用于生产定制的矫形植入物的方法与流程

文档序号:12281684阅读:218来源:国知局
用于生产定制的矫形植入物的方法与流程

本发明涉及用于设计和制造定制的矫形植入物的方法。更具体地,该方法涉及设计和生产用于插入到骨骼的切除区域的患者特异性的矫形植入物。



背景技术:

骨肉瘤是一类源自于骨骼的癌症,主要影响儿童或青壮年。在20世纪70年代之前,截肢是唯一可用的治疗方法。截肢导致患者在生活质量方面的不良后果,因此目前的趋势集中于在切除全部肿瘤的同时试图挽救受影响的肢体,以减少局部复发的风险,从而使存活的前景最大化。一旦肿瘤被切除,通常需要进一步手术来重建肢体。

挽救肢体的努力往往涉及插入矫形植入物以重建骨骼或用假体替换天然关节。常规的矫形植入物一般具有实体结构,其旨在结构上稳固矫形植入物所附接到的切除肿瘤后的骨骼。为了稳固小肿瘤切除术后的骨骼,可以使用多个螺钉将实体金属板类型的植入物固定到骨组织上。这些植入物有标准形状和尺寸可供使用,但在手术期间外科医生通常使用反复试验来调整植入物轮廓以与骨胳对准。对于位于关节附近的肿瘤,使用全关节置换假体。这些植入物在设计上是坚固的以提高疲劳寿命,且相应地需要从受影响的区域以及未受影响的区域显著地去除骨组织以容纳假体。在骨骼还没有成熟的年轻患者的情况下,可延伸的假体可能需要重复到生物力学实验室进行加长才可以使用。一旦骨骼发育成熟,可延伸假体用永久性关节置换假体来替换,导致对于患者的进一步的手术和康复。对于上年纪的患者,由于身体活动的减少以及其他诸如骨质疏松症等与年龄有关的并发症,假体失效的可能性更大。此外,对于这样的假体的安置策略往往集中于标准矫形植入物的构造以及现有骨骼需要如何成形以符合植入物,而不是着眼于骨骼的解剖学功能和需要什么来维持肢体的最佳生物力学功能。

在现有骨骼和矫形植入物之间的刚度的差异可以导致骨的再吸收和矫形植入物的后续松动。尽管在一些情况下,常规的矫形植入物的确提供了令人满意的结果,该结果允许患者返回到积极的生活方式,但在其他情况下,使用常规的矫形植入物已经导致延长康复、疼痛、不适的时间、以及缺乏灵活性。因此,需要发展定制的矫形植入物,所述矫形植入物针对受影响区域的负荷条件而被优化,并且负担得起的且可以迅速地生产。

因此,期望能够设计和制造为患者定制的并专用于病变的骨架元件的矫形植入物。具体地,期望能够实现矫形植入物的自动设计,该矫形植入物提供对骨骼的固有生物力学功能和提高骨向内生长速率提供适当的折中。最后,期望对设计和制造定制的矫形植入物的整个过程进行优化以使矫形植入物的设计、制造和安置能够在手术的时间限制内进行。



技术实现要素:

根据本发明的方案,提供了一种用于生产定制的矫形植入物的方法,所述方法包括如下步骤:(a)扫描将从其切除骨骼的病变区域的骨骼,以获得骨骼的未经切除体积的三维数字图像;(b)在骨骼的病变区域已经被切除之后扫描所述骨骼,以获得相应的骨骼的切除后体积的三维数字图像;(c)将所述骨骼的未经切除体积的三维数字图像与相应的所述骨骼的切除后体积的三维数字图像进行比较,以估计已经被切除的骨骼的体积;(d)利用对已经被切除的所述骨骼的体积的所述估计来设计基本上对应于所述骨骼的切除后体积的构造的定制的矫形植入物,该植入物被构造为基本上恢复所述骨骼的生物力学功能;(e)制造所述定制的矫形植入物;以及(f)提供定制的矫形植入物用于插入到所述骨骼的切除区域中。

所述定制的矫形植入物的以基本上恢复所述骨骼的所述生物力学功能的设计包含考虑在对应于已经被切除的所述骨骼的骨类型上的一个或多个典型的负荷条件。例如,这可能会涉及考虑所讨论的骨类型的解剖功能和在各种典型活动中预期的骨负荷。

所述定制的矫形植入物的设计优选地包含考虑对应于切除的骨骼的骨类型所承受的典型的最大应力和挠度(deflection)。即,可以考虑到患者的体格,对在诸如走、跑、跳的典型的活动中由所述骨类型承受的负荷以及外部冲击进行建模。

在具体的实施例中,所述定制的矫形植入物包括栅格型几何结构。栅格型几何结构的密度被配置为增强骨内生长并被优化以抵消在骨骼-植入物界面所产生的应力。栅格型几何结构是优选的,因为它提供了良好的强度重量比、减少了应力遮挡,并且可以使用增材技术来制造。在更具体的实施例中,栅格型几何结构包括周期性布置。这种布置提供了更加可预测的机械特性和性能,且因此,提供了对现场定制的矫形植入物的最终性能的更好的控制。即,改变骨骼/植入物界面处的栅格结构的孔隙率可以用于增强骨向内生长或增加植入物的刚度。

优选地使用增材制造技术来制造定制的矫形植入物。增材制造技术可包含选择性激光熔化技术。

在本发明的一种形式中,扫描骨骼以获得三维数字图像包含:获得多个二维数字图像,并由其构建三维数字图像。

每个三维数字图像可以包括立体光刻文件(STL)。

扫描骨骼以获得一个或多个三维数字图像可包含对诸如计算机断层扫描(CT)扫描仪和磁共振成像(MRI)的医学成像的使用。替代地,扫描所述骨骼以获得一个或多个数字图像可包含使用激光扫描仪。

优选地,所述三维数字图像被用于生成定制的矫形栅格植入物的三维计算机模型。所述三维计算机模型随后被传送到三维打印机。

在一个具体的实施例中,骨骼的病变区域受到骨肉瘤影响。

在本发明的优选形式中,用于生产定制的矫形植入物的方法的步骤在所述患者处于麻醉状态下的时间段内连续地发生。

根据本发明的另一个方案,提供了一种定制的矫形植入物,通过包括以下步骤的方法来形成该植入物:扫描将从其切除骨骼的病变区域的骨骼,以获得骨骼的未经切除体积的三维数字图像;在骨骼的病变区域已经被切除之后扫描所述骨骼,以获得相应的骨骼的切除后体积的三维数字图像;将所述骨骼的未经切除体积的三维数字图像与相应的所述骨骼的切除后体积的三维数字图像进行比较,以估计已经被切除的骨骼的体积;利用对已经被切除的所述骨骼的体积的所述估计来设计基本上对应于所述骨骼的切除体积的构造的定制的矫形植入物,该植入物被构造为基本上恢复所述骨骼的生物力学功能;以及制造所述定制的矫形植入物。

附图说明

现在将参照附图对本发明进行进一步地详细描述。应当理解,附图的特殊性并不取代的本发明的前面描述的一般性。

图1是示出根据实施例的用于生产定制的矫形植入物的方法的流程图。

图2A至图2C示出更详细的流程图,所述流程图显示了用于生产定制的矫形植入物的方法;

图3A是示出要被移除的组织的量的病变骨骼的示意图;

图3B示出病变骨骼和正常骨骼之间的3D比较以协助手术计划;

图3C示出了图3A的病变骨骼,其中移除了骨肉瘤组织;

图4A和图4B示出了两个不同的STL文件比较的结果来估计从不同骨类型的病变骨骼中移除的组织的量;

图5A至图5C示出定制的矫形植入物的逐步呈现以替换从在图4B和5A所示的病变骨骼中移除的组织的量;

图6A和图6B是示出对步行期间由切除的股骨所承受的负荷和应力的确定的示意图;

图7A示出针对负荷条件优化、但不能使用增材制造技术来制造的栅格结构的示例;

图7B示出针对负荷条件优化、并进一步优化为使用增材制造工艺进行制造的栅格结构;

图8A和图8B示出了使用STL文件的直接导入所产生的周期性栅格结构的示例;

图9A至图9D是可以在适合的周期性栅格结构中使用的示例性的栅格结构的单元格;

图10A和10B示出功能性梯度结构应用于栅格几何结构;

图11A至图11C示出一系列示意图,所述示意图显示了被插入以替换切除的组织的定制的矫形植入物。

具体实施例

首先,参照图1,示出了例示用于生产定制的矫形植入物的方法100的流程图。在步骤110中,扫描将从其切除骨骼的病变区域的骨骼以获得骨骼的未经切除体积的三维数字图像。在步骤120中,扫描从其中已经切除骨骼的病变区域的相同骨骼以获得骨骼的切除后体积的三维数字图像。在步骤130中,将骨骼的未经切除体积的三维数字图像与相应的骨骼的切除后体积的三维数字图像进行比较以估计已经被切除的骨骼的体积。在步骤140中,使用对已被切除的骨骼的体积的估计来设计基本上对应于骨骼的切除体积的构造的定制的矫形植入物。进行建模以确保建议的定制的矫形植入物应该基本上恢复了骨骼的生物力学功能。在步骤150中,制造定制的矫形植入物。最后,在步骤160中,提供定制的矫形植入物用于插入到骨骼的切除区域中。

应当理解,在相应的患者处于手术中并且通常在麻醉状态下的同时来进行本方法的各个步骤。此外,本文中在设计和制造矫形植入物来替换手术上被切除以移除骨肉瘤的组织部分的上下文中来描述本发明。然而,可以理解的是,生产定制的矫形植入物的方法可以具有比于此描述本发明的上下文中的应用更广泛的应用。

使用后面描述的增材技术或三维打印技术可以实现在手术时间限制内制造定制的植入物。

现在将参照图2A到2C中提供的流程图对该方法进行更加详细地描述。现参照图2A,在步骤205中,手术团队通过例如使用激光器或计算机断层扫描(CT)扫描仪对骨骼进行扫描以取得该病变影响骨骼的医学成像数据。对骨骼进行成像以获得三维模型需要获得多个二维数字图像并由其构建三维数字图像。一旦扫描完成,在步骤210中,对医学成像数据进行处理,以便识别出即时性骨骼的相关的特征和属性,如骨骼内骨肉瘤的解剖位置、骨肉瘤的形状和尺寸。在步骤215中,手术团队使用如图3B中例子所示的病变的和正常的骨骼的三维比较来检查如图3A中例子所示的病变骨骼的医学成像数据以确定要被切除以移除骨肉瘤的骨骼的区域。在这个阶段中,手术团队确定将如何固定定制的矫形植入物到骨骼上,从而在矫形植入物的设计中可以考虑到优选的固定策略。如图3C所示的手术数据在外科手术期间被实时发送给工程团队。

在步骤220中,处理后的扫描数据由工程团队进行审核且开始矫形植入物的设计过程。医学图像的数据文件通常包括被转换成如图3A中的例子所示的三维立体光刻(STL)文件的CT扫描数据。骨骼的切除后体积的STL文件可以直接导入到设计算法中,避免了对医学成像数据的抽取或使用有限元网格创建软件的任何需要。这最终导致定制的植入物的最佳几何完整性的增强以及更精确的配合。

如在图4A和4B中的例子所示,所得到的虚拟三维模型用于比较骨骼的未经切除体积的模型与骨骼的切除后体积的模型,以提供对将要被切除的骨骼的体积的估计。

图5A至5C进一步示出STL文件可以如何用于对如图5B中所示的将要被切除的组织510的量进行建模。接着,以切除前的医学图像数据作为约束条件,使用CAD建模精确地填充骨骼的切除区域510,以提供如图5C中所示的建议的矫形植入物520的一般化形状。

由于肢体挽救手术的目的是用不仅基本上对应于骨骼的切除体积的构造,而且也确保了矫形植入物基本上符合周围骨骼的生物力学特性的定制的矫形植入物来填充所切除的区域,所以矫形植入物设计必须考虑到周围骨骼的特性。在步骤225中,可以使用利用骨密度库和良好建立的理论模型利用杨氏模量-骨密度关系来计算这些特性。

高分辨率STL文件的使用使得能够对从医学成像数据分辨出的诸如肌腱和韧带附件的患者特异性负荷和边界条件进行准确地分配。患者特异性负荷和边界条件通常由磁共振成像(MRI)数据等来确定,同时切除后的骨骼体积可以基于计算机断层扫描(CT)数据、激光扫描仪等来判定。

在步骤230中,在考虑到患者的年龄和诸如身高、体重等体格的同时,对各种身体活动和运动进行模拟,以确定将由定制的矫形植入物固定后所承受的负荷。这些活动可以包括走、跑、跳和外部冲击。每个活动都会使矫形植入物承受不同的负荷大小和方向。

图6A示出模拟的示例,其中示出步行时股骨上的负荷。这些负荷可以使用OpenSim软件工具(Delp SL、Anderson FC、Arnold AS、Loan P、Habib A、John CT、Guendelman E、Thelen DG.OpenSim:创建和分析运动的动态仿真的开源代码软件;关于生物医学工程的IEEE会刊(2007))等来估计。将估计的负荷应用于股骨的三维模型来示出如图6B中所示的股骨的不同区域上的负荷。根据患者的体格,不同的活动将使矫形植入物承受不同大小和方向的负荷。

现参考图2B,在步骤235中,建立由与骨骼的切除体积共形的(conformal)栅格结构的矫形植入物的数字模型。该步骤使用自定义设计算法来执行,其自动输入植入物体积并将其转换成周期性栅格结构。在这一阶段中,通过图形用户界面(GUI)对如密度梯度、单元格的选择等的特征进行交互式地选择。

在步骤240中,对所得到的定制的矫形植入物的数字模型进行调整,以适应使矫形植入物能够被适当地定位并固定到骨骼上所必需的必要的外科手术特征。这样的外科手术特征包括定制的手术引导件、固定支架和定做的螺丝。

随后,在步骤245中,对建议的矫形植入物的构造进行评估,以判定它是否可以使用增材技术来制造。典型的增材制造的部件使用支撑结构以支撑该部件抵抗在铺设和固化前一层时产生的负荷。这些结构难以移除,尤其对于如栅格结构等复杂的几何结构。因此,期望避免在部件内使用支撑结构。在步骤250中,如果建议的矫形植入物使用增材技术不使用支撑结构就不能够被制造,则接着,在步骤253中,对建议的矫形植入物的构造进行改进以满足制造限制条件。一些适当的改进的示例包括改变特征厚度、改进特征的倾斜度、增加或去除支撑特征。通过产生另外的可移除的支柱来补偿由于栅格和固定支架之间的热梯度而产生的剩余应力。

数字植入物模型的开发和优化考虑了骨骼的解剖学功能、如密度梯度和刚度的相应变化等的骨骼的特性,以及在典型的活动和运动期间矫形植入物将承受的预期负荷。

一旦在步骤255中确保植入物的可制造性,如图7A和图7B中一般地所示栅格几何结构或桁架结构700、750可以被自动优化以承受如步骤230所确定的规定的应力、挠度和负荷条件。

在图中7B中所示的栅格结构750被优化以抵消所有可能形式的负荷条件并将负荷传递给承重骨骼以及使其自身适合于通过增材技术来制造。图7A所示的栅格结构700示出不能使用增材制造进行制造,且因此,不适合于在手术时间限制内快速制造定制的矫形植入物的优化的栅格结构的示例。

具有周期性布置的栅格结构是优选的,即,节点和支柱的周期性布局,因为这产生可预测的机械特性和性能。周期性布置使得能够利用基于单元格的拓扑结构,其中,用户可以根据植入物的结构要求来分配不同类型的单元格。图8A示出这种周期性栅格结构800的示例。

与此相反,非周期性结构具有支柱和节点的非组织的布置,使得很难预测机械性能。目前,采用这两种策略来产生共形的栅格结构。使用最常用的方法,将要填充的组织体积与栅格单元格的周期性布置相交(intersect)。由于栅格结构的周期性和非周期性的表面轮廓,无法保证节点处栅格结构的相交。因此,这样结构的结构完整性被妥协,则不能实现使用周期性结构的目的。这样结构也难以利用可用的优化工具来优化。使用产生共形的栅格结构的另一方法,使用STL处理软件来抽取组织性成形的体积,并将节点和顶点的相应布置转换成栅格结构。由于STL文件上三角形的非周期性安置,所得到的结构也是非周期性的。此外,作为抽取期间形状变形的结果,肌肉负荷和边界条件的准确的应用是困难的。目前建议的算法考虑了潜在的缺点和上述问题。所产生栅格结构直接由高分辨率STL文件生成,使负荷条件能够被精确分配。此外,所有的节点都位于STL的表面上,确保负荷被施加在节点处并且对于这种结构的优化过程在计算上是高效率的。

图9A至9D示出了可以应用于例如如图8A和8B所示的周期性栅格结构810的单元格类型的示例。图9A示出了体心立方单元格,图9B示出了具有垂直支柱的面心立方单元格,图9C示出了具有垂直支柱的面体心立方体,且图9D示出具有水平支柱和垂直支柱的面体心立方体。如图9A所示的体心立方(BCC)型单元格由于其的顺应性而被有效地使用在冲击吸收应用中。与此对比的是,如图9B中所示的面心立方(FCC)型单元格在压缩负荷下变得更硬并因此可用于能量吸收。FCC型单元格当在Z方向上加负荷时相比于在X和Y方向上加负荷倾向于更坚固。这种特性使它们可用于负荷承受植入物,由于所得到的结构可以在负荷方向上相比于其它方向上表现出增大的刚度,使得植入物的重量能够减少。将水平元件加到单元格上,例如,参见图9D中所示的单元格,当与任何其它所示的单元格类型相比时,增加了结构对扭转和剪切负荷的抵抗力。

现参照图10A和10B,栅格结构的周期性还使得能够应用功能性梯度结构以允许通过改变靠近骨骼/植入物界面附近的栅格结构的密度来调节刚度和/或提高骨融合(骨向内生长)。图10B示出通过采用不同的单元格类型和当与结构的其余部分相比时更大的支柱直径来使栅格结构的密度朝向植入物界面改变。以这种方式改变植入物界面附近的密度使骨向内生长能够被增强而同时保持结构轻巧。栅格结构的周期性提供了对孔隙几何结构和尺寸的精确控制。因此,该结构的孔隙率将易于根据是优先增强骨向内生长还是优先控制植入物的刚度而改变。

从步骤260至264,定制的矫形植入物通过其设计中涉及拓扑优化的迭代过程,以在即时性骨骼的解剖特征和正为其定制矫形植入物的患者的体格所设置的限制范围内识别出来填充由移除的组织所留下的空间的最佳的几何结构。如果该结构不符合应力和挠度标准,改进该几何结构并且重新评价该结构,直到获得最佳解决方案。几何结构的改进包括减少或增加支柱直径。

在步骤264中一旦该结构基于负荷条件被优化,则在步骤265中将建议的矫形植入物构造的三维计算机模型处理用于增材制造。典型地,这将涉及转换为一种适于直接传送到三维打印机或选择性激光熔化机的文件格式。然后,在步骤270中,使用增材技术来制造矫形植入物。

在步骤275中,监控制造过程以确保现场过程控制措施令人满意。例如,这种现场控制措施可以包括对制造温度和制造几何结构的检查。如果在步骤280控制措施不在可接受限度范围内,则在步骤285改进建议的几何结构和/或处理。适当的改进可以包括增加(一个或多个)支撑结构、改变在机台上部件的位置或方位或修改加工参数。

如果在步骤290中现场控制措施在可接受限度范围内,则在步骤295根据需要使所制造的定制的矫形植入物经过后处理。必要的后处理可以包括但不限于提高矫形植入物的表面光洁度的机械和/或化学加工、去除松散粉末颗粒、和/或对定制的矫形植入物消毒为插入到患者体内做准备。

最后,在步骤298中,将所制造的定制的矫形植入物与对于植入的相关说明书一起交付给手术团队。现在参照图11A至11C,图11A中示出了未经切除的骨骼1110,图11B中示出切除后的骨骼1120,其中包含周期性栅格结构的定制的矫形植入物1130固定于其上,且在图11C中,“皮肤”1140设置在矫形植入物1130上,该“皮肤”1140具有最佳尺寸的孔隙以使必需的营养物质能够流动并促进骨融合即骨向内生长。

在实施用于生产定制的矫形植入物的方法中,特别是在设计过程中,可以采用各种软件和工具。这可以包括但不限于Mimics、带激光扫描的Geomagic Studio/VX Elements、SolidWorks、Abaqus、Matlab、触觉装置/自由建模+(Freeform Modelling Plus)以及Magics/Autofab。

本发明的特别优势是,能够在相对短的时间范围内提供不仅特定于患者还特定于具体骨骼以及已经切除骨骼所采用的方式的定制的矫形植入物。具体地,很明显可以根据本文中所描述的方法在患者处于麻醉状态下的一段时间内生产定制的矫形植入物。这表明对如下用于生产定制的矫形植入物方法的显著改善:该方法在矫形植入物可以被插入之前经常需要多次外科手术干预,并因此导致对于患者需要更长的恢复和康复时间,以及由于难于适当地定制矫形植入物而常常得到次优的结果。

虽然已经结合有限个实施例对本发明进行了描述,本领域技术人员可以理解地是,根据前面的描述许多替代例、改进例和变型例都是可能的。因此,本发明旨在涵盖落入所公开的本发明的精神和范围内所有这样的替代例、改进例和变型例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1