油酰胺水解酶的抑制剂的制作方法

文档序号:1133057阅读:166来源:国知局
专利名称:油酰胺水解酶的抑制剂的制作方法
技术领域
本发明涉及油酰胺(oleamide)水解酶抑制剂以及涉及关于油酰胺诱导睡眠的兴奋剂。更确切的说,本发明涉及能够显示关于油酰胺水解酶抑制活性和/或关于油酰胺诱导睡眠的兴奋活性的过渡态模拟和机理为基础的(transition-state-mimetic and mechanism-based)的油酰胺衍生物。

背景技术
油酰胺(1,顺-9-十八烯酰胺(octadenamide))是天然存在于脑组织中的一种成份,在睡眠缺乏和睡眠恢复的状态下分别显示出它的累积和消失(Cavat et al.,Science 1995,268,1506-1509;Lerner etal.,Proc.Natl.Acad.Sci.U.S.A 1994,91,9505-9508;Cravattet al.,J.Am.Chem.Soc.1996,118,580-590)。在特殊结构的方式上,当以毫微摩尔量静脉注射时,1在动物体上已显示可诱导生理性睡眠(Caravat et al.,Science 1995,268,1506-1509)。用存在于细胞膜上的酶(油酰胺水解酶)水解1可迅速将油酰胺降解成油酸(顺-9-十八烯酸)。在努力分离用于控制内源性1浓度的调节剂中,发现整合膜蛋白(油酰胺水解酶)可催化油酰胺水解降解,得到油酸(顺-9-十八烯酸)和氨(图3),未显示出嗜睡的活性(Cravat et al.,Science 1995,268,1506-1509)。
已发现苯基甲磺酰氟、4,4’-二硫代二吡啶二硫化物(强二硫化物形成剂)和HgCl2(IC50=700 nM,Ki,app=37nM)可抑制油酰胺水解酶,而1mM EDTA却不能抑制。这表明硫醇密切参与催化过程,所述的酶可以是半胱氨酸酰胺酶或可能是具有半胱氨酸残基活性位点的丝氨酸酰氨酶。
已介绍了变异的密切连接或不可逆的丝氨酸和半胱氨酸蛋白酶抑制剂。这些包括不可逆的抑制剂如卤代甲基酮(Kettner et al.,Biochemistry 1978,17,4778-4784;Kettner et al.,Thromb.Res.1979,14,969-973;C.Giordano,et al.,Eur,J.Med.Chem.1992,27,865-873;Rauber et al.,Biochem,J.1986,239,633-640;Angliker et al.,Biotherm.J.1987,241,871-875),Michael受体(Hanzlik et al.,J.Med.Chem.1984,27,711-712)环氧化物(C.Parkes,et al.,Biochem.J.1985,230,509-516),O-酰基羰胺(Bromme et al.,Biochem.J.1989,263,861-866)和重氮甲基酮(Green et al.,J.Biol.Chem.1981,256,1923-1928)以及可逆过渡态模拟抑制剂如酮(Mehdi,S.Bioorg,Chem.1993,21,249-259),醛(Westerik etal.,J.Biol.Chem.1972,247,8195-8197),环丙烯酮(cyclopropenones)(Ando et al.,J.Am Chem.Soc.1993,115,1174-1175)和缺电子羰基化合物如三氟甲基酮(Wolfenden et al.,Annu.Rev.Biophys.Bioeng.1976,5,271;Gelb et al.,Biochemistry 1985,24,1813-1817;Imperiali;et al.,Biochemistry 1986,25,3760-376;Koutek et al.,J.Biol.Chem.1994,269,22937-22940),α-酮酸衍生物(Li,z,et al.,J.Med.Chem.1993,36,3472-3480;Harbeson et al.,J.Med.Chem.1994,37,2918-2929;Peet et al.,J.Med.Chem,1990,33,394-407;Angelastro et al.,J.Med.Chem.1990,33,11-13)和三羰基化合物(Wasserman et al.,J.Org,Chem.1993,58,4785-4787)。
另一方面,已报道了仅仅一种可能的特异性的油酰胺水解酶抑制剂([S]=0.26Km时,IC50=3μm)(Maurelli;et al.,FEBS Lett.1995,377,82-86)且到目前为止是唯一公开的研究有关脂肪酸酰胺酶的抑制剂的报告(Koutek et al.,J.Biol.Chem.1994,269,22937-22940)。
所需的是抑制油酰胺水解的高效油酰胺水解酶抑制剂和油酰胺诱导睡眠的兴奋剂。


发明内容
本发明的一个方面是涉及油酰胺水解酶抑制剂。该抑制剂被设计成在油酰胺水解酶中与活性位点半胱氨酸残基相互作用。该抑制剂作用迅速,具有选择性并效力强(Ki=13μM-1nM)。该抑制剂用于抑制油酰胺(一种睡眠诱导因子)的水解。该抑制剂也可作为进一步鉴定油酰胺生物作用的工具。
该抑制剂为包含首基和烃尾基的构型。首基以共价连接烃尾上并包括亲电子的羰基。优选首基选自由下列结构式代表的基团
优选的烃尾基选自由下列结构式代表的基团
优选的抑制剂包含如下

本发明的另一方面涉及抑制与油酰胺水解有关的油酰胺水解酶的方法。该方法应用油酰胺水解酶与抑制剂接触或结合的作用。该抑制剂包含有首基和以其共价键连接的烃尾基的构型。首基包括亲电子的羰基。优选首基选自由下列结构式代表的基团
优选的烃尾基选自由下列结构式代表的基团
上述方法中应用的优选抑制剂包括上述列举的抑制剂和下面的其它的抑制剂
本发明的另一方面涉及在对油酰胺敏感动物中诱导睡眠的方法。更确切的说,本发明该方面涉及对油酰胺敏感动物给予有效剂量的油酰胺水解酶兴奋剂。优选的兴奋剂由下列结构式代表



图1表示22个油酰胺水解酶抑制剂具有的抑制常数(Ki,app(μM);对油酰胺而言,Km=5±2μM。
图2表示向CD3OD或丙酮-d6中的亲电子羰基定量加入CD3OD或D2O并建立的1H NMR和13C NMR数据。数据显示了水合程度和抑制剂羰基的相对亲电子性。预计趋势如下11>12>8>6≥4。这些趋势有代表性的11和12在CD3OD中全部转化成它们的半缩醛而其余的抑制剂表现出降低的半缩醛,形成与其预期的亲电子性的一致性11(100%)、12(100%)、8(75%)、6(48%)和4(47%)。
图3表示经油酰胺水解酶使油酰胺水解降解得到油酸(顺-9-十八烯酸)和氨。
图4表示化合物6(Molar)抑制油酰胺水解酶催化剂油酰胺1降解(1/速率(min/μM)活性的dixon图。
图5表示化合物11(Molar)抑制油酰胺水解酶(速率(μM/min/100μL))的能力。
图6表示由化合物12竞争油酰胺水解酶抑制性(1/v(min/μM))的Lineweaver-Burke图。
图7表示油酰胺水解酶分解化合物1对pH相对速率曲线图的pH-透率相关依从(pH-rate dependent)性,相应显示出明显的活性位点pKa 5.4、9.7和10.3。速率最大值出现在pH10.0。
图8表示a)在木瓜蛋白酶和其它半胱氨酸或丝氨酸蛋白酶中存在的常见中间体(O’Leary et al.,Biochemistry 1974,13,2077-2081);b)抑制剂3-15可能的作用方式。
图9表示中间体和抑制剂3、6、7、8、10、24和2 6的化学合成路线。
图10表示从α-羟基酸18化学合成化合物27的方法并显示了三氟甲基酮抑制剂12、13、14和15,其中R=C16H32-单-不饱和烃,如图1所示。
图11表示氢化饱和的化合物11的化学合成路线。
图12表示测定pH-速率曲线所用的方程。从使用标准最小二乘法方法近似曲线的线性部分得到速率。这些速率对pH再作图并用加权非线性最小二乘法表示的过程,取近似值。

具体实施例方式 公开了一系列有效的过渡态模拟和机理为基础的油酰胺水解酶抑制剂2-22(图1-2;9-10和11)及其特征。这些抑制剂可用于探测和弄清1作为一类新型生物信号试剂的原始成员(prototypical member)和油酰胺水解酶在其调节中作为重要的有效因子所起的作用。
使用离子选择性电极测定产生的氨,确定抑制剂的有效性,所述的氨是作为经油酰胺水解酶的膜限制制剂100μM水解油酰胺(~20Km)的结果。发现油酰胺的Km为5±2μM。由Dixon方法(图4-6)确定抑制常数。经溶解性限制,在高浓度所有试验的抑制剂均能取得100%抑制性及没有一种抑制剂表现出两种或更多种具有不同Kis分开的活性位点的多样抑制行为特性。因为两种或更多种不同的酶连接具有几乎一致亲和力的22种独立抑制剂的可解性是太小了,所以这强烈暗示下面制备中的单一酶起着大于90%的所观察到的油酰胺水解酶活性的作用。
最有效的抑制剂(图1)具有亲电羰基,能够可逆地形成(硫代)半缩醛或(硫代)半缩酮以模拟丝氨酸或半胱氨酸蛋白酶催化反应(图8)的过渡态。发现抑制剂的相对效力符合预期在紧连的α-酮乙酯8(1.4nM)和三氟甲基酮抑制剂12(1.2nM)中反应的羰基畜积的亲电子特性。在昆虫虫卵发育素酯酶(Linderman et al.,Rev.Pestic.Toxical.1991,1,261-9)和anandaminase(Koutek et al.,J.Biol,Chem.1994,269,22937-22940)的抑制剂中已观察到羰基亲电子性和连接常数之间的类似的相关性。然而,在系列最强亲电子性的成员中,三羰基抑制剂11在150nM下有相对较弱的结合。该现象可以是大体积的叔-丁酯和酶之间减弱了硬脂基相互作用的结果或是在C-3时SP2特性的部分原因,天然底物无此特性。
抑制剂羰基的水合程度和相对的亲电子特性通过NMR分析可以容易,准确测定,并发现它们已符合预期的趋势(如11>12>8>6≥4)。三羰基抑制剂11的中间羰基完全水合成制剂和特征化。分离剩余的抑制剂,其特征在于它们的羰基结构未水合,包括有反应活性的三氟甲基酮。利用1H NMR和13C NMR确立和分别定量将CD3OD或D2O加入到CD3OD和丙酮-d6中的亲电子性羰基中(图2)。这些趋势中有代表性的11和12完全转化成CD3OD中的半缩醛,而其余的试剂表现出降低的半缩醛形成,与预期的亲电子性相一致性11(100%)、12(100%)、8(75%)、6(48%)和4(47%)。
当三氟甲基酮12、13、14和15以水溶液形式存在几乎完全为水合物时,可认为这些化合物以可逆共价键酶-抑制剂半缩酮配合物连接酶,如在弹性蛋白酶(Takahasi et al.,J.Mol.Biol.1988,201,423-428)和α-糜蛋白酶(Liang et al.,Biochemistry 1987,26,7603-7608)结构研究中以及一系列丝氨酸蛋白酶(Imperiali et al.,Biochemistry 1986,26,3760-3767)连接到肽基三氟甲基酮中所示。虽然α-羰基酰胺6和7在溶液中可能至少以一部分SP2酮类存在,但在蛋白酶活性位点上已观察到α-羰基酰胺完全是SP3。类似地,在半胱氨酸蛋白酶木瓜蛋白酶活性位点上醛连接成硫代半缩醛(Mackenzie et al.,Biochemistry 1986,25,2293-2298;Schultz et al.,FEBS Lett,1975,50,47-49)。尽管16、17和18的结构类似于偕二醇,但它们较弱地抑制油酰胺水解酶则进一步证实这些抑制剂为(硫)-半缩酮连接而不是偕二醇(水合酮)的假设。我们注意到虽然有反应活性羰基的亲电子性似乎在支配这些抑制剂连接油酰胺水解酶的亲和力上起很大作用,但也可能存在其它因素,使这些化合物对油酰胺水解酶的亲和力受到影响。当醛4和α-羰基酰胺7呈现同等的亲电子性时,α-羰基酰胺连接得更紧密,因此说明在酶和酰胺官能度之间有额外的互相作用,可能是附加的氢键。类似的是虽然三氟甲基酮有更高的亲电子性,但α-酮酯8和三氟甲基酮12具有同等的连接紧密程度。
有趣的是,发现在类似油酰胺C-2的位置加入一个羰基的醛5比类似油酰胺C-1的位置加入醛羰的4具有强5倍的连接紧密程度。也观察到α-酮酯系列的抑制剂,其在油酰胺C-2加入亲电子性羰基与C-1的对比(8对比9)将增加6倍的连接亲和力。在α-羰基酰胺或三氟甲基酮中未见这种差异。在这些抑制剂种类中,在油酰胺位置C-2键接亲电羰基与C-1的对比可得到同等效应的抑制剂。这说明对油酰胺C-1对比C-2的羰基位置而言,有微妙连接方式差异的可能性。
这些研究也揭示了油酰胺水解酶显示出约10倍优选于脂肪酸抑制剂,该抑制剂在9位含有顺式双键立体化学结构,类似于天然底物,该趋势在三氟甲酮系列中表现得最清楚,其中含有顺式双键的12比含有反式双键的14或饱和的衍生物15的连接紧密程度约大一个数量级。
大多数潜在的不可逆抑制剂(3、19-21)在上至溶解度的浓度下,于第一个15分钟孵化中,并未表现出可测出的抑制剂活性依赖时间的关系。氯甲基酮3已表现出与时间无关,但仍为中等抑制活性(Ki=0.7μM),这与在认定为活性位点的半胱氨酸和酮之间形成可逆的(硫代)半缩酮(Bell et al.,Advan.Phys.Org.Chem.1966,4,1-29,在此作参考)或可逆的、非共价键的酶-抑制剂配合物相一致。存在于邻位氯取代基将增加羰基的亲电子性,有利于亲核进攻。2-氯代油酸(20,Ki=0.3μM)也呈现出可逆的连接,它的连接方式可能类似于油酸(Ki=6μM)。重氮甲基酮21连接的更弱(Ki=18μM)。
这样观察到的事实说明1可构成一类脂肪酸一级酰胺生物信号分子的原件,其中功能的差异和选择性源于烷烃链的长度以及位置、立体化学和不饱和程度。
发现酶催化油酰胺水解的速率依赖于呈现活性位点pKas的5.4、9.7和10.3的pH(图7)。独特的pH速率的依赖分布图,对PMST的油酰胺Km和抑制性结果与Maurelli结果一致(Maurelli;et al.,FEBS Lett.1995,377,82-86;Mackenzi et al.,Biochemistry 1986,25,2293-2298),认为在此存在油酰胺水解酶(来自大鼠肝脏膜部分)及anandamide酰氨基水解酶(来自小鼠成神经细胞瘤细胞培养的膜部分)是相同的酶,经过种间变异。然而,缺乏顺序数据或纯化酶,后者常常难于获得具有整合膜的蛋白,这有待于证明。然而,我们的结果相当不同于另一个关于anadamide酰氨基水解酶在pH 6和8呈现最大速率的活性的报道(Desarnaud et al.,J.Biol.Chem.1995,270,6030-6035)以致也有证据支持体内脂肪酸酰胺水解的许多酶模式。在pH 10.0测定抑制剂时,在所述pH的油酰胺水解酶活性为我们测定条件下的最大值。
兴奋剂活性 本发明的另一方面涉及对油酰胺敏感动物给予有效剂量的油酰胺水解酶兴奋剂诱导睡眠的方法。优选兴奋剂是化合物6。将化合物6溶解于矿物油中并经腹膜内注射将有效剂量注入大鼠的腹膜内。监视睡眠4小时。用标准的电生理学方法测定总睡眠时间。观察到随睡醒期减少而深度慢波睡眠(SWS)增加。SWS增加约30%并观察到睡醒减少的类似百分比。
抑制剂合成 通过已知的方法或改变已知方法从油酸制备许多的抑制剂(图9)。使从油酸衍生的酰氯[3当量(COCl)2,CH2Cl2,25℃,3小时]与羟胺或重氮甲烷反应得到2和21及使油酸与肼(1.1当量,2.2当量EDCI,0.2当量DMAP,CH2Cl2,25℃,19小时)直接缩合得到22。用无水1N HCl-EtOAc处理21(25℃,10分钟,92%)得到干净的3。正如所述从油酸直接制备醛4(Mancuso et al.,J.Org.Chem.1978,43,2480-2482)和一起的二甲基乙缩醛16(Marx et al.,J.Med.Chem.1989,32,1319-1322)。衍生于油酸的烯醇物(LDA,THF)与CCl4或O2经阱(trap)吸收分别得到20(Snider et al.,J.Org.Chem.1987,52,307-310)和18(Konen et al.,J.Org.Chem.1975,40,3253-3258),经过酰氯产生[3当量(COCl2)、CH2Cl2,25℃,3小时]和与NH4OH水溶液缩合转化成相应的一级酰胺19和17。
通过α-羟基酰胺17(PDC)和α-羟基酸18(Dess-Martin)氧化反应,随后形成乙酯,制备在类似于油酰胺C-2而不是C-1的位置带有亲电子性羰基的基于C-18油酸的α-羰基酰胺6和α-酮酯8(图9)。直接从相应的十八碳羧酸、油酸和硬脂酸,使用改良的Dakin-West反应(Buchanan et al.,Chem.Soc.Rev.1988,17,91-109)制备类似于油酰胺C-1的位置带有亲电子性羰基的相应α-酮酯9和10(图9)。通过Wolff重排21(cat.AgOB2,CH3OH,25℃,2.5小时,82%)提供甲酯23得到增加一个碳的油酸来制备类似长度的α-羰基酰胺7。根据对6详细方法(图9)水解甲酯,随后转化C-19羧酸24成α-羰基酰胺。
将相应的羧酸转化成有关的酰基氯并继之用TFAA-吡啶处理的一步操作来制备三氟甲基酮抑制剂12、13、14和15包括在含有9-顺烯的C-18液体的C-2位置上加入亲电子羰基的13(Boivin et al.,Tetrahedron Lett.1992,23,1285-1288)(6当量/8当量,Et2O,0.75-2小时,54-79%)(图10)。α-羟基酸18[Pb(OAc)4,1.1当量,25℃,苯,50m.]的氧化裂解得到醛5。再进一步氧化(NaClO2)得到用于制备13的酸27。
根据Wasserman的详细方法可以制备三羰基抑制剂11(Wasserman et al.,Tetrahedron Lett.1992,33,6003-6006)。在双(三甲基甲硅烷基)乙酰胺(BSA)存在下,用(三苯磷亚基)乙酸叔-丁酯[tert-butyl(triphenylphosphoranylidene)acetate](29)处理衍生于十六烷酸的酰氯,随后用臭氧氧化得到11(图11)。
已开发出作用于内源性诱导睡眠脂质(1,顺-9-十八烯酰胺)水解的油酰胺水解酶的有效酶抑制剂,提供了深入了解所述酶的机理及基础作用以开发控制和调节睡眠有关药剂。
合成方法(protocols) 总则 用Perkin-Elmer 241分光光度计UV测定旋光度,用BeckmannDU-70分光计记录可见光谱。用Bruker AMX-400和AMX-500光谱仪在400和500MHz记录1H和13C NMR谱。用VG ZAB-ZSE质谱仪在快速原子轰击(FAB)条件下记录高分辨质谱(HRMS)。用70-230目硅胶进行柱层析。用Merck Art.5744(0.5mm)进行制备的TLC。
化合物1的合成 通过Cravatt等(Science 1995,268,1506-1509)的方法制备化合物1。
化合物4的合成 通过Mancuso,A.J等(J.Org,Chem.1978,43,2480-2482)的方法制备化合物4。
化合物15的合成 通过Koutek,B等(J.Biol.Chem.1994,269,22937-22940)的方法制备化合物15。
化合物16的合成 通过Maxx,M.H等(J.Med.Chem.1989,32,1319-1322)的方法制备化合物16。
化合物18的合成 通过Konen等(J.Org.Chem.1975,40,3253-3258)的方法制备化合物18。
化合物20的合成 通过Snider等(J.Org.Chem.1987,52,307-310)的方法制备化合物20。
化合物29的合成 通过Cooke等(J.Org.Chem.1982,47,4955-4963)的方法制备化合物29。
N-羟基-9Z-十八烯酰胺(2)的合成 在N2下,将油酸(250μL,0.79mmol,1当量)溶解在无水CH2Cl2(4ml)中并冷却至0℃。缓慢加入草酰氯(2M在CH2Cl2中、1.2ml、2.4mmol、3当量)。温热溶液至25℃并在暗处搅拌3小时。真空除去溶剂并冷却烧瓶至0℃。缓慢加入过量的EtOAc中的羟胺(使用前由50%NaOH溶液将盐酸盐提取到EtOAc中)。真空除去溶剂并层析(SiO2,1.5×13cm,33-66%EtOAc-己烷梯度洗脱)得到N-羟基-9Z-十八烯酰胺2,为白色固体(104mg,45%)mp 61-62℃;1H NMR(CD3OD,400MHz)δ5.28-5.20(m,2H),2.00-1.91(m,6H),1.50(p,2H,J=6.8Hz),1.22-1.19(m,20H),0.80(t,3H,J=6.9Hz);13C NMR(CD3OD,100MHz)δ173.0,130.9,130.8,33.8,33.1,30.9(2),30.6,30.5,30.4,30.33(2),30.26,30.19,28.2,26.8,23.8,14.5;IR(薄层)·Vmax3276,2999,2917,2849,1665,1621,1463,1428,1117,1067,968cm-1;FABHRMS(NBA-NaI)m/z 320.2577(C18H35NO2+Na+所需值320.2565)。
1-氯-10Z-十九烯-2-酮(3)的合成 在25℃,用EtOAc(4.0ml,4.0mmol,3.5当量)中的1M HCl处理样品21(347mg,1.13mmol,1当量)10分钟,然后真空浓缩混合物。层析(SiO2,3×13cm,5%EtOAc-己烷)得到3(328mg,92%)为澄清油状物1H NMR(CD3OD,400 MHz)δ5.29-5.21(m,2H),4.18(s,2H),2.48(t,2H,J=7.3Hz),1.93(m,4H),1.50(p,2H,J=7.1Hz);1.31-1.21(m,20H),0.81(t,3H,J=6.8Hz);13C NMR(CD3OD,100MHz)δ204.5,130.9,130.8,49.3,40.3,33.1,30.9,30.8,30.6,30.5,30.40,30.37,30.19,30.17(2),28.1,24.6,23.8,14.5;IR(薄层)·Vmax2925,2854,1722,1463,1403,1260,1101,796,723 cm-1;FABHRMS(NBA)m/z 315.2468(C19H35OCl+H+所需值315.2455)。
8Z-十七烯(5)的合成 在25℃,N2下用Pb(OAc)4(197mg,0.44mmol1.1,当量)处理在无水苯(1.6ml)中18(120mg,0.40mmol,1当量)溶液并搅拌反应混合物50分钟。加入水(2ml)并用EtOAc(6×2ml)提取水层。干燥(Na2SO4)有机层,过滤并真空浓缩。层析(SiO2,2×13cm,1-5%EtOAc-己烷梯度洗脱)得到5(68mg,67%),为澄清油状物。光谱特征与文献描述的一致(Doleshall et al.,Tetrahedron Lett.1977,381-382;Kemp et al.,J.Am.OilChem.Soc.1975,52,300-302)。
2-氧代-9Z-十八烯酰胺(6)的合成 用PDC(51mg,0.13mmol,5当量)处理Ar下在无水DMF(0.13ml)中17(8mg,0.027mmol,1当量)容液并在25℃搅拌反应混合物1小时。用水(2ml)处理粗品反应物并用Et2O(4×2ml)提取水层。干燥(Na2SO4)有机层,过滤并真空浓缩。层析(SiO2,1×3cm,20-66%EtOAc-己烷梯度洗脱)得到6(6mg,70%)的白色固体及部分回收的起始原料(2mg,26%)。对于6mp 85-86℃;1H NMR(CDCl3,400MHz)δ6.79(br,1H),5.47(br,1H),5.37-5.28(m,2H),2.89(t,2H,J=7.4Hz),2.02-1.93(m,4H),1.59(p,2H,J=7.2Hz),1.39-1.24(m,20H),0.86(t,3H,J=6.8Hz);13CNMR(CDCl3,100MHz)δ198.6,161.9,130.1,129.6,36.5,31.9,29.7,29.5(2),29.3(2),28.9(2),27.2,27.1,23.1,22.7,14.1;IR(薄层)·Vmax3391,2915,2850,1716,1668,1470,1400,1108cm-1;FABHRMS(NBA-CsI)m/z 428.1547(C18H33NO2+Ca+所需值428.1566)。
2-氧-10Z-十九烯酰胺(7)的合成 在25℃用o-Ph(CO2)I(OAc)3(174mg,0.41mmol,3当量)处理无水CH2Cl2(2.8ml)中的26(42mg,0.14mmol,1当量)溶液并搅拌反应混合物1.5小时。用10%NaOH水溶液(30ml)处理混合物并用EtOAc(3×30ml)提取水层。干燥(Na2SO4)有机层,过滤并真空浓缩。层析(SiO2,1.5×13cm,10-20%EtOAc-己烷梯度洗脱)得到7(24mg,57%)的白色固体mp 69-70℃;1H NMR(CDCl3,400MHz)δ6.82(br,1H),5.68(br,1H),5.36-5.28(m,2H),2.88(t,2H,J=7.4Hz),1.98(m,4H),1.58(p,2H),J=7.0Hz),1.28-1.24(m,20H),0.85(t,3H,J=6.9Hz);13C NMR(CDCl3,100MHz)δ198.7,162.0,130.0,129.7,36.5,31.9,29.74,29.66,29.5,29.3(2),29.2,29.1,29.0,27.2,27.1,23.1,22.7,14.1;IR(薄层)·Vmax3395,3217,2922,2850,1718,1672,1601,1469,1406,1115cm-1;FABHRMS(NBA-NaI)m/z 332.2570(C19H35NO2+Na+所需值332.2565)。
2-氧-9Z-十八烯酸乙酯(8)的合成 在25℃,N2下,用o-Ph(CO2)I(OAc)3(287mg,0.68mmol,2当量)处理在无水CH2Cl2(1.1ml)中的18(102mg,0.34mmol,1当量)溶液并搅拌1小时。用10%NaOH水溶液(20ml)处理反应混合物并用EtOAc(3×20ml)提取。干燥(Na2SO4)有机层,过滤并真空浓缩。将残留物溶解在无水CH2Cl2(1.5ml)中并在N2下冷至0℃。缓慢加入草酰氯(2M在CH2Cl2中,0.5ml,1.0mmol,3当量)。温热反应混合物至25℃并在暗处搅拌3小时,之后用真空除去溶剂并加入无水EtOH(5ml)。层析(SiO2,2×10cm,1-5%EtOAc-己烷梯度洗脱)得到8(36mg,33%)的澄清油状物1H NMR(CDCl3,400MHz)δ5.37-5.27(m,2H),4.29(q,2H,J=7.2Hz),2.81(t,2H,J=7.3Hz),1.98(m,4H),1.61(p,2H,J=7.1Hz),1.36-1.24(m,21H),0.86(t,3H,J=6.8Hz);13C NMR(CDCl3,100MHz)δ194.8,161.3,130.1,129.6,62.4,39.3,31.9,29.8,29.5(2),29.3(2),28.92,28.56,27.2,27.1,22.9,22.7,14.1,14.0;IR(薄层)·Vmax2925,2854,1729,1462,1260,1056 cm-1;FABHRMS(NBA-CsI)m/z 457.1706(C20H36O3+Cs+所需值457.1719)。
2-氧代-10Z-十九烯酸乙酯(9)的合成 在25℃,Ar下,用DMAP(4mg,0.03mmol,0.1当量)、无水吡啶(77μl,0.95mmol,3当量)和草酰氯乙酯(71μl,0.64mmol,2当量)处理无水THF(0.2ml)中的油酸(100μl,0.32mmol,1当量)溶液。搅拌反应混合物24小时,之后加入另一份DMAP(46mg,0.37mmol,1.1当量),吡啶(80μl,0.95mmol,3当量),草酰氯乙酯(80μl,0.64mmol,2当量)和THF(0.5ml)。在25℃再搅拌反应混合物24小时,然后温热至40℃48小时,之后真空浓缩溶剂。层析(SiO2,2×13cm,0-10%EtOAc-己烷)得到9(46mg,43%)的澄清油状物;1H NMR(CDCl3,400MHz)δ5.36-5.28(m,2H),4.29(q,2H,J=7.1Hz),2.80(t,2H,J=7.3Hz),1.99(m,4H),1.60(m,2H),1.36-1.20(m,23H),0.85(t,3H,J=6.8Hz);13C NMR(CDCl3,100MHz)δ194.8,161.2,130.0,129.7,62.4,39.3,31.9,29.7,29.6,29.5,29.3(2),29.2,29.0,28.9,27.2,27.1,22.9,22.7,14.1,14.0;IR(薄层)·Vmax 2925,2854,1730,1465,1260,1059cm-1;FABHRMS(NBA-CsI)m/z 471.1875(C21H38O3+Cs+所需值471.1888)。
2-氧-十九烯酸乙酯(10)的合成 在25℃,Ar下,用DMAP(4mg,0.03mmol,0.1当量)、无水吡啶(85μl,1.1mmol,3当量)和草酰氯乙酯(79μl,0.71mmol,2当量)处理无水THF(0.2ml)中的硬脂酸(101mg,0.36mmol,1当量)溶液。搅拌反应混合物24小时,之后真空浓缩溶剂。层析(SiO2,2×13cm,5-10%EtOAc-己烷)得到10(35mg,30%),为白色固体物mp 43-44℃;1H NMR(CDCl3,400MHz)δ4.29(q,2H,J=7.2Hz),2.80(t,2H,J=7.4Hz),1.60(p,2H,J=7.2Hz),1.35(t,3H,J=7.1Hz),1.33-1.23(m,28H),0.86(t,3H,J=6.8Hz);13C NMR(CDCl3,100MHz)δ194.8,161.2,62.4,39.3,31.9,29.7(7),29.6,29.40,29.35,29.28,28.9,23.0,22.7,14.1,14.0;IR(薄层)·Vmax2916,2848,1733,1472,1463,723cm-1;FABHRMS(NBA-NaI)m/z363.2885(C21H40O3+Na+所需值363.2875)。
3-氧-2,2-二羟基十八烷酸叔-丁酯(11)的合成 用Oxone(249mg,0.41mmol,1.6当量)处理THF-H2O(2∶1;3ml)中的28(161mg,0.26mmol,1当量)的溶液并在25℃搅拌反应混合物7小时。加水(30ml)并用EtOAc(3×30ml)提取水层。合并有机层,干燥(Na2SO4),过滤并真空浓缩。层析(SiO2,2×15cm,10-20%EtOAc-己烷梯度洗脱)得到11(65mg,64%)的白色固体物mp 49-51℃;1H NMR(DMSO-d6,400MHz)δ6.96(s,2H),2.17(t,2H,J=7.4Hz),1.49-1.38(m,11H),1.22(s,24H),0.84(t,3H,J=6.8Hz);13C NMR(DMSO-d6,100MHz)δ205.6,174.5,94.2,81.5,35.6,33.6,31.3,29.0(3),28.9,28.8,28.72,28.70,28.53,28.46,27.4(2),24.5,22.9,22.1,13.9;IR(薄层)·Vmax3440,2914,2849,1728,1471,1371,1260,1122,831,718cm-1;FABHRMS(NBA-NaI)m/z 409.2925(C22H42O5+Na+所需值409.2930)。
1,1,1-三氟-10Z-十九烯-2-酮(12)的合成 在N2下将油酸(100μl,0.32mmol,1当量)溶解于无水CH2Cl2(1.5ml)中并冷却至0℃。缓慢加入草酰氯(CH2Cl2中2M,0.47ml,0.94mmol,3当量)。将反应混合物温热至25℃并在暗处搅拌3小时,之后真空除去溶剂。在25℃加入无水Et2O(2.2ml)、三氟乙酸酐(270μl,1.9mmol,6当量)和吡啶(0.2ml,2.5mmol,8当量)并搅拌溶液45分钟,之后被冷却至0℃。加入H2O(30ml)骤停反应和用CH2Cl2(3×30ml)提取水层。干燥(Na2SO4)有机层,过滤并真空浓缩。层析(SiO2,1.5×13cm,5%EtOAc-己烷中含1%Et3N)得到8(75mg,71%)的澄清油状物1H NMR(CDCl3,400MHz)δ5.37-5.28(m,2H),2.68(t,2H,J=7.3Hz),1.98(m,4H),1.65(p,2H,J=7.1Hz),1.29-1.25(m,20H),0.86(t,3H,J=6.9Hz);13C NMR(CDCl3,100MHz)δ191.6(d,J=17Hz),130.0,129.5,115.6(q,J=145Hz),36.3,31.9,29.8,29.6,29.5,29.3(2),29.1,29.0,28.7,27.2,27.1,22.7,22.4,14.1;IR(薄层)·Vmax2926,2855,1766,1467,1404,1261,1208,1153,1039,802,709cm-1;ESIMS m/z(M+)334。
1,1,1-三氟-9Z-十八烯-2-酮(13)的合成 在N2下,将无水CH2Cl2(1.8ml)中的27(101mg,0.38mmol,1当量)的溶液冷却至0℃并用草酰氯(CH2Cl2中2M,0.56ml,1.1mmol,3当量)滴加处理。将反应混合物温热至25℃并搅拌3小时,之后真空除去溶剂。在25℃加入无水Et2O(2.5ml),三氟乙酸酐(0.32ml,2.3mmol,6当量)和无水吡啶(0.12ml,1.5mmol,4当量)并搅拌溶液2小时,之后被冷至0℃。用水(30ml)处理反应混合物并用EtOAc(3×30ml)提取水层。干燥(Na2SO4)有机层,过滤并真空浓缩。层析(SiO2,2×15cm,10%EtOAc-己烷中含1%Et3N)得到13(65.5mg,54%)的澄清油状物1HNMR(CDCl3,400MHz)δ5.39-5.26(m,2H),2.69(t,2H,J=7.2Hz),1.99(m,4H),1.66(m,2H),1.35-1.24(m,18H),0.86(t,3H,J=6.9Hz);13CNMR(CDCl3,100MHz)δ191.4,130.5,129.1,115.6(q,J=146Hz),36.3,31.9,29.7,29.5,29.3(3),29.2,28.3,27.2,26.8,22.7,22.3,14.1;IR(薄层)·Vmax2926,2855,1765,1462,1209,1154,1024 cm-1;ESIMS m/z(M+Na+)343。
1,1,1-三氟-10E-十九烯-2-酮(14)的合成 在N2下,将无水CH2Cl2(3.5ml)中的反油酸(204mg,0.72mmol,1当量)的溶液冷却至0℃并用草酰氯(CH2Cl2中2M,1.1ml,2.2mmol,3当量)处理。温热反应混合物至25℃,搅拌3小时,之后真空除去溶剂。在25℃加入无水Et2O(5ml),三氟乙酸酐(0.6ml,4.3mmol,6当量)和无水吡啶(0.23ml,2.8mmol,4当量)并搅拌溶液1小时,之后冷却至0℃。用H2O(30ml)处理混合物并用EtOAc(3×30ml)提取水层。干燥(Na2SO4)有机层,过滤并真空浓缩。层析(SiO2,2×13cm,5-10%EtOAc-己烷中含1%Et3N梯度洗脱)得到14(190mg,79%)的澄清油状物1HNMR(CDCl3,400MHZ)δ5.41-5.31(m,2H),2.68(t,2H,J=7.3Hz),1.94(m,4H),1.64(p,2H,J=6.9Hz),1.28-1.24(m,2OH),0.86(t,3H,J=6.6Hz);13C NMR(CDCl3,100MHz)δ191.5(q,J=35Hz),130.6,130.1,115.6(q,J=291Hz),36.3,32.6,32.5,31.9,29.7,29.5(2),29.3,29.2,29.1,28.8,28.7,22.7,22.4,14.0;IR(薄层)·Vmax2925,2855,1765,1466,1208,1152,967,709cm-1;FABHRMS(NBA-NaI)m/z 334.2475(C19H33OF3-H+所需值334.2484)。
2-羟基-9Z-十八烯酰胺(17)的合成 在N2下,将无水CH2Cl2(0.7ml)中的18(52mg,0.18mmol,1当量)的溶液冷却至0℃并用草酰氯(CH2Cl2 中2M,0.22ml,0.44mmol,3当量)处理。使溶液温热至25℃并在暗处搅拌3小时,真空除去溶剂并将酰基氯冷至0℃。用过量浓NH4OH水溶液处理样品。层析(SiO2,1.5×10cm,66-100%EtOAc-己烷梯度洗脱)得到17(31mg,60%)的白色固体物mp103-104℃;1H NMR(CDCl3,400MHz)δ6.37(br,1H),5.64(br,1H),5.36-5.28(m,2H),4.12(t,1H,J=3.8Hz),2.66(br,1H),2.02-1.94(m,4H),1.86-1.77(m,1H),1.68-1.59(m,1H),1.43-1.24(m,20H),0.86(t,3H,J=6.8Hz);13C NMR(CDCl3,100MHz)δ176.6,130.0,129.7,71.9,34.8,31.9,29.7,29.6,29.5,29.3(2),29.2,29.1,27.2,27.1,24.9,22.7,14.1;IR(薄层)·Vmax3381,3289,2917,2848,1637,1461,1417,1331,1074cm-1;FABHRMS(NBA)m/z 298.2760(C18H35NO2+H+所需值298.2746)。
2-氯-9Z-十八烯酰胺(19)的合成 在N2下,将无水CH2Cl2(0.7ml)中的20(48mg,0.15mmol,1当量)的溶液冷却至0℃并用草酰氯(CH2Cl2中2M,0.23ml,0.46mmol,3当量)处理。使溶液温热至25℃并在暗处搅拌3小时,之后真空除去溶剂。冷却粗品酰氯至0℃并用过量浓NH4OH水溶液处理。层析(SiO2,1.5×10cm,20-33%EtOAc-己烷梯度洗脱)得到19(37mg,78%)的黄色固体物mp 49-50℃;1H NMR(CDCl3,400MHz)δ6.49(br,1H),5.92(br,1H),5.36-5.27(m,2H),4.29(m,1H),2.12-1.86(m,6H),1.53-1.16(m,20H),0.85(t,3H,J=6.9Hz);13C NMR(CDCl3,100MHz)δ171.9,130.1,129.6,60.6,35.5,31.9,29.7,29.6,29.5,29.3(2),29.0,28.7,27.2,27.1,25.8,22.7,14.1;IR(薄层)·Vmax3383,3183,3001,2921,2850,1657,1465,1412,1240,1100 cm-1;FABHRMS(NBA)m/z 316.2415(C18H34NOCl+H+所需值316.2407)。
1-重氮-10Z-十九烯-2-酮(21)的合成 在N2下,将油酸(1.0ml,3.2mmol,1当量)溶解于无水CH2Cl2(15ml)中。冷却溶液至0℃并加入草酰氯(CH2Cl2中2M,4.8ml,9.6mmol,3当量)。温热反应混合物至25℃并在暗处搅拌3小时。真空除去溶剂,之后用无磨砂玻璃接口将酰氯转移至烧瓶中并冷却至0℃。加入过量的在Et2O中的重氮甲烷(从50%KOH水溶液中的N-亚硝基甲脲制得并用KOH片干燥)。在0℃搅拌反应混合物1小时,然后温热至25℃过夜。用EtOAc(60ml)稀释溶液和用饱和NaHCO3水溶液(60ml)和饱和NaCl水溶液(60ml)洗涤。干燥(Na2SO4)有机层,过滤和真空浓缩。层析(SiO2,4.0×16cm,5-10%EtOAc-己烷梯度洗脱)得到21(0.89g,92%)的黄色油状物1H NMR(CD3OD,400MHz)δ5.72(br,1H),5.29-5.21(m,2H),2.23(m,2H),1.94(m,4H),1.50(p,2H,J=6.9Hz),1.23-1.20(m,20H),0.81(t,3H,J=6.9Hz);13C NMR(CD3OD,100MHz)δ198.8,130.9,130.8,41.6,33.1,30.9,30.8(2),30.6,30.5,30.4(2),30.3,30.2,28.1(2),26.5,23.8,14.5;IR(薄膜)Vmax3083,2924,2854,2102,1644,1463,1372,1144cm-1;FABHRMS(NBA)m/z 307.2738(C19H34N2O+H+所需值307.2749)。
N-氨基-9Z-十八烯酰胺(22)的合成 在N2下,0℃,用EDCI(267mg,0.90mmol,1.1当量)和DMAP(20mg,0.16mmol,0.21当量)处理无水CH2Cl2(12ml)中的油酸(250μl,0.79mmol,1当量)和肼一水合物(42μl,0.87mmol,1.1当量)的溶液,之后在25℃搅拌反应混合物7小时。加入另一份EDCI(269mg,0.91mmol,1.1当量)并在25℃再搅拌反应物12小时,之后真空除去溶剂。层析(SiO2,3×18cm,20-100%EtOAc-己烷梯度洗脱)得到22(123mg,52%)的白色固体物mp 95-96℃;1H NMR(CDCl3,400MHz)δ8.94(s,1H),5.36-5.27(m,2H),2.23(t,2H,J=7.6Hz),1.98(m,4H),1.63(p,2H,J=7.0Hz),1.27-1.24(m,20H),0.86(t,3H,J=6.7Hz);13C NMR(CDCl3,100MHz)δ169.7,130.0,129.7,34.1,31.9,29.8,29.7,29.5,29.3(2),29.23,29.19,29.12,27.21,27.17,25.4,22.7,14.1;IR(薄膜)Vmax3201,2917,2848,1595,1410,1184,1090,927,717,671 cm-1;FABHRMS(NBA-NaI)m/z 297.2916(C18H36N2O+H+所需值297.2906)。
10Z-十九烯酸甲酯(23)的合成 在N2下,将苯甲酸银(21.8mg,0.095mmol,0.1当量)和无水Et3N(0.19ml,1.36mmol,1.4当量)溶液滴加到1-重氮基-10Z-十九烯-2-酮(21,298mg,0.97mmol,1当量)的无水甲醇(1.5ml)的溶液中并在25℃搅拌反应物2.5小时。用EtOAc(30ml)稀释反应混合物并用1N HCl水溶液(30ml)和饱和NaHCO3水溶液(30ml)洗涤。干燥(Na2SO4)有机层,过滤并真空浓缩。层析(SiO2,3×15cm,1-5%EtOAc-己烷梯度洗脱)得到23(246mg,82%)的澄清油状物1H NMR(CDCl3,400MHz)δ5.35-5.27(m,2H),3.63(s,3H),2.27(t,2H,J=7.6Hz),1.97(m,4H),1.59(p,2H,J=7.3Hz),1.26-1.24(m,22H),0.85(t,3H,J=6.8Hz);13C NMR(CDCl3,100MHz)δ174.3,129.9,129.8,51.4,34.1,31.9,29.74,29.70,29.5,29.3(2),29.2(2),29.1(2),27.2(2),24.9,22.6,14.1;IR(薄膜)Vmax2925,2854,1744,1465,1436,719cm-1;FABHRMS(NBA-NaI)m/z311.2969(C20H38O2+H+所需值311.2950)。
10Z-十九烯酸(24)的合成 在25℃,用LiOH·H2O(250mg,5.96mmol,3当量)处理THF-CH3OH-H2O(3∶1∶1;7ml)中的23(620mg,2.0mmol,1当量)的溶液并搅拌反应混合液3小时。加入1N HCl水溶液(60ml)酸化反应混合物并用EtOAc(2×60ml)提取水层(2×60ml)。干燥有机层(Na2SO4),过滤并真空干燥。层析(SiO2,4×15cm,10-100%EtOAc-己烷梯度洗脱)得到24(510mg,86%)浅黄色油状物1H NMR(CDCl3,400MHz)δ5.37-5.28(m,2H),2.32(t,2H,J=7.5Hz),1.98(m,4H),1.61(p,2H,J=7.3Hz),1.27-1.25(m,22H),0.86(t,3H,J=6.9Hz);13C NMR(CDCl3,100MHz)δ180.4,130.0,129.8,34.1,31.9,29.8,29.7,29.5,29.3(2),29.2(2),29.0(2),27.20,27.17,24.6,22.7,14.1;IR(薄膜)Vmax2925,2854,1711,1466,1412,1260,1093,1019,938,801,722cm-1;FABHRMS(NBA-NaI)m/z319.2605(C19H36O2+Na+所需值319.2613)。另外,通过Doleshall.G.的方法可制备本化合物(Tetrahedron.Lett.1980,21,4183-4186)。
2-羟基-10Z-十九烯酸(25)的合成 在Ar下,在-55℃从无水THF(2ml)中的二异丙胺(0.4ml,2.9mmol,4.5当量)和正-Buli(2.3M,1.1ml,2.5mmol,4当量)制备LDA的新鲜溶液。在-55℃将THF(0.5ml)中的10Z-十九烯酸(24,188mg,0.63mmol,1当量)和无水HMPA(0.11ml,0.63mmol,1当量)的溶液滴加到LDA溶液中。逐渐温热反应混合物至25℃并在50℃温热30分钟。再将反应混合物冷至25℃之后,向溶液吹入O220分钟。用1N HCl水溶液(30ml)处理混合物并用EtOAc(3×30ml)提取水层。干燥(Na2SO4)有机层,过滤并真空浓缩。层析(SiO2,2×13cm,50-100%EtOAc-己烷梯度洗脱)得到25(96mg,49%)的白色固体物mp 53-54℃;1H NMR(CDCl3,400MHz)δ5.36-5.28(m,2H),4.24(dd,1H,J=7.5Hz,7.6Hz),1.98(m,4H),1.83(m,1H),1.67(m,1H),1.47-1.24(m,22H),0.86(t,3H,J=6.8Hz);13C NMR(CDCl3,100MHz)δ179.8,130.0,129.7,70.2,34.0,31.9,29.8,29.7,29.5,29.33,29.31(2),29.22,29.19,27.20,27.16,24.8,22.7,14.1;IR(薄层)·Vmax3512,2917,2849,1704,1467,1293,1274,1251,1212,1143,1079,1041,918,726,648cm-1;FABHRMS(NBA-NaI)m/z 335.2574(C19H35O3+Na+所需值335.2562)。
2-羟基-10Z-十九烯酰胺(26)的合成 在N2下,将无水CH2Cl2(1.5ml)中的25(71mg,0.23mmol,1当量)溶液冷至0℃并用草酰氯(CH2Cl2中2M,0.34ml,0.68mmol,3当量)滴加处理。温热反应混合物至25℃并在暗处搅拌3小时。真空除去溶剂,冷却残留物至0℃,并加入过量的浓NH4OH水溶液(2ml)。层析(SiO2,1.5×13cm,50-66%EtOAc-己烷梯度洗脱)得到26(53mg,75%)的白色固体物mp 101-102℃;1H NMR(CDCl3,400MHz)δ6.36(br,1H),5.65(br,1H),5.36-5.28(m,2H),4.12(dd,1H,J=7.9Hz,8.0Hz),1.99(m,4H),1.81(m,1H),1.63(m,1H),1.43-1.24(m,22H),0.86(t,3H,J=6.9Hz);13C NMR(CDCl3,100MHz)δ176.6,130.0,129.8,71.9,34.8,31.9,29.8,29.7,29.5,29.4,29.3(3),29.2,27.20,27.16,24.9,22.7,14.1;IR(薄层)·Vmax3383,3290,2917,2849,1644,1467,1426,1331,1075cm-1;FABHRMS(NBA-NaI)m/z 334.2731(C19H37NO2+Na+所需值334.2722)。
8Z-十七烯酸(27)的合成 在25℃,N2下,用去离子H2O(2.5ml)中的NaClO2(80%,208mg,2.3mmol,9当量)和NaH2PO4·H2O(250mg,1.8mmol,7当量)溶液滴加处理5(66mg,0.26mmol,1当量)和2-甲基-2-丁烯(1.6ml,15.1mmol,58当量)的tBuOH(6.5ml)的溶液。使反应混合物再搅拌15分钟,之后真空浓缩。用水(30ml)处理残留物并用EtOAc(3×30ml)提取水层。干燥(Na2SO4)有机层。过滤并真空浓缩。层析(SiO2,2×13cm,10-20%EtOAc-己烷梯度洗脱)得到27(66mg,95%)的澄清油状物。光谱特征与文献描述一致(Miralles et al.,Lipids 1995,30,459-466;Couderc et al.,Lipids1995,30,691-699)。
3-氧代-2-(三苯磷亚基)十八烷酸酯(28) 在N2下,将无水CH2Cl2(2ml)中的十六烷酸(103mg,0.40mmol,1当量)的溶液冷却至0℃并用草酰氯(CH2Cl2中2M,0.6ml,1.2mmol,3当量)处理。在25℃搅拌溶液3小时,之后真空除去溶剂。在5℃用苯(3ml)中的粗品酰氯溶液滴加处理在无水苯(3ml)中的(三苯磷亚基)乙酸叔-丁酯(Cooke et al.,J.Org.Chem.1982,47,4955-4963)29,167mg,0.44mmol,1.1当量)和双(三甲基甲硅烷基)乙酰胺(195μl,0.79mmol,2当量)的溶液。温热反应混合物至25℃并搅拌1.5小时,之后真空除去溶剂。层析(SiO2,2×15cm,10-20%EtOAc-己烷梯度洗脱)得到28(193mg,78%)的澄清油状物1H NMR(CDCl3,400MHz)δ7.67-7.61(m,6H),7.49-7.37(m,9H),2.82(t,2H,J=7.6Hz),1.55(p,2H,J=7.0Hz),1.23-1.21(m,24H),1.04(s,9H),0.86(t,3H,J=6.8Hz);13C NMR(CDCl3,100MHz)δ197.7(d,J=6Hz),167.3(d,J=13Hz),132.9(d,6C,J=9Hz),131.3(3),128.4(d,6C,J=12Hz),127.4(d,3C,J=96Hz),78.4,71.2(d,J=114Hz),40.0,31.9,29.70(8),29.66,29.3,28.1(3),25.9,22.7,14.1;IR(薄层)·Vmax3426,2923,2852,1665,1551,1438,1363,1302,1173,1106,1081,746,690cm-1;FABHRMS(NBA-CsI)m/z 615.3959(C40H55O3P+H+所需值615.3967)。
连接常数的测定 使用离子选择氨电极(ATI/Orion)直接测定随反应产物形成的氨来评价这些化合物对油酰胺水解的效力。通过Dixon方法测定除油酸外的所有Kis。(使用公式Ki=-Xint/[1+[S]/Km]在恒定底物浓度下将[I]的加权线性近似对1/速率曲线图的X截距可转化成Ki)。从速率的非线性加权最小二乘法近似对底物和抑制剂浓度的关系曲线可得到油酸Ki。在调至pH 10.0的10ml 50mM CAPS缓冲液(Sigma)中恒速搅拌进行测定,酶催化油酰胺水解速率的pH是最大的值。在涉及Dixon分析的所有情况中底物浓度是100μM。在底物浓度范围10-100μM测定油酸Ki。在加入50mM CAPS缓冲液之前将底物和抑制剂溶解于DMSO中,产生1.67%的最终DMSO分析浓度。上至20%DMSO浓度仅表现出较小的对速率的作用。在无抑制剂存在下将酶浓度调节至产生大约0.2μM/min速率,用7-10分钟观察产生氨的速率。
所使用的酶为来自小鼠肝脏的粗品,非均匀、含生物膜的制剂。煮沸酶5分钟使其无活性。在溶解度限度内,所有抑制剂在大于100Ki浓度时均获得100%抑制活性。在无加入的油酰胺存在下,未发现可测得的活性。同样,在这样pH无酶存在下,从100μM油酰胺仅测得非常小的产生氨速率。这说明在粗品酶制剂中观察到催化油酰胺水解活性是从单一蛋白引起。
从4个独立分析中得到平均Km值作为测定油酰胺的Km。在Lineweaver-Burke图中从加权线性近似适合数据中得到各自独立的Km值。通过非线性方法测定油酸抑制的结果可得到第5个同时产生的Km。用标准Michaelis-Menten动力学方程处理适合的速率数据(在水情况下,当第二底物浓度为恒定时,将Ping Pong BiBi动力学速率方程简化成简单的Michaelis-Menten-like方程)。在30-100μM范围内,反应速率基本具有取决于底物浓度的零序。
因为我们还不能够测定存在于酶样品中油酰胺水解酶的数量,所以我们在此不能取Vmax值。我们的抑制数据提示酶浓度应低于2mM,因为较高酶浓度可引起溶液中抑制剂的明显消耗,在[E]>>Ki的限度情况下,引起明显测定的Ki值为[E]/2。因为1nM是测定的最低抑制恒量。所以[E]<2nM。
对Kis带来的误差值,应考虑由数据的误差处理扩散(propagation)衍生的拟合良好度评价。它们不必是再现性的标志。然而,在重复实验的情况下,正如在此给出明显误差值所预计的,其结果是在统计范围内。
pH-速率相关性 将粗品酶加到有适当pH,含5%DMSO的20ml缓冲液中的200μM油酰胺(约为溶解度极限)的溶液中。(高达20%DMSO浓度仅对酶速度具有最小的作用)。使用50mM柠檬酸钠/Bis-tris缓冲液作为pH 4-9范围的数据取值点。使用50mM Bis-tris/CAPS作为8-11范围的数据取值点。在pH 12,设定溶液为自身缓冲液。在定期间隔中,除去1ml等份,用9ml pH 14缓冲液稀释。用对照已知标准校定的连接720A计(Orion)的离子选择氨电极(Orion)测试氨浓度。从使用标准最小二乘方法相应曲线的线性部分得到速率。这些速率对pH再作图并采用加权非线性最小二乘法(Connors,K.A.,Binding Constants;WileyNew York.1987,pp 385-395)与图12的方程拟合(Fersht,A.,Enzyme Structure andMechanism;W.H.Freeman and Co.New York.1985,pp 157 Connors,K.A.,Binding Constants;WileyNew York.1987,pp 385-395)。
在两个pKa为紧密靠拢的情况中(小于1个单位),在溶液中存在充分混合的各种酶。在这样的条件下,实际上未观察到那种酶在理论上表现出速率最大值,因为最有活性的酶类也达不到这样高的丰富程度。正是这个原因用简单图解方法测定pKa,可以与在此给出的9.7和10.3 pH单位值不一致。
大规模(12-14只大鼠肝脏)肝质膜的制备 将12-14只大鼠肝切成片,置于300ml 1mM NaHCO3中。渗滤被切成小片的肝溶液并用另外的300ml的1mM NaHCO3洗涤。除去任何明显连接的组织。将肝转移至新鲜的800ml的1mM NaHCO3中,搅拌,然后以400ml等份转移至混和器中,合并混和的肝液,并经8层干酪布(cheesecloth)过滤。用1mM NaHCO3稀释至1.0L并在4℃6000rpm离心20分钟(Beckman JA-17rotor)。倾出上清液,在1mM NaHCO3重新悬浮片状物,合并并用dounce匀浆器匀浆。重复离心,倾折和再悬浮/匀浆,得到最终的约90ml体积。将匀浆物加到2体积量的67%蔗糖中,充分混合,并转移到超离心相配管中。用30%蔗糖加到管顶部,在27000旋转2小时(SW-28 rotor)。从蔗糖梯度中除去中间黄色带,合并,在1 mM NaHCO3中重新悬浮并用dounce匀浆器匀浆。在4℃,于17000rpm进一步离心样品45分钟(JA-17 rotor)。除去上清液,在100mM Na2CO3中再悬浮片状物,用dounce器匀浆并放置冰上30分钟。在27000rpm离心溶液1小时(SW-28 rotor),倾出上清液并在15ml50mM Tris HCl,pH 7.4(含有1mM EDTA)中再悬浮片状物,用dounce匀浆器匀浆。将该原料分成若干等份,在-78℃冷冻备用。每份酶样品仅冷冻一次。
权利要求
1.下述抑制剂在制备用于抑制油酰胺水解酶的药物中的用途,其中所述抑制剂包含首基和以共价键连接于所述的首基的烃尾基,其中所述的首基包括亲电子羰基和选自由下列结构式代表的基团
和其中所述的烃尾基选自由下列结构式代表的基团
如果首基是式(11)的基团,则烃尾基是式(III)或(IV)的基团,如果首基是式(1)或(2)的基团,则烃尾基是式(III)或(IV)的基团,
如果首基是式(8)的基团,则烃尾基是式(I)或(II)的基团。
2.权利要求1的用途,其中所述抑制剂由下面结构式代表
3.权利要求1的用途,其中所述抑制剂由下面结构式代表
4.权利要求1的用途,其中所述抑制剂由下面结构式代表
5.权利要求1的用途,其中所述抑制剂由下面结构式代表
6.权利要求1的用途,其中所述抑制剂由下面结构式代表
7.权利要求1的用途,其中所述抑制剂由下面结构式代表
8.权利要求1的用途,其中所述抑制剂由下面结构式代表
全文摘要
设计和合成导致内源性诱导睡眠脂质(1,顺-9-十八烯酰胺)水解的油酰胺水解酶抑制剂。大多数有效抑制剂具有亲电子羰基,能够可逆形成(硫代)半缩醛或(硫代)半缩酮模拟丝氨酸或半胱氨酸蛋白酶催化反应的过渡态。特别是发现紧密结合的α-羰基乙酯8(1.4nM)和三氟甲基酮抑制剂12(1.2nM)具有特殊的抑制剂活性。除抑制剂活性外,某些抑制剂表现出诱导实验动物睡眠的兴奋剂活性。
文档编号A61K31/231GK101156840SQ200710166760
公开日2008年4月9日 申请日期1997年6月26日 优先权日1996年6月26日
发明者R·A·勒尔纳, C·-H·王, D·L·波格尔, S·H·亨克森 申请人:斯克里普斯研究学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1