合物充当转录因子并參与革G基因表达的调控(Yamamoto &Oelgeschlager, Naturwissenschaften. 2004 ;91:519-34)。BMP信号转导途径抑制剂指这样的物质,其阻断细胞外BMP与细胞表面受体的结合。BMP信号途径抑制剂的实例包括头蛋白(noggin)、腱蛋白(chordin)、扭曲原肠胚形成(Tsg)、cerberus、coco、gremlin、PRDC(与 DAN 和 Cerberus 相关的蛋白)、DAN(在成神经细胞瘤中差异筛选选出的基因aberrative)、dante、卵泡抑素、USAG-I (子宮敏感性相关基因I)、dorsomorphin和硬化蛋白(sclerostin)。通过抑制BMP信号转导,头蛋白在神经诱导和背腹神经外胚层或中胚层中起重要作用。同样,作为BMP(BMP-2、BMP-4和BMP-7)的拮抗齐U,头蛋白阻断这些BMP与其受体的结合(Yanagita, Cytokine Growth Factor Rev. 2005 ;16:309-17)。
只要其抑制BMP信号转导,任何BMP信号转导途径抑制剂都可以用在本发明的优选实施方案中。优选头蛋白、腱蛋白、扭曲原肠胚形成(Tsg)、cerberus、coco、gremlin、PRDC、DAN、dante、卵泡抑素、USAG-I (子宫敏感性相关基因I)、dorsomorphin和硬化蛋白,最优选头蛋白。在优选实施方案中,用于诱导视网膜祖细胞分化成为神经视网膜祖细胞的培养基含有量为0. 01至100ng/ml,优选量为0. I至50ng/ml,更优选量为0. 5至20ng/ml,以及最优选量为10ng/ml的BMP信号转导途径抑制剂。本文所用的术语“FGF(成纤维细胞生长因子)信号转导途径活化剂”指參与有丝分裂发生(包括细胞増殖和细胞分化)、血管再生、骨形态发生和神经诱导的多功能因子。迄今已鉴定出FGF家族的22个成员。FGF受体家族有4个成员。可选的mRNA剪接产生FGF受体的变体。每种受体与FGF的特定子集结合。活化的FGFR通过Ras/Raf/MeK途径介导信号至MAP激酶,MAP激酶立即迁移入细胞核并在其中累积,在那里充当转录因子并參与靶基因表达的调控(Bottcher & Niehrs, Endocr Rev. 2005 ;26:63-77)。FGF 家族的 FGF2 也被称为碱性 FGF (bFGF),主要与 FGFR lb、FGFR lc, FGFR 2c、FGFR 3c 和 FGFR 4Δ 结合,并强烈活化 FGFR Ic 和 FGFR 3c 等。FGFR Ic 和 FGFR 3c 的活化剂以及 FGF1、FGF4、FGF8、FGF9、FGF17和FGF19可以用作FGF2的替代物。只要其能刺激FGF信号转导,任何FGF信号转导途径活化剂都可以不受限制地用于本发明的优选实施方案中。优选FGFRlc或FGFR 3c活化剂、FGFl、FGF2、FGF4、FGF8、FGF9、FGF17 或 FGF19,最优选 FGF2。在优选实施方案中,用于诱导视网膜祖细胞分化成为神经视网膜祖细胞的培养基含有量为0. 01至100ng/ml,优选量为0. I至50ng/ml,更优选量为I至20ng/ml,以及最优选量为5ng/ml的FGF信号转导途径活化剂。本文所用的术语“Wnt信号转导途径活化剂”意指能够活化Wnt信号转导途径的物质,其被发现调控胚胎发生期间的多个过程,包括细胞命运决定、组织重建、极性、形态、粘附和生长,以及未分化细胞的维持和增通(Logan & Nusse, Annu Rev Cell Dev Biol. 2004 ;20:781-810)。只要其能转导Wnt介导的或β -连环蛋白介导的信号,任何活化剂都可以包括在fct信号转导途径中。Wnt信号转导途径是由引发物Wnt与其受体结合启动的或由下游因子β_连环蛋白的稳定性所介导的一系列过程。接下来描述如何活化fct信号转导途径。I)通过添加Wnt蛋白Wnt为Wnt信号转导途径的第一引发物,属于分泌糖蛋白家族。已经鉴定出 19 种 Wnt ffntl> Wnt2> Wnt2b> Wnt3> Wnt3a> Wnt4> Wnt5a> Wnt5b> Wnt6>Wnt7a> Wnt7b> Wnt8a> Wnt8b> Wnt9a> Wnt9b> WntlOa、WntIOb> Wntll 和 Wntl6b。2)通过增加连环蛋白的水平大多数细胞通过增加连环蛋白水平而响应于Wnt信号转导途径。即去磷酸化的β_连环蛋白水平的増加或β_连环蛋白的稳定表示β -连环蛋白转移入细胞核。3)通过蓬乱蛋白(dishevelled)的磷酸化或Wnt相关受体即LRP尾的磷酸化。 4)通过使用GSK3 (糖原合酶激酶3)抑制剂锂(Li)、LiCl、ニ价Ζη、ΒΙ0 (6-溴靛玉红 _3,-肟)、SB216763、SB415286、QS11 水合物、TWS119、Kenpaullone、alsterpaullone、靛红_3,-肟、TDZD-8和Ro 31-8220甲磺酸盐。5)通过阻断Wnt信号转导途径的负调节剂,例如Axin和APC,或通过使用RNAi。6)使用 Wnt 途径的活化剂,例如 norrin和 R_spondin2 :Norrin 结合Frizzled4 受体,而 R-spondin2 与 Frizzled8 和 LRP6 相互作用。7)通过基因转移,包括转染使用Wnt过表达构建体或β-连环蛋白过表达构建体能够活化fct信号转导途径。在优选实施方案中,可以不受限制地使用Wnt信号转导途径活化剂。优选Wntl、Wnt2> Wnt2b> Wnt3> Wnt3a> Wnt4> Wnt5a> Wnt5b> Wnt6> Wnt7a> Wnt7b> Wnt8a> Wnt8b> Wnt9a>Wnt9b、WntlOa、WntlOb、WntlI、Wntl6b ;增加β-连环蛋白水平的物质;GSK3抑制剂,如锂、LiCl、ニ价锌、BIO、SB216763、SB415286、CHIR99021、QSll 水合物、TWS119、Kenpaullone,alsterpaullone、靛红 _3,-肟、TDZD-8 和 Ro 31-8220 甲磺酸盐;Axin 抑制剂、APC 抑制剂、norrin 和 R-spondin 2,且最优选 Wnt3a> ffntl> Wnt5a> WntlI、norrin、LiCl、BIO 和SB415286。在本发明的优选实施方案中,用于诱导视网膜祖细胞分化成为神经视网膜祖细胞的培养基含有除LiCl、BIO和SB415286之外的Wnt信号转导途径活化剂,其量为O. 01至500ng/ml,优选量为O. I至200ng/ml,且更优选量为I至100ng/ml。在Wnt信号转导途径活化剂中,培养基中用到的LiCl的量为O. I至50mM,优选量为O. 5至10mM,且更优选量为I至IOmM ;使用BIO的量为O. I至50 μ M,优选量为O. I至10 μ Μ,且更优选量为0. 5至5 μ M ; 使用SB415286的量为0. I至500 μ Μ,优选量为I至100 μ Μ,且更优选量为5至50 μ Μ。在改良的实施方案中,培养基可以含有50ng/ml的Wnt3a或Wntl ;50或100ng/ml的Wnt5a和Wntll ;50ng/ml 的 norrin ;2. 5 或 5mM 的 LiCl ;2 μ M 的 BIO 或 30 μ M 的 SB415286。按照该实施方案,当使用GSK3抑制剂和norrin以及Wnt蛋白时,成功地进行了本发明的方法,由此实现所期望的分化。因此,发现Wnt信号转导途径活化剂对分化成为视网膜细胞起重要作用。在优选实施方案中,在用于诱导分化成为神经视网膜祖细胞的培养基中培养视网膜祖细胞一天或更长,优选I至30天,更优选I至10天,且最优选5天。在优选实施方案中,用于诱导视网膜祖细胞分化成为神经视网膜祖细胞的培养步骤还可以包括确定分化的细胞是否为神经视网膜祖细胞。因此,该培养的时间可以被调整,从而进ー步包括实施该确定所需的时间。为了确定视网膜祖细胞是否分化成为神经视网膜祖细胞,可以分析神经视网膜祖细胞特异的mRNA或蛋白的表达水平。在优选实施方案中,Rax、Pax6、ChxlO和Crx是神经视网膜祖细胞的特征标志物。只要是本领域内公知,本发明可不受限制地使用在mRNA水平上分析特异基因的任何技术。优选逆转录酶PCR (RT-PCR)、竞争性RT-PCR、实时PCR、Rnase保护測定、Northern印迹和DNA芯片分析。在蛋白水平上分析特异基因的公知技术可以不受限制地用于本发明中。优选 Western印迹、ELISA、放射免疫測定、放射免疫扩散、Ouchterlony免疫扩散、火箭免疫电泳、免疫组织染色、免疫沉淀測定、补体结合測定、FACS和蛋白芯片分析。与分化前的视网膜祖细胞相比,分化后的神经视网膜祖细胞表现出以下特征中的至少ー种(i)Rax的表达水平增加;(ii)Pax6的表达水平增加;(iii) ChxlO的表达水平增加;(iv)0tx2的表达水平降低;(v)Sox2的表达水平降低;(vi)巢蛋白(nestin)的表达水平降低;(vii)Ki67的表达水平降低;(viii)Crx的表达水平增加;(ix)恢复蛋白的表达水平増加;(X)视紫红质的表达水平増加;(xi)外周蛋白2的表达水平増加;以及(Xii)Mitf的表达水平降低。可以利用由基因编码的蛋白的抗体或利用本领域技术人员公知的方法如RT-PCR鉴定基因表达水平的増加或降低。随着它们表现出更多的特征,分化的细胞被定义为更接近神经视网膜祖细胞。按照本发明分化的神经视网膜祖细胞表现出所述特征的至少两种、优选至少三种,且更优选至少五种。优选地,分化后,多于大约40%、60%、80%、90%、95%或98%的细胞群具有所期望的特征。更优选更高的比例。在所述方法的一个实施方案中,当在存在IGFlR活化剂、Wnt信号转导途径活化剂和Shh(音猬因子)信号转导途径活化剂的条件下培养时,神经视网膜祖细胞被诱导分化成为感光细胞前体细胞。此外,在某些培养条件下(例如,培养基的成分、成分的含量、培养时间等),感光细胞前体细胞被诱导分化成为视网膜细胞。没有对培养技术和条件给予具体限定,只要这些技术和条件可有效允许感光细胞前体细胞分化成为如下的感光细胞和其它视网膜细胞。本发明优选实施方案中所用的干细胞的实例包括但不限于,骨髄干细胞(BMSC)、脐带血干细胞、羊水干细胞、脂肪干细胞、视网膜干细胞(RSC)、视网膜内米勒胶质细胞、胚胎干细胞(ESC)、诱导型多能干细胞(iPSC)和体细胞核移植细胞(SCNTC),最优选人ESC或iPSC。在一实施方案中,iPSC以及人ESC通过本发明的分化方法被成功地诱导分化成为包括感光细胞在内的视网膜细胞。本文所用的术语“感光细胞前体细胞”表示偏爱分化成为感光细胞的前体细胞,通过具有选自Crx (视杆细胞和视锥细胞前体细胞)和Nrl (视杆细胞前体细胞)的一种或多种标志物来表征。通常,感光细胞前体细胞可经历对称或不对称分裂,或者分化成为多种类型的视网膜细胞或视网膜色素上皮细胞,或者产生另外两个感光细胞前体细胞。因此,应当理解的是,在培养分化成为感光细胞前体细胞的步骤中的细胞包括从干细胞分化成为视网膜细胞期间所产生的各种类型的细胞以及感光细胞前体细胞。除了表达标志物之外,感光细胞前体细胞还可以通过表达恢复蛋白、视紫红质、外周蛋白2和roml中的至少ー种、两种或三种的能力来表征,这些标志物是分化感光细胞特有的。在优选实施方案中,可以不受限制地使用能够活化IGFlR的任何IGFlR活化剂。优选IGF-I或IGF-2,优先考虑IGF-I。在优选实施方案中,用于诱导神经视网膜祖细胞分化成为感光细胞前体细胞的培养基含有量为O. 01至100ng/ml,优选量为O. I至50ng/ml,更优选量为I至20ng/ml,且最优选量为10ng/ml的IGFlR活化剂。只要其能活化Wnt信号转导途径,任何Wnt信号转导途径活化剂都可以用于本发明中。用于本发明中的Wnt信号转导途径活化剂的实例包括Wntl、Wnt2、Wnt2b、Wnt3、Wnt3a> Wnt4> Wnt5a> Wnt5b> Wnt6> Wnt7a> Wnt7b> Wnt8a> Wnt8b> Wnt9a> Wnt9b> WntlOa、WntlOb、WntlU Wnt 16b ;增加β-连环蛋白水平的物质;GSK3抑制剂如锂、LiCl、ニ 价锌、BI0、SB216763、SB415286、CHIR99021、QS11 水合物、TWS119、Kenpaullone、alsterpaullone、靛红_3’ -肟、TDZD-8和Ro 31-8220甲磺酸盐;Axin抑制剂、APC抑制剂、norrin和R-spondin 2,且最优选 Wnt3a、Wntl、Wnt5a、WntlI、norrin、LiCl、BIO 和 SB415286。在优选实施方案中,用于诱导神经视网膜祖细胞分化成为感光细胞前体细胞的培养基含有除LiCl、BI0和SB415286之外的Wnt信号转导途径活化剂,其量为O. 01至500ng/ml,优选量为0. I至200ng/ml,且更优选量为I至100ng/ml。在Wnt信号转导途径活化剂中,培养基中所使用LiCl的量为0. I至50mM,优选量为0. 5至10mM,且更优选量为I至IOmM ;使用BIO的量为0. I至50 μ M,优选量为0. I至10 μ Μ,且更优选量为0. 5至5 μ M ;使用SB415286的量为0. I至500 μ Μ,优选量为I至100 μ Μ,且更优选量为5至50 μ Μ。在改良的实施方案中,培养基可以含有50ng/ml的Wnt3a或Wntl ;50或100ng/ml的Wnt5a和Wntll ;50ng/ml 的 norrin ;2. 5 或 5mM 的 LiCl ;2 μ M 的 BIO 或 30 μ M 的 SB415286。按照该实施方案,当使用GSK3抑制剂和norrin以及Wnt蛋白时,成功地进行了本发明的方法,由此实现所期望的分化。因此,发现Wnt信号转导途径活化剂对分化成为视网膜细胞起重要作用。本文所用的术语“Shh信号转导途径活化剂”意指能够活化与胚胎发生期间多个过程的调节相关的Shh信号转导途径的物质,所述多个过程包括细胞命运决定、组织重建、极性、形态、增通和分化(Bertrand&Dahmane, Trends Cell Biol. 2006 ;16:597_605)。音猜因子(Shh)是哺乳动物信号转导途径家族中被称为刺猬蛋白(hedgehog)的三种蛋白之一,另外两种为印度刺猬因子(Ihh)和沙漠刺猬因子(Dhh)。Shh信号转导途径涉及两种跨膜蛋白,即Ptc (Patched)和Smo(Smoothened)。在不存在Shh的情况下,Ptc与Smo相互作用并抑制Smo。当Shh结合Ptc时,Ptc与Smo的相互作用被改变,使得Smo不再受抑制,导致Ci/Gli蛋白进入细胞核,并作为靶基因的转录活化剂。对Shh信号转导途径活化剂没有给予具体限定,只要其能增强Shh介导的信号转导途径。用于本发明中的Shh信号转导途径活化剂的实例包括属于刺猬蛋白家族(例如Shh)的蛋白,Ptc与Smo相互作用的抑制剂,Smo受体活化剂,Shh受体活化剂(例如Hg-Ag,purmorphamine等),增加Ci/Gli家族水平的物质,Ci/Gli因子细胞内降解的抑制剂和通过转染产生的Shh过表达构建体或Ci/Gli过表达构建体。只要其能活化Shh信号转导途径,任何Shh信号转导途径活化剂都可以用于本发明中。优选Shh、Smo受体活化剂、Ptc与Smo相互作用的抑制剂、増加Ci/Gli家族水平的物质、Ci/Gli因子细胞内降解的抑制剂和Shh受体活化剂如Hg-Ag和purmorphamine,最优选 Shh 或 purmorphamine。在优选实施方案中,用于诱导神经视网膜祖细胞分化成为感光细胞前体细胞的培养基含有Shh信号转导途径活化剂,其量为O. I至5,000ng/ml,优选量为I至2,500ng/ml,更优选量为10至1,OOOng/ml,且最优选量为250ng/ml。在本发明的一实施方案中,所述培养基含有量为250ng/ml的Shh或量为I μ M的purmorphamine。在优选实施方案中,在诱导分化成为感光细胞前体细胞的培养基中培养神经视网膜祖细胞I天或更长时间,优选I至30天,更优选I至10天,且最优选3天。在优选实施方案中,用于诱导神经视网膜祖细胞分化成为感光细胞前体细胞的培 养步骤还可以包括确定分化的细胞是否为感光细胞前体细胞。因此,可以调整该培养的时间,从而进ー步包括实施该确定所需的时间。为了确定神经视网膜祖细胞是否成功地分化成为感光细胞前体细胞,可以分析感光细胞前体细胞特异的mRNA或蛋白的表达水平。在优选实施方案中,Crx和Nrl是感光细胞前体细胞的特征标志物。只要是本领域内公知的,本发明可以不受限制地使用在mRNA水平上分析特异基因的任何技术。优选逆转录酶PCR(RT-PCR)、竞争性RT-PCR、实时PCR、Rnase保护測定、Northern印迹和DNA芯片分析。在蛋白水平上分析特异基因的公知技术可以不受限制地用于本发明中。优选Western印迹、ELISA、放射免疫測定、放射免疫扩散、Ouchterlony免疫扩散、火箭免疫电泳、免疫组织染色、免疫沉淀測定、补体结合測定、FACS和蛋白芯片分析。与分化前的神经视网膜祖细胞相比,分化后的感光细胞前体细胞表现出以下特征中的至少ー种(i)神经视网膜祖细胞的表达水平降低;(ii)ChxlO的表达水平降低;(iii)Sox2的表达水平降低;(iv)Ki67的表达水平增加;(vi)Crx的表达水平降低;(vi)视紫红质的表达水平増加;以及(vii)外周蛋白2的表达水平増加。可以利用由基因编码的蛋白的抗体或利用本领域技术人员公知的方法如RT-PCR鉴定基因表达水平的増加或降低。随着它们表现出更多的特征,分化的细胞被定义为更接近感光细胞前体细胞。按照本发明分化的感光细胞前体细胞表现出所述特征的至少两种、优选至少三种,且更优选至少五种。优选地,分化后,多于大约40%、60%、80%、90%、95%或98%的细胞群具有所期望的特征。更优选更高的比例。在所述方法的一个实施方案中,当在存在IGFlR活化剂、Wnt信号转导途径活化剂、Shh信号转导途径活化剂和RA(视黄酸)的条件下培养时,感光细胞前体细胞被诱导分化成为感光细胞。此外,在某些培养条件下(例如,培养基的成分、成分的含量、培养时间等),感光细胞被诱导分化成为视网膜细胞。没有对培养技术和条件给予具体限定,只要这些技术和条件能有效用于将感光细胞分化成为以下的视网膜细胞。本发明优选实施方案中所用的干细胞的实例包括但不限于,骨髄干细胞(BMSC)、脐带血干细胞、羊水干细胞、脂肪干细胞、视网膜干细胞(RSC)、视网膜内米勒胶质细胞、胚胎干细胞(ESC)、诱导型多能干细胞(iPSC)和体细胞核移植细胞(SCNTC),最优选人ESC或iPSC。在一实施方案中,iPSC以及人ESC通过本发明的分化方法被成功地诱导分化成为包括感光细胞在内的视网膜细胞。本文所用的术语“感光细胞”是指存在于眼睛视网膜中能够光转换并允许识别形状和顔色的特化类型的神经元当光通过眼角膜和晶状体到达视网膜时,感光细胞将光能转化为电能,然后该电能被传入大脑。存在两种主要的感光细胞类型视杆细胞和视锥细胞,二者分别适合暗光和亮光。视锥细胞向视网膜的中央(即黄斑)逐渐变密,起到感知图像和色彩的作用,而视杆细胞主要分布在视网膜的周围,允许感知图像和光。感光细胞通过表达选自以下的至少ー种、两种或三种标志物的能力来表征恢复蛋白(视杆细胞,视锥细胞)、视紫红质(视杆细胞)、外周蛋白2 (视杆细胞)、roml (视杆细胞,视锥细胞)、Pde6b (视杆细胞)、arrestin sag(视杆细胞)、光导蛋白(视杆细胞,视锥细胞)、突触蛋白(视杆细胞,视锥细胞)、红绿视蛋白(视锥细胞)和蓝视蛋白(视锥细胞)。在优选实施方案中,可以不受限制地使用能够活化IGFlR的任何IGFlR活化剂。优选IGF-I或IGF-2,优先考虑IGF-I。 在优选实施方案中,用于诱导感光细胞前体细胞分化成为感光细胞的培养基含有IGFlR活化剂,其量为O. 01至100ng/ml,优选量为O. I至50ng/ml,更优选量为I至20ng/ml,且最优选量为10ng/ml。只要其能活化Wnt信号转导途径,任何Wnt信号转导途径活化剂都可以用于本发明中。用于本发明中的Wnt信号转导途径活化剂的实例包括Wntl、Wnt2、Wnt2b、Wnt3、Wnt3a> Wnt4> Wnt5a> Wnt5b> Wnt6> Wnt7a> Wnt7b> Wnt8a> Wnt8b> Wnt9a> Wnt9b> WntlOa、WntlOb、WntlU Wnt 16b ;增加β-连环蛋白水平的物质;GSK3抑制剂如锂、LiCl、ニ价锌、BI0、SB216763、SB415286、CHIR99021、QS11 水合物、TWS119、Kenpaullone、alsterpaullone、靛红_3’ -肟、TDZD-8和Ro 31-8220甲磺酸盐;Axin抑制剂、APC抑制剂、norrin和R-spondin 2,并且优选 Wnt3a、Wntl、Wnt5a、WntlI、norrin、LiCl、BIO 和 SB415286。在优选实施方案中,用于诱导感光细胞前体细胞分化成为感光细胞的培养基含有除LiCl、BI0和SB415286之外的Wnt信号转导途径活化剂,其量为0. 01至500ng/ml,优选量为0. I至200ng/ml,且更优选量为I至100ng/ml。在Wnt信号转导途径活化剂中,培养基中用到的LiCl的量为0. I至50mM,优选量为0. 5至10mM,且更优选量为I至IOmM ;使用BIO的量为0. I至50 μ M,优选量为0. I至10 μ Μ,且更优选量为0. 5至5 μ M ;使用SB415286的量为0. I至500 μ Μ,优选量为I至100 μ Μ,且更优选量为5至50 μ Μ。在改良的实施方案中,培养基可以含有 50ng/ml 的 Wnt3a 或 Wntl ;50 或 100ng/ml 的 Wnt5a 和 Wntll ;50ng/ml的norrin ;2. 5或5mM的LiCl ;2 μ M的BIO或30 μ M的SB415286。按照该实施方案,当使用GSK3抑制剂和norrin以及Wnt蛋白时,成功地进行了本发明的方法,进而实现所期望的分化。因此,发现fct信号转导途径活化剂对分化成为视网膜细胞起重要作用。只要其能活化Shh信号转导途径,任何Shh信号转导途径活化剂都可以用于本发明中。优选Shh、Smo受体活化剂、Ptc与Smo相互作用的抑制剂、増加Ci/Gli家族水平的物质、Ci/Gli因子细胞内降解的抑制剂和Shh受体活化剂如Hg-Ag和purmorphamine,最优选 Shh 或 purmorphamine。在优选实施方案中,用于诱导神经视网膜祖细胞分化成为感光细胞前体细胞的培养基含有Shh信号转导途径活化剂,其量为0. I至5,000ng/ml,优选量为I至2,500ng/ml,更优选量为10至1,000ng/ml,且最优选量为250ng/ml。在本发明的一实施方案中,所述培养基含有量为250ng/ml的Shh或量为I μ M的purmorphamine。本文所用的术语“RA (视黄酸)”是指维生素A的代谢物,其是通过调节基因转录来參与多种生物过程(包括细胞増殖、分化和死亡)的亲脂性分子。存在两类RA:全顺式视黄酸和9-顺式视黄酸。RA被转移入细胞核,在细胞核内其分别结合RAR(视黄酸受体)和RXR(类视色素X受体),并參与靶基因转录的调控。按照本发明的优选实施方案,用于诱导感光细胞前体细胞分化成为感光细胞的培养基中所含的RA可以为反式或顺式,且使用浓度可以为O. 5至10,OOOnM,优选浓度为5至5,OOOnM,更优选浓度为50至2,OOOnM,且最优选浓度为500nM。在优选实施方案中,在用于诱导分化成为感光细胞的培养基中,培养感光细胞前体细胞I天或更长时间,优选I至60天,更优选I至30天,且最优选8至15天。
在优选实施方案中,用于诱导感光细胞前体细胞分化成为感光细胞的培养步骤还可以包括确定分化的细胞是否为感光细胞。因此,可以调整该培养的时间,从而进ー步包括实施该确定所需的时间。为了确定感光细胞前体细胞是否成功地分化成为感光细胞,可以分析感光细胞特异的mRNA或蛋白的表达水平。按照优选实施方案,恢复蛋白、视紫红质、夕卜周蛋白2、roml、Pde6b、arrestin sag、光导蛋白、突触蛋白、红绿视蛋白和蓝视蛋白是感光细胞的特征标志物。本领域内公知的用于在mRNA水平上分析特异基因的任何技术都可不受限制地用在本发明中。优选逆转录酶PCR (RT-PCR)、竞争RT-PCR、实时PCR、Rnase保护測定、Northern印迹和DNA芯片分析。在蛋白水平上分析特异基因的公知技术可以不受限制地用于本发明中。优选Western印迹、ELISA、放射免疫測定、放射免疫扩散、Ouchterlony免疫扩散、火箭免疫电泳、免疫组织染色、免疫沉淀測定、补体结合測定、FACS和蛋白芯片分析。与分化前的感光细胞前体细胞相比,分化后的感光细胞表现出以下特征中的至少ー种(i)Pax6的表达水平増加;(ii)Sox2的表达水平増加;(iii)巢蛋白的表达水平降低;(iv)Ki67的表达水平降低;(v)Crx的表达水平降低;(vi)恢复蛋白的表达水平増加;(vii)视紫红质的表达水平増加;以及(vii)外周蛋白2的表达水平増加。可以利用由基因编码的蛋白的抗体或利用本领域技术人员公知的方法如RT-PCR鉴定基因表达水平的増加或降低。随着它们表现出更多的特征,分化的细胞被定义为更接近感光细胞前体细胞。按照本发明分化的感光细胞前体细胞表现出所述特征的至少两种、优选至少三种,且更优选至少五种。优选地,分化后,多于大约40%、60%、80%、90%、95%或98%的细胞群具有所期望的特征。更优选更高的比例。按照ー实施方案,本发明的方法还可以包括使干细胞分化成为视网膜祖细胞。在这种背景下,可以利用本领域内公知的或允许产生视网膜祖细胞的任何技木。优选地,视网膜祖细胞可以通过以下方法来获得(a’ )在含有以下成分的培养基中培养干细胞从而使它们分化成为悬浮聚集形式的眼区前体细胞=IGFlR活化剂、Wnt信号转导途径抑制剂和BMP信号转导途径抑制剂;以及
(b’ )在含有以下成分的培养基中培养所述悬浮聚集形式的眼区前体细胞从而使它们分化成为视网膜祖细胞=IGFlR活化剂、Wnt信号转导途径抑制剂、BMP信号转导途径抑制剂和FGF信号转导途径活化剂。在优选实施方案中,当培养时,眼区前体细胞的悬浮聚集物可以在平板上贴壁生长。可以利用本领域内公知的任何粘附细胞的平板。优选地,平板用如下细胞外基质包被例如聚D-赖氨酸、层粘连蛋白、聚L-赖氨酸、基质胶、琼脂、聚鸟氨酸、明胶、胶原蛋白、纤维连接蛋白或玻璃粘连蛋白。最优选用聚D-赖氨酸/层粘连蛋白包被的平板。每个贴壁的悬浮聚集物的细胞群是最高效的细胞群。优选地,悬浮聚集物由200-400个细胞组成。本发明优选实施方案中所用的干细胞的实例包括但不限于,骨髄干细胞(BMSC)、脐带血干细胞、羊水干细胞、脂肪干细胞、视网膜干细胞(RSC)、视网膜内米勒胶质细胞、胚胎干细胞(ESC)、诱导型多能干细胞(iPSC)和体细胞核移植细胞(SCNTC),最优选的是人ESC或iPSC。在一实施方案中,iPSC以及人ESC通过本发明的分化方法被成功地诱导分化 成为包括感光细胞在内的视网膜细胞。本文所用的术语“眼区前体细胞”指表达前脑神经板的眼区祖细胞中存在的标志物(眼区转录因子;Zuber, et al. , Development, 2003 ;130:5155-67)的细胞团。通过选自Six3、Rax、Pax6、0tx2、Lhx2和Six6中的至少一种、两种或三种标志物来表征眼区前体细胞。本文所用的术语“悬浮聚集物”是指干细胞絮凝物在没有饲养小鼠胚胎成纤维细胞和血清的非贴壁平板中培养至少I天时所产生的培养基中悬浮的细胞团。取决于所用培养基的组成,眼区前体细胞可以表达眼区转录因子。本文所用的术语“Wnt信号转导途径抑制剂”意指阻断细胞外Wnt蛋白与膜蛋白Frizzled受体或LRP之间的相互作用或者抑制细胞内Wnt介导的信号转导的因子(Kawano& Kypta, J Cell Sci. 2003 ;116:2627_34)。只要其能抑制Wnt介导的信号转导,任何Wnt信号转导途径抑制剂都可以用于本发明中。在本发明中使用的fct信号转导途径抑制剂的实例包括Dkk (Dickkopf)家族(Dkk-l、Dkk-2、Dkk-3和Dkk-4),其是能够与共受体LRP相互作用的Wnt拮抗剂;Wise ;sFRP (分泌型Frizzled相关蛋白)家族,其作为与Wnt受体结合的fct拮抗剂发挥功能;Frizzled-CRD结构域;WIF_1 (Wnt抑制因子-I) ;IWP_2 ;IWP-3 ;IWP-4 ;cerberus ;Wnt抗体;显性负作用的Wnt蛋白;Axin的过表达;GSK(糖原合成酶激酶)的过表达;显性负作用的TCF;显性负作用的蓬乱蛋白和酪蛋白激酶抑制剂(CKI-7、D4476 等),优选 Dkk-I。除了 Wnt信号转导途径抑制剂之外,还可以通过抑制參与Wnt途径的每ー种成分来抑制Wnt信号转导,例如用RNAi。在优选实施方案中,IGF-I或IGF-2可以用作IFGlR活化剂,优先考虑IGF-2。BMP信号途径抑制剂的实例包括头蛋白、腱蛋白、扭曲原肠胚形成(Tsg)、cerberus、coco、gremlin、PRDC>DAN、dante、卵泡抑素、USAG-1、dorsomorphin和硬化蛋白,优选头蛋白。作为FGF信号转导途径活化剂,可以使用能活化FGRRlc或FGFR3c的因子、FGF1、FGF2、FGF4、FGF8、FGF9、FGF17或FGF19。优选FGF2。可用于本发明中的Wnt信号转导途径活化剂的实例包括 Wntl、Wnt2> Wnt2b> Wnt3> Wnt3a> Wnt4> Wnt5a> Wnt5b> Wnt6> Wnt7a> Wnt7b> Wnt8a>Wnt8b>Wnt9a>Wnt9b>WntlOa>WntlOb>WntlI>Wntl6b ;增加 β-连环蛋白水平的物质;GSK3抑制剂如锂、LiCl、ニ价锌、BIO、SB216763、SB415286、CHIR99021、QSll 水合物、TffS 119、Kenpaullone、alsterpaullone、親红-3,-西、TDZD-8 和 Ro 31-8220 甲横酸盐;Axin 抑制剂、APC 抑制剂、norrin 和 R-spondin 2,且优选 Wnt3a> Wntl、Wnt5a、WntlI、norrin、LiCl、BIO和SB415286。可用于本发明中的Shh信号转导途径活化剂的实例包括Shh、Smo受体活化剂、Ptc与Smo相互作用的抑制剂、増加Ci/Gli家族水平的物质、Ci/Gli因子细胞内降解的抑制剂和Shh受体活化剂如Hg-Ag和purmorphamine,最优选Shh或purmorphamine。用于本发明中的RA可以是反式或顺式的视黄酸。就分化开始后培养的时间而言,优选给予步骤(a’)1-30天,步骤(b’)为5_15天,步骤(a)为1-30天,步骤(b)为1-30天,以及步骤(c)为1-60天,并且最优选步骤(a’)为4天,步骤(b’)为9天,步骤(a)为5天,步骤(b)为3天,以及步骤(c)为8_15天。在优选实施方案中,仅需花费约29天来完成干细胞向视网膜细胞的分化,从而允许所述方法 有效应用于临床治疗。可以通过利用Wnt和BMP信号转导途径的共抑制诱导和促进胚胎发生期间前脑的发育来实现步骤(a’)中向眼区前体细胞的分化(Piccolo, et al. , Nature, 1999 ;397:707-10)。因此,培养基含有作为Wnt信号转导途径抑制剂的Dkk-I,作为BMP抑制剂的头蛋白以及作为IGFlR活化剂的IGF-I (起促进前脑中眼区形成的作用)。Wnt信号转导途径抑制剂、BMP抑制剂和IGFlR活化剂的种类和培养基水平如上文所述。用于步骤(a’)中的培养基含有浓度为O. 01-100ng/ml的IGF-1,浓度为O. 01-10, 000ng/ml的Dkk-I和浓度为0. 01-100ng/ml的头蛋白,最优选含有浓度为5ng/ml的IGF-I,浓度为lng/ml的Dkk-I和浓度为lng/ml的头蛋白。培养干细胞的任何常规培养基可用于步骤(a’)中诱导向眼区前体细胞的分化。优选含有以下的DMEM/F12 10%knockout血清替代物、ImML-谷氨酰胺、0. ImM非必需氨基酸、0. ImM巯基こ醇和1%B27补充物。步骤(b’)中向视网膜祖细胞的分化可以在含有FGF信号转导途径活化剂,优选FGF2以及步骤(a’)中的因子(即IGFlR活化剂、Wnt信号转导途径抑制剂和BMP抑制剂)的培养基中进行。Wnt信号转导途径抑制剂、BMP抑制剂、IGFlR活化剂以及FGF信号转导途径活化剂的种类和培养基水平如上文所述。. 步骤(b’)中使用的培养基含有浓度为0. 01-100ng/ml的IGF-1,浓度为0. 01-10,000ng/ml 的 Dkk-Ι,浓度为 0. 01-100ng/ml 的头蛋白和浓度为 0. 01-100ng/ml 的FGF2,且优选含有浓度为10ng/ml的IGF-1,浓度为10ng/ml的Dkk_l,浓度为10ng/ml的头蛋白和浓度为5ng/ml的FGF2。步骤(b’)中视网膜祖细胞向步骤(a)的神经视网膜祖细胞的分化必须在没有Dkk-I ( ー种Wnt信号转导途径抑制剂)的条件下进行,这是为了有高水平的Pax6表达(Pax6是产生神经视网膜祖细胞所必需的),并且在含有以下成分的培养基中进行用于促进Wnt途径的Wnt3a,在胚胎发生期间视泡和视杯发育阶段用于将下面的视网膜色素上皮转化为神经视网膜的头蛋白,用于抑制视网膜色素上皮所必需的基因表达和促进神经视网膜祖细胞产生的FGF2,以及负责感光细胞抗凋亡的IGF-I。用于步骤(a)中的培养基含有浓度为0. 01-100ng/ml的IGF-1,浓度为O. 01-100ng/ml 的头蛋白,浓度为 0. 01-100ng/ml 的 FGF2 和浓度为 O. 01-500ng/ml 的Wnt3a,并且最优选含有浓度为10ng/ml的IGF-1,浓度为10ng/ml的头蛋白,浓度为5ng/ml的FGF2和浓度为50ng/ml的Wnt3a。步骤(b)中向感光细胞前体细胞的分化在不含头蛋白和FGF2的培养基中进行,所述头蛋白和FGF2分别抑制Shh信号转导途 径和Shh诱导的视紫红质表达,并且该培养基中含有使视杆细胞前体细胞增殖的IGF-1、促进Wnt途径的Wnt3a,以及Shh。步骤(b)中所用的培养基含有浓度为O. 01-100ng/ml的IGF-1,浓度为O. 01-500ng/ml的Wnt3a和浓度为O. 1-5,000ng/ml的Shh,并且最优选地,含有浓度为10ng/ml 的 IGF-1,浓度为 50ng/ml 的 Wnt3a 和浓度为 250ng/ml 的 Shh。步骤(c)中向感光细胞的分化在含有用于进ー步促进分化的RA(视黄酸)与IGF-l、Wnt3a和Shh的组合的培养基中进行。步骤(c)中所用的培养基含有浓度为O. 01-100ng/ml的IGF-1,浓度为O. 01-500ng/ml 的 Wnt3a,浓度为 O. 01-5, 000ng/ml 的 Shh 和浓度为 O. 5-10, OOOnM 的 RA,并且最优选地,含有浓度为10ng/ml的IGF-1,浓度为50ng/ml的Wnt3a,浓度为250ng/ml的Shh和浓度为500nM的RA。在步骤(a)至(c)中,可以使用Wntl、Wnt5a、Wntll、norrin、LiCl、BI0 或 SB415286替代Wnt3a,而Shh可以用purmorphamine替代。用于培养胚胎干细胞的任何常规培养基都可以用作步骤(b’)、(a)、(b)和(C)中的基础培养基。优选含有ImM L-谷氨酰胺、O. ImM非必需氨基酸、O. ImM巯基こ醇、1%B27补充物和1%N2补充物的DMEM/F12。在本发明的一实施方案中,按照本发明方法分化的视网膜细胞可以包括感光细胞、视网膜神经节细胞、水平细胞、双极细胞、无长突细胞、米勒胶质细胞、视网膜色素上皮祖细胞和/或视网膜色素上皮细胞,具有感光细胞组成优选超过50%,最优选超过70%的细胞群。按照本发明的一实施方案,通过以下五步诱导人胚胎干细胞系H9和H7分化成为感光细胞。第一歩,将人胚胎干细胞或人诱导型多能干细胞在不含血清和FGF2但含有IGF-UDkk-I和头蛋白的培养基中培养4天,以便产生悬浮聚集形式的眼区前体细胞(实施例2)。第二步,使用除补充了 FGF2外与第一歩相同(的培养基诱导眼区前体细胞9天,从而使前体细胞分化成为视网膜祖细胞(实施例3)。第三步,在除不含Dkk-I且补充了 Wnt3a外与第二步相同的培养基中培养细胞5天,从而诱导向神经视网膜祖细胞的分化(实施例4)。第四步,向已诱导细胞3天的培养基中添加Shh,从而促进向感光细胞前体细胞的分化(实施例5)。第五步,在存在RA的培养基中培养细胞8天或更长时间,从而产生感光细胞并使其成熟(实施例6)。利用免疫化学測定、RT-PCR和碱基测序鉴定和分析由此获得的细胞(实施例7)。将产生的感光细胞植入作为免疫缺陷的视网膜退化模型的rd/SCID小鼠中,在该小鼠中评价感光细胞的性质和临床适用性(实施例8)。结果,发现感光细胞被安全移植和植入小鼠中,并正确地发挥功能。另ー方面,可以使用Wnt3a和Shh各自的替代物。在这种背景下,在相同条件下实施相同时间的培养过程,除了用50ng/ml的Wntl ;50或100ng/ml 的 Wnt5a 或 Wntll ;50ng/ml 的 norrin ;2· 5 或 5mM 的 LiCl ;2 μ M 的 BIO ;或 30 μ M的SB415286替代Wnt3a作为Wnt信号转导途径活化剂,并且用purmorphamine作为Shh的替代物。结果是这些替代物以与用fct3a和Shh所获得的相似模式产生分化且成熟的感光细胞(实施例9)。此外,通过本发明的方法,所用超过70%的人胚胎干细胞被成功分化成为感光细胞,所产生的细胞群比最初的人胚胎干细胞更大257倍。发现所得到的感光细胞表达光导蛋白(49.8±2. 2%)和突触蛋白(43.0±2.0%),以及结构蛋白恢复蛋白(82.4±4.6%)、视紫红质(81. 2 土 2. 5%)、外周蛋 白2 (41. 2 ± 2. 0%)和roml (76. O ±4. 6%),其中光导蛋白參与可见光转换的调控,突触蛋白负责与其它视网膜内神经元的突触相互作用。除了感光细胞之外,还观察到其它视网膜细胞,包括视网膜神经节细胞出.0±0.6%)、双极细胞(5. 7±1.7%)、水平细胞(7. 1±0.6%)、米勒胶质细胞(8. 7±2.9%)和视网膜色素上皮(12.5±1.4%)。这些细胞的阳性率与人正常视网膜内的这些细胞的组成比率几乎相同。在植入四周龄rd/SCID小鼠(其中感光细胞已经退化并完全消失)后,发现这些细胞在小鼠视网膜内形成4或5层的光受体层,并且同时表达光导蛋白和突触蛋白,这表明植入的细胞參与与先前存在的视网膜细胞发生突触相互作用的视网膜神经元和光回路的构建。因此,通过本发明的方法,人胚胎干细胞被成功地诱导,从而高效完美地分化成为增加数量的成熟感光细胞。在第二步中分化的视网膜祖细胞(实施例3)表达眼区前体细胞以及这些视网膜祖细胞自身的特征标志物,Rax的阳性率为86. 6±3. 0%,Pax6的阳性率为63. 9±0. 9%, 0tx2为 76. 4±2. 0%, Sox2 为 83. 0±1· 9%,以及 ChxlO 为 46. 3±1· 0%。Mitf (视网膜色素上皮祖细胞的标志物)和巢蛋白(神经祖细胞的标志物)被表达的阳性率分别为17. 2±0. 4%和65. 7±2· 7%(表 I)。观察到在第三步中分化的神经视网膜祖细胞(实施例4)具有受调节的标志物表达水平与前面步骤中的视网膜祖细胞相比,标志物Pax6、Rax和ChxlO (三者均为视网膜祖细胞和神经视网膜祖细胞特有的)、Crx (感光细胞前体细胞特有的)、恢复蛋白(全体感光细胞特有的)、视紫红质(视杆细胞特有的)以及外周蛋白2 (感光细胞外段特有的)的表达水平提高;同吋,0tx2和Sox2(视网膜祖细胞特有的)以及巢蛋白(神经祖细胞特有的)、(Ki67表明细胞増殖)的表达水平降低(表I和表3)。此外,观察到从第四步得到的感光细胞前体细胞(实施例5)具有受调节的标志物表达水平与前面步骤中的神经视网膜祖细胞相比,Pax6和ChxlO (每种都是视网膜祖细胞和神经视网膜祖细胞特有的)以及Sox2(视网膜祖细胞特有的)的表达水平降低;同吋,Ki67(表明细胞増殖)以及视紫红质和外周蛋白2(二者是感光细胞特有的)的表达水平提高(表I和表3)。在第五步分化的感光细胞中也检测到了标志物表达水平的调节(实施例6):视网膜祖细胞和神经视网膜祖细胞特有的Pax6,视网膜祖细胞特有的Sox2以及感光细胞特有的恢复蛋白、视紫红质和外周蛋白2的表达水平提高;同时,神经祖细胞特有的巢蛋白,表明细胞増殖的Ki67以及感光细胞前体细胞特有的Crx的表达水平降低(表I和表3)。另ー方面,本发明提供了按照本发明方法产生的神经视网膜祖细胞。又一方面,本发明提供了按照本发明方法产生的感光细胞前体细胞。另ー方面,本发明提供了按照本发明方法产生的感光细胞。还ー方面,本发明提供了全部按照本发明方法产生的视网膜细胞,包括感光细胞、视网膜神经节细胞、水平细胞、双极细胞、无长突细胞、米勒胶质细胞、视网膜色素上皮祖细胞或视网膜色素上皮。另ー方面,本发明提供了用于治疗视网膜退化相关疾病的组合物,其包含按照本发明方法分化的神经视网膜祖细胞。又一方面,本发明提供了用于治疗视网膜退化相关疾病的组合物,其包含按照本发明方法分化的感光细胞前体细胞。另ー方面,本发明提供了用于治疗视网膜退化相关疾病的组合物,其包含按照本发明方法分化的感光细胞。还ー方面,本发明提供了用于治疗视网膜退化相关疾病的组合物,其包含全部按照本发明方法产生的视网膜细胞,所述视网膜细胞选自感光细胞、视网膜神经节细胞、水平细胞、双极细胞、无长突细胞、米勒胶质细胞、视网膜色素上皮祖细胞、视网膜色素上皮及以上的组合。
术语“视网膜退化相关疾病”意指由先天或后天视网膜退化或异常引起的任何疾病。视网膜退化相关疾病的实例包括视网膜发育异常、视网膜退化、老年黄斑退化、糖尿病视网膜病变、视网膜色素变性、先天性视网膜失养症、Leber先天性黑朦、视网膜脱落、青光目艮、视神经病变和外伤。由利用本发明的方法从人胚胎干细胞体外分化和増殖出的神经视网膜细胞(包含神经视网膜祖细胞、感光细胞前体细胞和/或感光细胞)制备的用于治疗视网膜退化相关疾病的组合物可被配制成常见的剂量形式,例如注射剂,其可被给予患有这类疾病的患者。组合物可以利用手术方法直接植入视网膜位置,或者可以通过静脉注射并移至视网膜位置。如上文所讨论,本发明的组合物可包含作为活性成分的完全分化的视网膜细胞如感光细胞,或者分化中的神经视网膜祖细胞或感光细胞前体细胞。后一种情况下,当给予机体时,分化中的神经视网膜祖细胞或光受体前体细胞可以在原先存在的因子的调控下进行进一歩的分化,进而发挥治疗作用。本发明的组合物还可包含免疫抑制剂以抑制对植入物的免疫排斥反应。给予患者的组合物的治疗有效量可以随医学领域内公知的多种因素而改变,包括疾病的严重程度、治疗方案、给药时间和途径、治疗方案、治疗时间周期、患者的年龄、体重、健康状况、性别以及饮食,并且该有效量应当由本领域内的技术人员在合理的医学判断下来确定。另ー方面,本发明提供了通过将本发明的组合物给予有需要的个体来治疗视网膜退化相关疾病的方法。本发明的组合物也适用于包括以下的动物家畜或宠物,例如牛、猪、绵羊、马、狗、小鼠、大鼠、猫等以及人类和灵长类动物。本文所用的术语“给予”意指通过合适的途径(包括移植分化的细胞)将本发明的组合物引入患者中。使本发明的组合物能够到达目的组织的任何给药途径都可以用于本发明中。优选视网膜内注射。另ー方面,本发明提供了用于诱导干细胞分化成为视网膜细胞的方法,包括用Wnt信号转导途径抑制剂处理分化培养基,并在分化期间从所述培养基去除fct信号转导途径抑制剂。由于Wnt蛋白在后脑发育中起重要作用,因此在分化的早期阶段使用Wnt信号转导途径抑制剂,以便诱导向前脑和视网膜分化,同时抑制向后脑分化。
在优选实施方案中,只要是本领域内公知的,任何Wnt信号转导途径抑制剂都可不受限制地使用。优选Dkk-I。在优选实施方案中,在分化的早期阶段向培养基添加Wnt信号转导途径抑制剂,从而抑制向后脑分化,并且在从干细胞产生视网膜祖细胞之后,从该培养基中去除fct信号转导途径抑制剂,目的在于使感光细胞以高产量分化和成熟的。另ー方面,本发明提供了用于诱导干细胞分化成为视网膜细胞的方法,其包括用BMP信号转导途径抑制剂处理分化培养基,并在分化期间从所述培养基中去除BMP信号转导途径抑制剂。在分化的早期阶段使用BMP信号转导途径抑制剂,从而诱导和促进胚胎发生期间前脑的发育,然后在晚期阶段去除BMP信号转导途径抑制剂,以免其抑制Shh途径。在优选实施方案中,只要是本领域内公知的,任何BMP信号转导途径抑制剂都可 不受限制地使用。优选头蛋白。在优选实施方案中,在分化的早期阶段向培养基添加BMP信号转导途径抑制剂,并且在从干细胞产生感光细胞前体细胞之后,从该培养基中去除BMP信号转导途径抑制齐 。另ー方面,本发明提供了用于诱导干细胞分化成为视网膜细胞的方法,其包括用FGF信号转导途径活化剂处理分化培养基,并在分化期间从所述培养基中去除FGF信号转导途径活化剂。在分化的早期阶段使用FGF信号转导途径活化剂,从而促进视网膜祖细胞的增殖,然后在晚期阶段去除FGF信号转导途径活化剂,以免其抑制Shh诱导的视紫红质表达。在优选实施方案中,只要是本领域内公知的,任何FGF信号转导途径活化剂都可不受限制地使用。优选FGF2。在优选实施方案中,在从干细胞分化成为视网膜祖细胞之后,向培养基中添加FGF信号转导途径活化剂,然后在从干细胞产生感光细胞前体细胞之后,从所述培养基中去除FGF信号转导途径活化剂。发明的实施方式通过以下的实施例可以更好地理解本发明,这些实施例是说明性,不应解释为对本发明的限制。实施例I :干细胞的培养<1-1>人胚胎干细胞的培养人胚胎干细胞(hESC)系H9 (WA09,正常核型XX)和H7 (WA07,正常核型XX)购自WiCell Research Institute(Madison, WI, USA) 通过在以下培养基的饲养细胞上培养使hESC发生未分化的增殖(H9细胞 第25-33 代;H7 细胞 第 23-28 代)DMEM/F12 (Invitrogen, Grand Island, NY, USA) ,20%(v/v) KnockOut 血清替代物(Invitrogen, Carlsbad, CA, USA), ImM L-谷氨酸胺(Invitrogen),0. ImM非必需氨基酸(Invitrogen), 0. ImM疏基こ醇(Sigma-Aldrich, St. Louis, MO, USA)和4ng/ml重组人碱性成纤维细胞生长因子(FGF2, Invitrogen),所述饲养细胞例如福射过的小鼠胚胎成纤维细胞(MEF,ATCC, Manassas, VA, USA)或丝裂霉素处理的小鼠胚胎成纤维细胞(EmbryoMax Primary Mouse Embryo Fibroblasts, Millipore, Billerica, MA, USA)。
尽管姆天更换新鲜的培养基,但姆隔6或7天手动或用胶原酶IV(Invitrogen)以1:9-1:15的比例对未分化的干细胞进行传代,然后转移到新鲜的MEF饲养细胞上。在hESC传代期间,用未分化的hESC特有的抗原0CT-4和SSEA-4(Chemicon, Temecula, CA, USA)在固定的时间间隔进行免疫化学染色,以监测分化的程度。去除所发现的已进行分化的细胞。定期用试剂盒(MycoAlert支原体检测试剂盒,Lonza, Rockland, ME, USA)监测hESC培养物中支原体污染物的存在,该污染物能对hESC的分化造成不利影响。〈1-2>诱导型多能干细胞(iPSC)的培养人iPSC 系 iPS (Foreskin)-I (克隆 I)(正常核型 XY)购自 WiCell ResearchInstitute(Madison, WI, USA)。通过在以下培养基的饲养细胞上培养人iPSC,使它们发生未分化的增殖(第37-47 代):DMEM/F12(Invitrogen, Grand Island, NY, USA),20%(v/v)KnockOut 血清替代物(Invitrogen, Carlsbad, CA, USA),ImM L-谷氨酸胺(Invitrogen), O. ImM 非必需氨基酸(Invitrogen),O. ImM 疏基こ醇(Sigma-Aldrich, St. Louis, MO, USA)和10ng/ml重组人FGF2 (Invitrogen),所述饲养细胞例如福射过的小鼠胚胎成纤维细胞(MEF,ATCC, Manassas, VA,USA)或丝裂霉素处理的小鼠胚胎成纤维细胞(EmbryoMaxPrimary Mouse Embryo Fibroblasts, Miilipore,Billerica, MA,USA)。尽管姆天更换新鲜的培养基,但姆隔6或7天手动或用胶原酶IV(Invitrogen)以1:4-1:6的比例对未分化的干细胞进行传代,然后转移到新鲜的MEF饲养细胞上。在hESC传代期间,用未分化的人iPSC特有的抗原SSEA-4 (Chemicon, Temecula, CA, USA)和Nanog(abeam, Cambridge, MA, USA)在固定的时间间隔进行免疫化学染色,以监测分化的程度。去除经鉴定已进行分化的细胞。定期用试剂盒(MycoAlert支原体检测试剂盒,Lonza, Rockland, ME, USA)监测hESC培养物中支原体污染物的存在,该污染物能对hESC的分化造成不利影响。实施例2 :从hESC或人iPSC向眼区前体细胞的分化将实施例I中培养的hESC或人iPSC与MEF细胞分离(图I和图14),并接种至6孔超低吸附平板(Corning Incorporated, Corning, NY, USA)。向6孔超低吸附平板中的hESC或人iPSC添加能诱导向眼区前体细胞分化的培养基[DMEM/F12,10%Knock0ut血清替代物,ImM L-谷氨酰胺,O. ImM非必需氨基酸,O. ImM巯基こ醇,1%B27 补充物(Invitrogen), lng/ml 重组头蛋白(R&D Systems), lng/ml 重组 Dkk-I (Dickkopf-1, R&D Sytstems)和 5ng/ml 重组 IGF-I (胰岛素样生长因子-1,R&DSystems)]。将细胞培养4_5天,以产生悬浮聚集形式的眼区前体细胞,每隔三天更换一次新鮮的培养基(图I)。实施例3 :从眼区前体细胞向视网膜祖细胞的分化将实施例2中产生的眼区前体细胞(悬浮聚集物)以每孔53±8个细胞的密度(292±53个细胞/悬浮聚集物)接种至6孔聚D-赖氨酸/层粘连蛋白包被的平板(BDBiosciences),并以姆孔12±4个细胞的密度接种至8孔聚D-赖氨酸/层粘连蛋白包被的平板,然后提供能诱导向视网膜祖细胞分化的培养基[DMEM/F12 (Invitrogen),ImM L-谷氨酸胺(Invitrogen), O. ImM非必需氨基酸(Invitrogen), O. ImM疏基こ醇(Sigma-Aldrich),1%B27 补充物,1%N2 补充物(Invitrogen), 10ng/ml Dkk_l, 10ng/ml 头蛋白,10ng/ml I GF-1和5ng/ml FGF2],培养9天,以产生视网膜祖细胞。实施例4 :从视网膜祖细胞向神经视网膜祖细胞的分化将实施例3中所产生的视网膜祖细胞在所提供的诱导向神经视网膜祖细胞分化的培养基[DMEM/F12 (Invitrogen), ImM L-谷氨酸胺(Invitrogen), O. ImM 非必需氨基酸(Invitrogen),O. ImM 疏基こ醇(Sigma-Aldrich),1%B27 补充物(Invitrogen),1%N2 补充物(Invitrogen), 10ng/ml 头蛋白,10ng/ml IGF-1, 5ng/ml FGF2, 50ng/ml 重组 Wnt3a (R&DSystems)]中培养5天,从而产生神经视网膜祖细胞(图I)。实施例5 :从神经视网膜祖细胞向感光细胞前体细胞的分化将实施例4中产生的神经视网膜祖细胞在所提供的培养基[DMEM/F12 (Invitrogen), ImM L-谷氨酸胺(Invitrogen), 0. ImM 非必需氨基酸(Invitrogen),0. ImM疏基こ醇(Sigma-Aldrich), 1%B27补充物(Invitrogen), 1%N2补充物(Invitrogen),10ng/ml IGF-1, 50ng/ml Wnt3a 和 250ng/ml 重组 Shh (音猬因子氨基末端妝,Shh, R&D Systems)]中培养3天,从而诱导分化成为感光细胞前体细胞。从所述培养基中去除前面步骤中用到的头蛋白和FGF2(图I)。实施例6 :从感光细胞前体细胞向感光细胞的分化通过提供特化培养基[DMEM/F12(Invitrogen), ImM L-谷氨酰胺(Invitrogen),0. ImM 非必需氨基酸(Invitrogen), 0. ImM 疏基こ醇(Sigma-Aldrich), 1%B27 补充物(Invitrogen), 1%N2 补充物(Invitrogen), 10ng/ml IGF-1, 50ng/ml Wnt3a, 250ng/ml Shh,500nM (全反式视黄酸(RA, Sigma-Aldrich) ] 8天或更长时间来诱导感光细胞前体细胞分化成为感光细胞。在实施例2-6中,每隔2或3天将所有培养基更换成新鲜的培养基,并将细胞在37° C下5%C02的环境中培养。所有诱导和分化实验重复至少三次,并都获得了相同的结果O实施例7 :细胞分化相关标志物的测定<7-1>细胞分化相关标志物表达的免疫化学染色和鉴定利用如下的免疫化学染色法检测实施例3至6中所获得的细胞的分化。在与用于向视网膜祖细胞、神经视网膜祖细胞、感光细胞前体细胞和感光细胞分化相同的条件下,在8孔聚D-赖氨酸/层粘连蛋白包被的载片中(BD Biosciences, Bedford, MA)培养眼区前体细胞(悬浮聚集物)。用4%多聚甲醛(Sigma-Aldrich)固定每步中充分培养的细胞,之后用含有3%BSA (Jackson Immunoresearch Laboratory, Bar Harbor, ME, USA)和 0.25%TritonX-100 (Sigma-Aldrich)的PBS封闭非特异性反应。封闭90分钟之后,在4° C下利用以下对每个分化步骤的细胞特异的抗体过夜孵育姆个分化步骤的载片兔-蓝视蛋白(1:500,Chemicon)、绵羊-Chxl0(l: 100, Chemicon)、兔-Crx (I:200, Santa Cruz Biotechnology, Santa Cruz , CA, USA) >兔-GFAP (1:200, Invitrogen)、小鼠-人特异的线粒体(1:50, Chemicon)、免-人特异的线粒体(I:200,Chemicon)、小鼠-Isletl(I:10,Developmental Studies HydromaBank, DSHB ;Iowa City, IA, USA)、小鼠 _Ki67(1:100, Vector Laboratories, Peterborough, England)、小鼠-Mitf (I: I, 000, abeam, Cambridge, MA, USA)、小鼠-巢蛋白(1:250, BDSciences)、免-神经丝蛋白-200 (I: I, 000, Sigma-Aldrich)、兔 _Otx2 (1:100, abeam)、兔-Pax2 (1:250,abeam)、小鼠 _Pax6 (1: 2,DSHB)、小鼠-外周蛋白 2 (1:500,GenScript, Piscataway, NJ, USA)、兔-Rax (1:250, abeam)、兔-恢复蛋白(1:1,000, Chemicon)、视网膜色素上皮 65 (RPE65, 1:100,Chemicon)、兔-视紫红质(1:500,Sigma-Aldrich)、小鼠-视紫红质(1:500,Ret-Pl, Lab Vision, Fremont, CA, USA)、小鼠-视紫红质(1: 2,000,Ret-P1,Sigma-Aldrich)、小鼠-roml(1:50, ABR-Affinity Bioreagents, Golden, CO, USA)>兔-PDE6β (1:100,abeam)、免-光导蛋白(I:500,Santa Cruz Biotechnology)>小鼠-PKC-α (1:500,Sigma-Aldrich)、小鼠-Proxl(I:2,000,Chemicon)、小鼠-Sox2 (1:250,R&D Systems)、免-突触蛋白(I: 2,000,Santa Cruz Biotechnology)和兔-ZO-1(1:100, Zymed-Invitrogen)。使用之前,将这些抗体稀释于含1%BSA和0. 25%Triton X-100的PBS溶 液中。用PBS将每步载片上培养的细胞洗涤三次,毎次5分钟,并用与Cy3偶联的种特异性ニ抗(1:800, Jackson Immunoresearch Laboratory)或与 Alexa488 偶联的种特异性 ニ抗(1:500,Invitrogen)在室温下孵育2小时。适于作为ー抗和ニ抗的标准材料用来检测非特异性染色或抗体间的相互作用。然后,用PBS将细胞洗涤三次,毎次5分钟,用 DAPI (4’,6_ ニ脉基-2_ 苯基卩引噪)复染并在 Vectashield (Vector Laboratories)中封片,随后在落射荧光显微镜(Nikon Eclipse, E800, Tokyo, Japan)和共聚焦显微镜(Leica, Leica Microsystems Inc,Bannockburn,IL, USA or ZeissLSM510,CarlZeiss, Inc, Thornwood, Ny, USA)下显像。从在200倍放大倍数下随机选择的20个显微镜视野计数500个细胞,并评价对每种抗体的阳性应答。在评价至少三次之后,确定对抗体的阳性应答。利用MedCalc 8. I. 1.0版的 Kruskal-Wallis 检验和 Bland-Altman 图(Bland and Altman, 1986)以及 SAS 9. I 版的GEE (Generalized Estimating Equations)模型对数据进行统计学分析。将所有数据表示为将所有数据表示为平均值土平均值的标准误差(S. E. Μ),p〈0. 05为统计学显著。对于前脑眼区前体细胞和视网膜祖细胞的特征标志物,发现在实施例3中所产生的视网膜祖细胞中表达的Rax的阳性率为86. 6±3· 0%,Pax6的阳性率为63. 9±0· 9%,0tx2的阳性率为76. 4±2. 0%,Sox2的阳性率为83. O ± I. 9%以及ChxlO的阳性率为46.3±1.0%。还发现细胞表达视网膜色素上皮祖细胞的特征标志物Mitf的阳性率为
17.2±0. 4%,神经祖细胞特有的标志物巢蛋白的阳性率为65. 7±2. 7%(表I和表2)。表I标志物水平随培养时间的变化
权利要求
1.使干细胞分化成为视网膜细胞的方法,其包括在含有以下成分的培养基中诱导干细胞来源的视网膜祖细胞分化成为神经视网膜祖细胞IGF1R(胰岛素样生长因子-I受体)活化剂、BMP(骨形态发生蛋白)信号转导途径抑制剂、FGF (成纤维细胞生长因子)信号转导途径活化剂和fct信号转导途径活化剂。
2.如权利要求I所述的方法,其中所述视网膜祖细胞被培养I至30天以产生所述神经视网膜祖细胞。
3.使干细胞分化成为视网膜细胞的方法,其包括在含有以下成分的培养基中诱导干细胞来源的神经视网膜祖细胞分化成为感光细胞前体细胞=IGFlR活化剂、Wnt信号转导途径活
4.如权利要求3所述的方法,其中所述神经视网膜祖细胞被培养I至30天以产生所述感光细胞前体细胞。
5.使干细胞分化成为视网膜细胞的方法,其包括在含有以下成分的培养基中诱导干细胞来源的感光细胞前体细胞分化成为感光细胞=IGFlR活化剂、Wnt信号转导途径活化剂、Shh信号转导途径活化剂和RA (视黄酸)。
6.如权利要求5所述的方法,其中所述感光细胞前体细胞被培养I至60天以产生所述感光细胞。
7.诱导干细胞分化成为视网膜细胞的方法,其包括 (a)在含有以下成分的培养基中培养干细胞来源的视网膜祖细胞以使它们分化成为神经视网膜祖细胞=IGFlR活化剂、BMP信号转导途径抑制剂、FGF信号转导途径活化剂和Wnt信号转导途径活化剂; (b)在培养基中培养所述神经视网膜祖细胞以使它们分化成为感光细胞前体细胞,该培养基除了从其中去除BMP信号转导途径抑制剂和FGF信号转导途径活化剂并向其中添加Shh信号转导途径活化剂之外,与步骤(a)中的培养基相同;以及 (c)在培养基中培养所述感光细胞前体细胞以使它们分化成为包括感光细胞在内的视网膜细胞,该培养基除了向其中添加RA之外,与步骤(b)中的培养基相同。
8.如权利要求7所述的方法,其中步骤(a)、(b)和(c)分别进行以下时间1至30天、I至30天和I至60天。
9.如权利要求7所述的方法,其中通过以下步骤获得所述视网膜祖细胞 (a’)在含有以下成分的培养基中培养干细胞以使它们分化成为悬浮聚集形式的眼区前体细胞=IGFlR活化剂、Wnt信号转导途径抑制剂和BMP信号转导途径抑制剂;以及 (b’)在培养基中培养所述悬浮聚集形式的眼区前体细胞以使它们分化成为视网膜祖细胞,该培养基除了再向其中添加FGF信号转导途径活化剂之外,与步骤(a’)中的培养基相同。
10.如权利要求9所述的方法,其中所述步骤(a’)和(b’)分别进行I至30天和5至15天的时间。
11.如权利要求1-10中任一项所述的方法,其中所述干细胞选自骨髄干细胞(BMS)、脐带血干细胞、羊水干细胞、脂肪干细胞、视网膜干细胞(RSC)、视网膜内米勒胶质细胞、胚胎干细胞(ESC)、诱导型多能干细胞(iPSC)和体细胞核移植细胞(SCNT)。
12.如权利要求1-10中任一项所述的方法,其中所述IGFlR活化剂是IGF-I或IGF-2。
13.如权利要求1-10中任一项所述的方法,其中所述培养基含有浓度为0.01至100ng/ml 的 IGFlR 活化剂。
14.如权利要求1、7和9中任一项所述的方法,其中所述BMP信号转导途径抑制剂选自头蛋白、腱蛋白、扭曲原肠胚形成(Tsg)、cerberus、coco、greml in>PRDC (与 DNA 和 cerberus相关的蛋白)、DAN(在成神经细胞瘤中差别筛选选出的基因aberrative)、dante、卵泡抑素、USAG-I (子宫敏感性相关基因I)、dorsomorphin、硬化蛋白及以上的组合。
15.如权利要求1、7和9中任一项所述的方法,其中所述培养基含有浓度为O.01至100ng/ml的BMP信号转导途径抑制剂。
16.如权利要求1、7和9中任一项所述的方法,其中所述FGF信号转导途径活化剂活化FGFR Ic 或 FGFR 3c。
17.如权利要求1、7和9中任一项所述的方法,其中所述FGF信号转导途径活化剂选自FGFI、FGF2、FGF4、FGF8、FGF9、FGF17、FGF19 及以上的组合。
18.如权利要求1、7和9中任一项所述的方法,其中所述培养基含有浓度为O.01至100ng/ml的FGF信号转导途径活化剂。
19.如权利要求1-8中任一项所述的方法,其中所述Wnt信号转导途径活化剂选自ffntl> Wnt2> Wnt2b> Wnt3> Wnt3a> Wnt4> Wnt5a> Wnt5b> Wnt6> Wnt7a> Wnt7b> Wnt8a> Wnt8b>Wnt9a>ffnt9b>ffntl0a>ffntl0b>ffntll>ffntl6b ;增加 β -连环蛋白表达水平的物质;GSK3(糖原合酶激酶3)抑制剂,选自锂(Li)、LiCl、ニ价锌(ニ价Zn)、BI0(6-溴靛玉红-3’ -肟)、SB216763、SB415286、CHIR99021、QSll 水合物、TWS119、kenpaullone、alsterpaullone、靛红_3,-肟、TDZD-8、Ro 31-8220甲磺酸盐及以上的组合;Axin抑制剂;APC (腺瘤性息肉病)抑制剂;norrin ;R-spondin 2 ;以及以上的组合。
20.如权利要求19所述的方法,其中所述培养基含有除LiCl、BI0和SB415286之外浓度为0. 01至500ng/ml的Wnt信号转导途径活化剂。
21.如权利要求19所述的方法,其中LiCl、BI0或SB415286被用作Wnt信号转导途径活化剂时,所述培养基含有浓度为0. I至50mM的LiCl ;浓度为0. I至50 μ M的BIO ;以及浓度为 0. I 至 500 μ M 的 SB415286。
22.如权利要求3、5和7中任一项所述的方法,其中所述Shh信号转导途径活化剂选自Shh> Smo (smoothened)受体活化剂、Ptc (Patched)与Smo相互作用的抑制剂、増加Ci/Gli家族水平的物质、Ci/Gli因子细胞内降解的抑制剂、Hg-Ag、purmorphamine及以上的组合。
23.如权利要求3、5和7中任一项所述的方法,其中所述培养基含有浓度为0.I至5,000ng/ml的Shh信号转导途径活化剂。
24.如权利要求5或7所述的方法,其中所述培养基含有浓度为0.5至10,OOOnM的RA。
25.如权利要求9所述的方法,其中所述Wnt信号转导途径抑制剂选自Dkk-I、Dkk_2、Dkk-3 和 Dkk-4。
26.如权利要求9所述的方法,其中所述培养基含有浓度为0.01至10,000ng/ml的Wnt信号转导途径抑制剂。
27.如权利要求1、3、5和7中任一项所述的方法,其还包括确定分化的细胞是否为靶细胞。
28.如权利要求27所述的方法,其中所述确定步骤通过分析以下细胞的特征基因的mRNA或蛋白表达水平来进行视网膜祖细胞、神经视网膜祖细胞、感光细胞前体细胞或感光细胞。
29.如权利要求28所述的方法,其中所述神经视网膜祖细胞的特征基因是选自Rax、Pax6、ChxlO和Crx中的至少两种基因的组合。
30.如权利要求28所述的方法,其中所述感光细胞前体细胞的特征基因是Crx或Nrl。
31.如权利要求28所述的方法,其中所述感光细胞的 特征基因选自恢复蛋白、视紫红质、夕卜周蛋白2、roml、Pde6b、arrestin sag、光导蛋白、突触蛋白、红绿视蛋白、蓝视蛋白及以上的组合。
32.如权利要求9所述的方法,其中步骤(b’)中所述悬浮聚集形式的眼区前体细胞在包被有选自以下细胞外基质的平板上贴壁生长聚D-赖氨酸、层粘连蛋白、聚L-赖氨酸、基质胶、琼脂、聚鸟氨酸、明胶、胶原蛋白、纤维连接蛋白和玻璃粘连蛋白。
33.如权利要求9所述的方法,其中步骤(b’)中的每ー悬浮聚集物包含200-400个眼区前体细胞。
34.如权利要求9所述的方法,其中步骤(a’)中的培养基还包含DMEM/F12、10%Knockout血清替代物、ImM L-谷氨酰胺、O. ImM非必需氨基酸、O. ImM巯基こ醇和1%B27补充物。
35.如权利要求7或9所述的方法,其中步骤(b’)、(a)、(b)或(c)中的培养基还包含DMEM/F12、lmM L-谷氨酰胺、O. ImM非必需氨基酸、O. ImM巯基こ醇、1%B27补充物和1%N2补充物。
36.如权利要求1-10中任一项所述的方法,其中所述视网膜细胞选自感光细胞、视网膜神经节细胞、水平细胞、双极细胞、无长突细胞、米勒胶质细胞、视网膜色素上皮祖细胞、视网膜色素上皮及以上的组合。
37.如权利要求36所述的方法,其中所述感光细胞组成超过50%的视网膜细胞群。
38.权利要求7所述方法的步骤(a)中所产生的神经视网膜祖细胞,其通过以下特征中的至少三个来表征 (i)Rax的表达水平增加; (ii)Pax6的表达水平增加; (iii)ChxlO的表达水平增加; (iv)0tx2的表达水平降低; (v)Sox2的表达水平降低; (vi)巢蛋白的表达水平降低; (vii)Ki67的表达水平降低; (viii)Crx的表达水平增加; (ix)恢复蛋白的表达水平増加; (X)视紫红质的表达水平增加; (xi)外周蛋白2的表达水平増加;以及 (xii)Mitf的表达水平降低。
39.权利要求7所述方法的步骤(b)中所产生的感光细胞前体细胞,其通过以下特征中的至少三个来表征(i)Pax6的表达水平降低; (ii)ChxlO的表达水平降低; (iii)Sox2的表达水平降低; (iv)Ki67的表达水平增加; (v)Crx的表达水平降低; (vi)视紫红质的表达水平増加;以及 (vii)外周蛋白2的表达水平増加。
40.权利要求7所述方法的步骤(c)中所产生的感光细胞,其通过以下特征中的至少三个来表征 (i)Pax6的表达水平增加; (ii)Sox2的表达水平増加; (iii)巢蛋白的表达水平降低; (iv)Ki67的表达水平降低; (v)Crx的表达水平降低; (vi)恢复蛋白的表达水平増加; (vii)视紫红质的表达水平増加;以及 (viii)外周蛋白2的表达水平増加。
41.通过权利要求7所述的方法从干细胞分化的视网膜细胞,其包括至少ー种选自以下的细胞感光细胞、视网膜神经节细胞、水平细胞、双极细胞、无长突细胞、米勒胶质细胞、视网膜色素上皮祖细胞和视网膜色素上皮,并且所述感光细胞组成超过50%的视网膜细胞群。
42.用于治疗视网膜退化相关疾病的组合物,其包含作为活性成分的至少ー种选自以下的细胞权利要求38所述的神经视网膜祖细胞,权利要求39所述的感光细胞前体细胞,权利要求40所述的感光细胞和权利要求41所述的视网膜细胞.
43.如权利要求42所述的组合物,其中所述视网膜退化相关疾病选自视网膜发育异常、视网膜退化、老年黄斑退化、糖尿病视网膜病变、视网膜色素变性、青光眼、视神经病变、外伤、视网膜脱落、Leber先天性黑朦、先天性视网膜失养症及以上的组合。
44.诱导干细胞分化成为视网膜细胞的方法,其包括用Wnt信号转导途径抑制剂处理分化培养基,并在分化期间从所述培养基去除fct信号转导途径抑制剂。
45.如权利要求44所述的方法,其中在分化的早期阶段使用所述Wnt信号转导途径抑制剂。
46.如权利要求44所述的方法,其还包括在从所述培养基去除fct信号转导途径抑制剂时添加fct信号转导途径活化剂。
47.治疗视网膜退化相关疾病的方法,其包括将权利要求42所述的组合物给予有需要的个体。
全文摘要
公开了在既不用基因植入也不用与视网膜组织共培养的情况下,通过在化学限定的条件下实施与体内胚胎发育相似的分化过程来诱导干细胞在短期内以高产量分化成为视网膜细胞的方法。并且公开了按照所述方法产生的视网膜细胞,包括感光细胞和它们的祖细胞以及各种类型的其它视网膜细胞。提供了用于治疗视网膜退化相关疾病的包含所述视网膜细胞的组合物和方法。分化的感光细胞被植入退化的或受损的视网膜中时,能植入并融合入视网膜中,从而预防或治愈视网膜退化。
文档编号C12N5/02GK102712900SQ201080058099
公开日2012年10月3日 申请日期2010年10月6日 优先权日2009年10月6日
发明者朴圣燮, 金志妍 申请人:金志妍, 首尔大学校 产学协力团
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1