位置传感控制器和产生控制信号的方法

文档序号:1633332阅读:237来源:国知局

专利名称::位置传感控制器和产生控制信号的方法
技术领域
:本发明相关于改进的位置传感控制器,该控制器允许一个人通过简单地倾斜手持式控制器来精确地控制远程目标或装置(例如一个电子游戏显示字符)在一维或二维空间的移动。电子游戏通常用称之为“游戏键盘”的电子游戏控制器来操作,游戏键盘常用来控制游戏机(即专用于操作电子游戏的计算设备)的运行。游戏控制器也用于控制个人计算机和交互式电视机机顶装置。按下或放开游戏控制器上的方向键,能达到合上或断开开关的效果。例如,如果游戏控制器用于赛车游戏中,那么按下左方向键会使汽车向左转。然而,方向键的“全有或全无”动作会造成难以控制电子游戏。要了解这个问题,只需想象在驾驶汽车时,迫使司机在想稍稍拐一点弯时一直转动方向盘,或者通过按压按钮开关而不是转动方向盘来驾驶汽车。发明名称为“手持式倾斜灵敏非控制杆控制盒”的美国专利US5,059,958(1991年10月22日对Jacobs等人的申请授权)公开了采用控制装置产生相应的倾斜姿态控制信号的技术,该控制装置具有一个盒式的外壳,用双手把持使其倾斜。用户用双手拿着该控制装置,并且按压由手指启动的“对称地安装在外壳顶部的开关,以产生辅助控制信号。”盒内的实际电路包括一些汞开关,这些开关根据控制装置的倾斜姿态打开或关闭。因此,Jacobs控制器能提供一个低分辨率的控制信号,它有一个从有限数量的离散值中选择的值。无线电子控制器现在几乎用于生活的各个方面。无线控制器被用于控制几乎所有音像设备,包括电视机、盒式磁带录像机(VCR)、电缆控制盒、立体声接收机和激光唱机。无线控制器也用于控制室内照明、控制电子游戏机操作,以及控制计算机屏幕上鼠标的移动。在控制器和受控装置之间主要采用两类无线通信,即红外线信号和射频信号。用于这类应用中的红外LED(发光二极管)通常被聚焦,从而发射很窄的红外光束。通过一个聚焦的红外LED发射控制信号的控制器通常必须对准受控装置,并且对由控制器发射、由受控装置接收的控制信号来说,通常必须在控制器和受控装置之间有一个清晰的视距。中断控制器和受控装置之间的视线,例如一个人或其它移到控制器和受控装置之间的空间的障碍物,通常会破坏控制信号从控制器到受控装置之间的传输。与此类似,某些控制器感应该控制器的移动或定位,由此发射控制信号。这样一种控制器在Jacobs等人的美国专利US5059958中作了描述。在按要求移动和调整这种控制器的同时,持续将控制器对准受控装置。以避免破坏受控装置接收控制信号,这通常是很难的。在许多应用中,中断控制信号从控制器向受控装置的传送会对受控装置的应用产生显著的影响。例如,中断电子游戏机的无线控制器发射的控制信号,会造成一个玩游戏机的人被看作是不太熟练的操作者,包括过早地中止该游戏。与此类似,中断从一个定位装置(如鼠标器)到执行一个“牵引和停止(drag-and-drop)”图形用户接口的计算机的控制信号,可能错误地造成计算机不按要求动作。牵引和停止图形用户接口是公知技术,被用于例如苹果电脑公司的MacintoshR计算机中和微软公司的MicrosoftRWindowsTM操作系统中。被聚焦的LED通常将光能聚焦并集中成一个圆锥形的光束,称为“光圈”,并且通常指定一个半角,该半角是从光圈中心到光圈外边缘的角度测量值。例如,被聚焦的LED102(图1a)将红外光聚焦为有一个半角108的光圈106。当光圈106对准一接收光电二极管104时,由光电二极管104收到的红外光的强度相对较高。然而,当光圈106偏离光电二极管104(如图1b所示)时,由光电二极管104收到的红外光的强度相对较低,并且很难与背景红外光区分开来。为了补偿由光电二极管104接收的光强的变化,通常将光电二极管104连到自动增益控制(“AGC”)电路(没有示出)。在控制器的移动相同的控制器中,由接收光电二极管(如光电二极管104)收到的光强发生显著的变化。当采用这种控制器发送基本连续的控制信息来控制电子游戏机或使用执行牵引和停止图形用户接口的计算机时,这种AGC电路必须迅速并准确地补偿这种强度变化,以避免控制信息的损失。目前用于受控装置中的大部分AGC电路不能以足够的快捷程度来补偿接收的红外控制信号中的这种强度变化,从而无法避免控制信息的损失。扩散LED不聚焦,即它的半角大约为90°或更大。扩散LED可以避免在控制器和受控装置之间要求清晰的视线。与此类似,由于红外信号的强度在扩散LED改变方向时不会显著地改变,因此目前用于大多数受控装置中的AGC电路可以足够快地补偿收到的红外信号中的任何微小变化以避免控制信息的损失。但是要产生具有足够的强度以保证在有用距离(例如大于2米的距离)处的受控装置能够接收的红外信号,扩散LED所需要的功率比实际能提供的要强。用于控制器和受控装置之间的第二类无线通信是射频(RF)信号。由RF信号发射控制信号到受控装置的控制器通常避免了与聚焦红外信号有关的许多问题,但其费用和复杂性都会显著增大。本发明的目的是提供一种改进的位置传感控制器,允许一个人通过简单地倾斜手持式控制器来精确地控制远程目标或装置(例如一个电子游戏显示字符)在一维或二维空间的移动。在一个实施例中,一个改进的控制器检测它自身在二维空间(相关于X轴和Y轴)的角位置或方向。例如,当操作者将控制器向左、向右、向前或向后倾斜时,控制器提供与该控制器的新的倾斜位置相应的数字控制信号。这些数字控制信号与现有技术的游戏控制器中通过按压左、右、上或下方向键产生的控制信号是等同的,因此该控制器与现有的电子游戏机完全兼容。然而,与现有的游戏控制器不同的是,本发明的控制器简单而且便宜,并且还能提供高分辨率的控制信号。在上面描述的赛车游戏例子中,“驾驶员”可以通过略为倾斜控制器精确地将方向盘旋转拐一个小弯时所需要的量,而不必通过数字开关一直转动方向盘或根本不转动方向盘。数字控制信号也可以控制除物体在二维空间中的位置之外的参数。例如,在赛车游戏中,将控制器向前倾斜可以控制加速(油门踏板),而将控制器向后倾斜可以控制减速(刹车踏板)。根据本明,一个控制器采用扩散的激光二极管向受控装置发射一个控制信号。图1a和1b是根据现有技术向接收光电二极管发射红外光信号的聚焦红外LED的方框图。图2a是根据本发明的控制器的一个实施例的俯视图。图2b是根据本发明的控制器的另一个实施例的俯视图。图2c示出了一对位置传感器模块,它感应控制器相对于X轴和Y轴的角位置或方向。图3是位置传感器模块的俯视断面图。图4a、4b和4c分别示出了在小型塑料外壳中的位置传感器模块的后视、俯视和侧视图。图5的方框图示出了与比率数字仪表放大器接口的位置传感器模块的一个实施例。图6a至6d示出了比率数字仪表放大器的一个触发脉冲和三个不同输出信号。图7是根据本发明的控制器的电路的一个实施例的方框图。图8a至8e示出了根据本发明的控制器电路的五个不同输出控制信号。图9的方框图示出了根据本发明的控制器电路的另一个实施例。图10a和10b示出了用于发射位置指示数据的发射协议和数据包的一个实施例。图11是红外接收机的一个实施例的方框图。图12是根据本发明的控制器电路的另一个实施例的方框图。图13a和13b分别是二维位置传感器模块的俯视和侧视截面图。图13c和13d分别是二维位置传感器模块的另一个实施例的俯视和侧视截面图。图14的方框图示出了与比率数字仪表放大器接口的位置感应模块的另一个实施例。图15的方框图示出了根据本发明的控制器电路的另一个实施例。图16的方框图示出了根据本发明将红外信号发射到接收光电二极管的扩散激光二极管。图17示出了当扩散激光二极管和光电二极管之间的直线视线被妨碍时红外信号从扩散激光二极管到接收光电二极管的传送。图2a是根据本发明的一个位置传感控制装置40(在此称为控制器40)的一个实施例的俯视图。控制器40被用于控制游戏机、电视机、交互式电视机机顶装置、或可以由用户进行电子控制的任何装置。在控制器40的左侧是四个方向键44a-d。方向键44a-d是简单的开/关装置。除四个方向键44a-d之外,控制器40包括四个控制键44e-h。图2b是控制器的另一个实施例的俯视图,即控制器40-6,除了控制器40(图2a)的方向和控制键之外,它还包括控制键44i-k。图2c示出了一对位置传感器模块48a和48b,它们感应控制器40在二维空间相对X轴和Y轴的角位置或方向。每个位置传感器模块48a和48b感应相对于一根轴的角位置。在一个实施例中,相应于位置感应器模块48a的轴与相应于位置感应器48b的轴基本上是正交的。位置传感器模块48a和48b与未审结的美国专利申请08/076,032(申请日为1993年6月15日)的图7和图10中所示的“位置检测器模块”类似,该申请被作为本文的参考文献。在1991年12月5日提交的美国专利申请07/804,240和1993年6月15日授权的美国专利5,218,771中对位置传感器模块的其它实施例作了公开,这两篇文献都用作本文的参考文献。位置传感器模块48a和48b的输出被下面描述的微控制器转换为等效于方向键44a-d(图2a)的已调整闭合。因此,控制器40的操作可以是(1)类似于目前的游戏控制器,在手动操作模式中采用四个方向键44a-d,或者(2)通过倾斜控制器40并采用下面要描述的微控制器的多种不同操作模式中的一种(例如“数字模式”、“滑动窗口模式”、“比例模式”、“相对模式”或“绝对模式”)来提供适用于不同应用的各类控制信号。图3是位置传感器模块48a的俯视截面图。在这个实施例中,位置传感器模块48a和48b是相同的并各自为加利福尼亚州SanJose的电视交互式数据公司的TVI501位置检测器。因此图3也是位置传感器模埠48b(图2c)的准确表示。位置传感器模块48a(图3)包括一个透明的圆柱状容器52,其中有一个反射物56悬浮在溶剂60中。在一个实施例中,反射物56由空气构成,溶剂60是91%的异丙醇。另一方面,溶剂60可以是一种轻油,反射物56可以是气体、液体或固体。例如,反射物56可以是悬浮在水(用作溶剂60)中的轻油。另一方面,反射物56可以是悬浮在溶剂60中的固态的反射滚珠轴承,溶剂60可以是水、油或空气。可以理解,其它材料也可以用于构成反射物56和溶剂60,条件是(i)反射物56和溶剂60保持分离,(ii)从信号源(下面要描述)发射的信号通过溶剂60,(iii)反射物56在溶剂60中自由移动,(iv)将信号反射到信号接收器(下面将作描述)。位置传感器模块48a的操作基本上不受反射物56的大小影响。当反射物56小于圆柱容器52的内部容积的10%或大于其90%时,可以得到满意的结果。当反射物56或溶剂60的重量小于圆柱容器52的内部容积的大约30%时,可以观察到对位置传感器模块48a移动的信号响应中的微小延迟。当采用小型反射式滚珠轴承作为反射物56,或者当采用占据圆柱容器52内部容积70%多的气泡作为反射物56时,通常会出现这种情况。该微小延迟是由溶剂60和反射物56的重量的惯性在反射物56的移动过程中起较大作用的结果。在圆柱容器52的一端是发射信号的一个红外发光二极管(“LED”)64,在这种情况下该信号是红外光,并且由反射物56反射。电阻R1(图5)设定红外LED64(图3)的亮度,从而确定信号的强度。在圆柱容器52的两侧是接收由反射物56反射的信号的光电二极管68a和68b。当位置传感器模块48a处于水平位置时,反射物56位于光电二极管68a和68b的中间。反射物56是一个反射透镜,它在这个位置向每个光电二极管68a和68b反射等量的信号(例如红外光)。由于位置传感器模块48a围绕圆柱形容器52的纵轴旋转(由虚线箭头A表示),光电二极管68a和68b相对于保持静止的反射物56移动。光电二极管68a和68b相对于反射物56的移动逐步改变光线的方向,增大对光电二极管68a和68b的其中一个的入射光,而减小对光电二极管68a和68b中另一个的入射光。每个光电二极管68a和68b像电流源一样,产生与该光电二极管上的入射光成正比的电流。塞子72封闭装有溶剂60的圆柱形容器52。图4a、4b和4c分别示出了位置传感器模块48a的后视、俯视和侧视图,该模块48a被放置在小型塑料壳体76中,以保证红外LED64与两个光电二极管68a和68b的反复对准。导线78使红外LED64和光电二极管68a和68b产生电连接。图5示出了根据本发明与一个“比率数字仪表放大器”80(简称为“比率放大器”)接口的圆柱状位置传感器模块48a的一个实施例。比率放大器80包括一个CMOS555计时器84(例如Texas仪器公司的TLC555计时器),被构造成单稳态多谐振荡器。在另一个实施例中,采用无稳态多谐振荡器。比率放大器80是高分辨率的模数转换器,它将位置传感器模块48a中的光电二极管68a和68b的模拟输出电流转换为已作脉宽调制的波形,被称为XY输出信号,并且被输入下面将要描述的微控制器。XY输出信号指示控制器40沿X轴或Y轴相对于参考平面(例如水平面)的位置。一开始在计时器84的管脚3上的XY输出信号为低。在管脚2上的一个低态有效短触发脉冲(图6a)在电容C2通过电阻R2充电时使计时器84的管脚3上的XY输出信号变为高态,并保持在高态。当C2两端的电压达到供电电压Vcc的三分之二时,电容器C2通过计时器84的管脚7放电,从而计时器84的管脚3上的XY输出信号回到低态。当控制器40(图2a)保持水平,反射物56(图3)处于中心位置时,产生的已脉宽调制波形,即产生的XY输出信号如图6c所示。当控制器40(图2a)在一个方向倾斜,导致位置传感器模块48a(图2c)和48b的其中一个绕其轴旋转时,结果是增大了一个光电二极管(例如光电二极管68a(图5))上的入射光量,而减小了在另一个光电二极管(例如光电二极管68b)上的入射光量。位置传感器模块48a被连接到计时器84,以便光电二极管68a提供电流到计时器84的控制输入端(管脚5),而光电二极管68b从该控制输入端取走电流。计时器84的控制输入端(管脚5)被内部连接到一个电阻分压器,该分压器将光电二极管68a和68b的两个光电二极管电流转换为控制电压。结果是在计时器84的管脚3上的XY输出信号的脉宽正比于入射到光电二极管68a和68b上的光的比率(而不是差)。当两个光电二极管68a和68b接收相等的照度时,即当反射物56(图3)居中时,光电二极管68b取走的电流量与光电二极管68a提供的电流量相等,从而在计时器84的控制输入端(图5的管脚5)产生零净电流,因而在计时器84的管脚3上的已脉宽调制的XY输出信号不受影响,并保持在由电阻R2(图5)和电容C2确定的中央脉宽(图6c)。当光电二极管68a和68b接收不等量的入射光时,即当反射物56(图3)不居中时,一个净电流流进或流出计时器84的控制输入端(图5的管脚5),并且改变XY输出信号的脉冲宽度。图6d示出了当光电二极管68a比光电二极管68b接收更多入射光时在计时器84的管脚3(图5)产生的XY输出信号。图6b示出了当光电二极管68a(图5)比光电二极管68b接收较少的入射光时产生的XY输出信号。根据本发明的一个比率放大器(如比率放大器80)与现有技术的模数转换器相比具有下述优点(a)在计时器84的管脚3上的XY输出信号正比于光电二极管68a和68b上的入射光的比率(而不是差),由此产生与供电电压Vcc相对独立的一个电路,并且提供极好的抗噪声性能,而不必有电压参考、电压调节器或大滤波电容;(b)XY输出信号不受用于提供输入的模拟传感器(例如光电二极管68a和68b)的灵敏度变化的影响;(c)XY输出信号不受驱动模拟传感器(例如照射光电二极管68a和68b的红外LED64)的信号的绝对值变化的影响;(d)比率放大器80比具有差值输入的常规模/数转换器便宜得多。尽管比率放大器80被用于这个实施例,来提供相应于光电二极管68a和68b上的入射光量的数字输出信号,但根据本发明的比率放大器也可以用来提供相应于模拟输入的数字输出信号,该模拟输入由转换器感应任何可测量的物理参数(如温度、压力等等)而提供的。图7是根据本发明的控制器电路的一个实施例(即控制器40a)的方框图。为了简化起见,在图7中没有示出方向键44a-d(图2a)。两个位置传感器模块48a和48b被连接到一个单一的计时器84,以便感应相对于X轴和Y轴的角位置。微控制器88被构造成一个发射器,提供多路信号EX和EY,该信号一次只启动位置传感器模块48a和48b的其中一个来向计时器84提供输入信号。这可以通过每一次(例如当EX或EY的其中一个信号变低时)在仅仅一个位置传感器模块(图7)中有选择地照射反射器56(图3)来实现。例如,在保持信号EY为高态时,通过将低态的EX信号从微控制器88的管脚12传送到位置传感器模块48a的管脚8,微控制器88启动第一位置传感器模块48a。在被启动之后,位置传感器模块48a感应当位置传感器模块48a绕X轴旋转时位置传感器模块48a相对于水平平面的角位置。这个角位置在本文中被称为“X位置”。然后,微控制器88发送一个触发脉冲到计时器84的管脚2,并且测量在计时器84的管脚3上产生,并输入到微控制器88的管脚4的XY输出信号的脉冲宽度。接着,微控制器88采用代表该脉宽的一个数字值来产生相应于X位置的原始“X位置值”,并且对该原始X位置值数字滤波来消除手的抖动。在一个实施例中,通过对五个最新测量的X位置值取平均,来对原始X位置值滤波,以产生X位置值。在X位置值产生之后,微控制器88通过将一个低态EY信号从微控制88的管脚11发送到位置传感器模块48b的管脚8,并同时保持信号EX为高态,来启动第二位置传感器模块48b,以类似的方式产生一个“Y位置值”。图8a-8e示出了微控制器88如何将X和Y位置值以比例方式转换为微控制器88的管脚7、8、9、10上的已脉宽调制输出控制信号,下面将对此作很详细的描述。根据下面所作的全面描述,比例方式被用来根据数字控制协议发射振幅信息。图8a至8e示出了当控制器40a被第一次保持在水平位置,然后向左倾斜时,在例如微控制器88的管脚9上的输出控制信号的波形。图8a示出了当控制器40a的顶部表面处于水平位置时产生的高输出。图8b示出了当控制器40a稍微向左倾斜(如10°的倾斜)时产生的一个单一低态有效窄脉冲。图8c示出了当控制器40a进一步向左倾斜(如20°的倾斜)时产生的多个窄脉冲。图8d示出了当左倾斜角进一步增大(如40°倾斜)时脉冲宽度是如何增大的。图8e示出了当左倾斜角增大为最大角(如70°倾斜)时产生的低态输出。在一个实施例中,控制信号通过一个6管脚硬件连接器90在微控制器88的管脚7、8、9、10(图7)上输出到受控装置(如现有技术中的游戏机)。图9是控制器40b的电路方框图,该控制器是根据本发明的控制器的第二个实施例,它模拟用于个人计算机(“PC”)中的“鼠标”或其它指示装置。例如,向左倾斜控制器40b会将PC屏幕上的光标移向左边。在这个实施例中,控制器40b以下面将要作全面描述的“相对方式”运行;也就是说,控制器40b是一个“相对”指示装置,因为控制器40b的位置不会直接映射到PC屏幕上的特定位置,相反,控制器40b的角位置指示光标相对于光标原有位置的移动。在图9中,由电阻R2和R3提供的阻值被选择来为计时器84的控制输入端(管脚5)提供为供电电压Vcc一半的偏压。这种结构使计时器84在“中央位置”(即控制器40b的水平位置)的两侧对称地运行,并且有效地增大计时器84的动态范围。在图9的实施例中,微控制器94通过微控制器94的串行输出端口(管脚3)向红外发射器100输出控制信号。红外发射器100是一个频移键控振荡器,它由管脚3上输出的控制信号来调制。由频移键控振荡器产生的脉冲被红外LEDD2转换为红外光。开关S1是一个光标使能按钮,它启动微控制器94来选择位置指示功能。开关S2和S3分别是用于控制PC机屏幕上的光标的左右鼠标按钮。微控制器94采用红外RS-232C串行链路与主PC(没有示出)通信,主PC即控制器40b通过红外发射器100向其发射数据的PC。例如,红外链路以由40kHz载波调制的1200波特串行发射数据。采用一个FSK(频移键控)格式,其中逻辑1由40kHz的方波表示,逻辑0由0伏特表示。图10a示出了发射协议,图10b示出了常用于发射位置指示数据的一个数据包。图11是与控制器40b(图9)一起使用的红外接收电路的一个实施例的方框图。红外接收电路包括一个红外接收器110(图11)(如夏普电子公司制造的GP1U52X红外接收器),它接收由红外发射器100(图9)发射的红外光信号。从串行口的线路RTS和DTR向红外接收器110(图11)供电,并且用调压器114(如加利福尼亚州SantaClara的国家半导体公司制造的LP2950CZ调压器)将其调节为5伏的电压。线路DTR总是运载由驱动器控制的一个高值信号(即5至12伏)。线路RTS通常运载高态信号,但有时会在瞬间被脉动调节来运载一个低态信号(即-5至-12的电压)。用于在瞬间运载低值信号的线路RTS的脉冲请求一个ID序列。二极管D3阻止在RTS线路变低时晶体管Q1的栅极变为负值。当线路RTS变低时,二极管D2缓冲到调压器的输入。晶体管Q1是电压移位器的一部分,该移位器将微控制器118的输入与线路RTS上信号的大电压变动隔离。在图11中,红外接收器110感应来自红外发射器100(图9)的红外光信号,将发射的信号解调,并将解调的信号输出到微控制器118(图11)的管脚5。微控制器118将管脚2上的信号输出到晶体管Q2。晶体管Q2是一个回送开关,当晶体管Q2导通时,通过将线路TXD连接到总是处于高态的线路DTR,晶体管Q2迫使线路TXD为高。在一些应用中,在红外发射器中采用“扩散激光二极管”(即加利福尼亚州Cupertino的西门子公司生产的SFH495P扩散激光二极管),而不是常规的红外LED来产生用于将控制信号发射到红外接收器的红外光束会更加有利。常规的红外LED发射低强度的光,它由透镜聚焦来产生定向光束。当采用常规红外LED的红外发射器在导致红外光束移过红外接收器的一个方向快速移动时,红外接收器接收强度会发生变化的红外光束。红外接收器必须通过采用“自动增益控制”来调节红外接收器的灵敏度来补偿这一变化。当红外发射器移动太迅速时,自动增益控制不能作出足够的响应,因此部分红外发射会丢失。相反,“扩散激光二极管”产生的扩散光束不被透镜聚焦,因此不是定向的。结果,即使当红外发射器如上面所述迅速移动时,也有同样多的扩散光到达红外接收器,因而红外接收器不必使用自动增益控制,红外发射没有任何损失。此外,扩散激光二极管比常规的红外LED效率更高,并且产生能传播较远距离的较高强度的红外光。图12是控制器40c的电路的方框图,该电路是本发明的一个控制器的第三实施例,并且它采用多按钮扫描器。选择电阻R2和R3的值来为计时器84的控制输入端(管脚5)提供为电源Vcc一半的偏压。这种结构使计时器84在“中央位置”(即控制器40c的水平面位置)的两侧对称地运行,并且有效地增大计时器84的动态范围。在图12的实施例中,微控制器122执行一个计算机进程,该进程由存储在微控制器122的存储器(没有示出)中的计算机指令定义。在一个实施例中,微控制器122是亚利桑那州Phoenix的摩托罗拉公司制造的XC68HC05KO微控制器。在这同一个实施例中,微控制器122的计算机源代码采用摩托罗拉公司M68HC705KICS汇编程序进行汇编,并用常规技术安装在微控制器122中。当一个受控装置(如现有技术中的游戏机—没有示出)向微控制器122查询X和Y位置值以及按钮状态时,微控制器122开始执行计算机进程。受控装置可以是例如电子游戏机、交互式电视机顶装置或个人计算机。微控制器122的计算机处理以前面相对微控制器88(图7)描述的方式产生一个X位置值和一个Y位置值。通过执行计算机进程,微控制器122根据受控装置接受控制信息的协议,通过一个8管脚硬件连接器132(图12)将X位置值和Y位置值发射到受控装置。上述协议被称为“控制协议”。在一个实施例中,受控装置是SegaGenesis游戏机,是由加利福尼亚州Redwood市的Sega制造的,控制协议是为该SegaGenesis游戏机定义的控制装置协议,其说明也可以从Sega得到。根据微控制器122的计算机进程确定X和Y位置值以及处理按钮的启动将在下面作详细的描述。应该理解,微控制器122的计算机进程可以根据发射控制信息的任何协议将X和Y位置值发射到受控装置。例如,下面是可以将X和Y位置值发射到受控装置的三个不同协议。一个游戏控制器通常使用已建立的六状态协议与一个游戏机通信。鼠标装置通常采用已建立的10状态协议或已建立的16状态协议与人个计算机通信。虚拟实际用户接口装置采用已建立的VR状态协议与游戏机通信。这里的每个协议是由与控制器40c相连的特定受控装置的制造商定义的。当控制协议结束之后,即一旦微控制器122向受控装置发射了X和Y位置值之后,微处理器122的计算机进程进入到位置传感器子程序和按钮状态子程序。在由微处理器122执行的计算机进程的位置传感器子程序中,X和Y位置值按下面所述的方式来确定。由微控制器122执行的计算机进程的按钮状态子程序确定哪个按钮44a-h(图2a)—如果有的话—被按下。按钮44a-h相应于控制器40c的按钮S1-S8(图12)。根据由目前可购得的游戏机使用的已建立的协议,控制器40c通常每隔10ms轮询一下X和Y位置值和按钮状态。这给控制器40c提供了足够的时间来通过执行位置传感器子程序和按钮子程序确定这种信息。位置传感器子程序通过从输出线路(用于根据控制协议发射信息)到输入线路(每条承载一个高态信号)改变线路EY/DN和EX/UP。这使得位置传感器模块48a和48b中的位置传感器LED截止,并使每个位置传感器模块被顺序测试。然后,在线路PB(即微控制器122的管脚3)到计时器84的管脚2的信号被从高态触发到低态,从而将计时器84的输出端(管脚3)设置为高态,并启动计时器。位置传感器子程序在由微控制器122执行的计算机进程中调用计时器子程序的执行。在计时器子程序中,由微控制器122的计时器时钟(没有示出)指示的当前时间被记录为时间周期的起始时间。计时器子程序通过中断或轮询监控微控制器122的线路XY(即管脚4),直到线路XY上的信号状态从高变低为止。从计时器84的结束时间减去起始时间,所得到的差就是第一位置传感器模块48a的“绝对”位置的数字表示。采用这种方式来测量位置传感器模块48a,得到一个位置值。通过将EX线设置为高态来截止第一位置传感器48a的LED、将EY线设置为低来导通第二位置传感器48b的LED,对第二位置传感器模块48b重复上述次序。这时计时器84再次被触发,计时器周期再次被测量,由此得到另一个传感器的“绝对”位置。对包括三个或四个传感器的构造来说,对每个传感器重复这一次序。当位置传感器模块48a和48b被测量之后,微控制器122(图12)的计算机进程进入按钮状态子程序。在该按钮状态子程序,数据线R、L、EX/UP和EY/DN被构造成输入线,每条运载一个低态信号,而按钮启动线(即线路BE0和BE1)被一一启动,即被构造成运载高态信号的输出线路。首先,当线路BE0被启动,线路BE1被保持低态时,读数据线R、L以及EX/UP和EY/DN数据线,来检查按钮S1到S4的状态。其次,当线路BE1被启动,而线路BE0保持低态时,读数据线R、L、EX/UP、EY/DN,来检查按钮S5到S8的状态。这使按钮S1到S8被一一检查,从而可以确定按钮是处于打开状态还是关闭状态。代表按钮S1至S8的相应状态的控制信号根据控制协议被格式化后传送到游戏机。当位置传感器和按钮状态子程序完成之后,由微控制器122执行的计算机程序将微控制器122置于缺省准备状态,这时计算机进程等待游戏机再次查询微控制器122。如上所述,控制器40(图2a)的操作可以通过下面两种方式之一来完成(1)与目前可购得的游戏控制机类似,采用四个方向键44a-d,以手动操作方式操作;(2)倾斜控制器40并使用微控制器的几个不同运行方式(例如“数字模式”、“倾斜窗口模式”、“比例模式”、“相对模式”或“绝对模式”)中的一个来提供适应于不同应用的各类控制信号。在数字方式下,当传感器产生的移动超出预置的“窗口”时,接通适当的数据线。这种运行方式模拟现有技术中的游戏控制器,其中或者按下(即“接通”或合上)或者放开(即“关断”或断开)方向按钮。在通电程序中,位置传感器模块的位置被采样,并将一个称为“原始位置”的绝对位置记录在存储器中。计算正、负偏移,并将其记录在存储器中,该正负偏移与原始位置相关,并共同限定一个窗口。每个时间控制器40由与控制器40相连的受控装置轮询,按如上所述对位置传感器模块48a和48b(图2c)进行检查,以确定被感应的位置,并检查其偏移。如果被感应的位置位于正负偏移之间,即在窗口内,那么将两个相关的线路(例如左和右)断开,就好象左、右方向键都没有被按下一样。如果控制器40(图2a)向左倾斜,使得感应的位置位于由正负偏移所构成的窗口之外(即在该窗口的左边),那么在游戏机轮询过程中将左传感器线路合上,就好象左方向键被按下(即合上或“启动”)一样。在窗口内向后移动位置传感器会使左传感器线路复位到断开状态,就好象左方向键被松开(即断开或“停用”)一样。在滑动窗口方式中,与上面所述的数字方式一样,正、负偏移被用来接通和断开相关的数据线路。然而,在滑动窗口方式下,窗口的正向接通和断开边缘被动态设置。例如,如果控制器40向左倾斜时,那么在存储器中记录一个新的或“当前”原点(即原始位置),通过向当前原点加上正、负偏移来调节窗口。实际上,窗口向左移动,使用户只需略为移动控制器40就能接通和断开左或右传感器线路。在比例方式下,感应的位置被用来产生一个“接通”周期和“断开”周期,在“接通”周期,控制器40模拟方向键的启动,而在“断开”周期,控制器40模拟方向键的停用。由游戏机执行的某些游戏使用户只使用一个数字(即“接通/断开”)开关来模拟一个模拟控制信号的幅值。在上面给出的赛车电子游戏实例中,较大的幅值可指示方向盘的急转。模拟控制信号的较大幅值可以由现有的游戏控制机的用户或者启动具有较大频率的开关或者在较长的时间周期将开关保持在启动状态来模拟。在比例模式中,控制器40模拟包括幅值信息的模拟控制信号来控制受控装置,这可以通过向受控装置发射相应于数字开关(例如方向键44a-d(图2a)中的任意一个)的控制信号来实现。幅值信息包括(i)从开关的停用状态到启动状态的转换频率,(ii)开关处于启动状态(即开关的“工作循环”)时占用的时间百分数,(iii)开关被保持在启动状态的时间长度,或(iv)前面所述的(i)到(iii)的任意组合。由模拟的模拟控制信号表示的幅值信息正比于感应的位置与原点之间的差值。换句话说,控制器40被倾斜,代表被频繁启动的开关或被长时间保持在启动状态的开关的信号被仿真。对幅值信息的不同表示可以被用来更精确地将幅值信息传送到特定的游戏。例如,一个游戏可以通过在给定的时间周期计算开关的启动次数来确定控制信号的幅值,而另一个游戏可以通过测量开关被保持在启动状态的时间长度来确定控制信号的幅值。为了使控制器40适当地代表在受控装置内执行特定游戏的幅值信息,受控装置可以在控制器40的微控制器(例如微控制器122(图12))中预先装入一个响应表。对每个幅值,响应表指定“接通”和“关断”信号的一个模式,它相应于一个数字开关,并用于表示一个特定的幅值。控制器40每次被查询时,就确定一个位置传感器模块(如位置传感器模块48a和48b)的感应位置,并且检索与被感应位置和原点之间的差相等的一个幅值相应的一个模式。这个被检索的模式被用来发射代表控制开关的启动和停用的控制信号,以便将幅值信息发射到受控装置。在相对模式下,每次位置传感器被查询时,就根据控制协议测量并发送当前感应的位置与先前感应的位置之间的差值。从当前感应的位置减去先前感应的位置得到一个相对移动测量值。这个相对移动测量值通常被用于由鼠标器模拟控制,从而通常被根据已建立的鼠标控制协议发送到受控的个人计算机。在绝对模式下,位置传感器的被感应位置根据控制协议被汇编成软件包并发送到受控装置。受控装置利用已感应的位置来控制例如屏幕上鼠标的位置。在绝对模式下,屏幕上鼠标器的位置直接相应于位置传感器的感应位置。绝对模式很适合虚拟实际应用,其中的控制协议是一个虚拟实际控制协议,例如上面所描述的VR状态控制协议。图13a和13b分别是二维位置传感器模块150a的俯视和侧视截面图。在一个实施例中,二维位置传感器模块150a包括一个透明的球形容器154a,其中有一个反射物158(如一个空气泡)悬浮在溶剂162(如异丙醇)中。应该理解的是,与上面对位置传感器模块48a的反射物56(图3)和溶剂60所作的描述一样,其它反射物和溶剂也适合用于二维位置传感器150a中。放在容器154a底部的红外发光二极管(“LED”)166(图13a)对反射物158照明,反射物将红外光反射到如图13a和13b所示放置的四个光电二极管170a-d上。当二维位置传感器模块150a位于水平位置(如图13a和13b所示)时,反射物158处于光电二极管170a-d的中心,因此向每个光电二极管170a-d反射等量的光。当二维位置传感器模块150a绕例如X轴(图13a)旋转时,反射物158保持静止,并逐渐改变光在第一对相对的光电二极管170a和170b之间的方向,增加在一个光电二极管(例如光电二极管170a)上的入射光,并减小在另一个光电二极管(例如光电二极管170b)上的入射光。与此类似,关于Y轴倾斜二维位置传感器模块150a则改变光在第二对相对的光电二极管170c和170d之间的方向。在其它方面,二维位置传感器模块150a的操作与圆柱状位置传感器模块48a和48b(图2c)的操作类似。然而,一个单一的二维位置传感器,如二维位置传感器模块150a(图13a和13b),能够感应控制器40在二维空间相对于X轴和Y轴的角位置或方向。与之相比,需要二个圆柱状的位置传感器模块48a和48b(图2c)来感应相对于X轴和Y轴的角位置。对大多数应用来说,采用一个单一的二维位置传感器,如二维位置传感器模块150a(图13a和13b),相比于采用一对圆柱状位置传感器,如位置传感器模块48a和48b(图2c),要便宜一些。图13c和13d分别是二维位置传感器的另一个实施例,即二维位置传感器模块150b的俯视和侧视截面图。二维位置传感器模块150b采用一个半球状容器154b而不是一个球形容器。对某些应用来说,一个半球状容器的优点是更小型化或更易于制造。二维位置传感器模块150b的操作与上面描述的二维位置传感器模块150a(图13a和13b)的操作是类似的。图14的方框图示出了根据本发明与一个比率数字仪表放大器174(在此称之为“比率放大器”)接口的二维位置传感器模块150的一个实施例(例如图13a和13b的二维位置传感器模块150a或图13c和13d的二维位置传感器模块150b)。比率放大器174是构造成一个单稳多谐振荡器的CMOS555计时器84(例如德克萨斯州Dallas的德克萨斯仪表公司制造的TLC555计时器),并且其运行与前面描述的比率放大器80(图5)的运行类似。在另一个实施例中,计时器84(图14)被构造成前面相应于比率放大器80(图5)所描述的无稳态多谐振荡器。图15是控制器40d(本发明控制器的第四个实施例)的电路方框图。二维位置传感器模块150-可以是二维位置传感器模块150a(图13a和13b),也可以是二维位置传感器模块150b(图13c和13d)-被连接到计时器84,以便感应相对于X轴和Y轴的角位置。被构造成发送器的微控制器180提供多路复用信号EXC、EXA和EYC、EYA,它们一次只启动一对相对放置的光电二极管170a-d。例如,微控制器180启动第一对相对放置光电二极管170a和170b,以便感应X位置。微控制器180通过将高电平电压(逻辑1)加到信号EXC、低电平电压(逻辑0)加到信号EXA来启动光电二极管170a和170b。在感应X位置之时,信号EYC和EYA被保持在高阻抗输入状态。然后微控制器180(i)触发计时器84,在计时器84的管脚3上产生一个XY输出信号,(ii)产生一个相应的数字滤波X位置值,(iii)将X位置值转换为已作脉宽调制的输出信号。微控制器180的操作类似于前面所述的微控制器88(图7)的操作。接着,微控制器180(图15)以上面启动信号EXC和EXA的类似方式启动多路复用的信号EYC和EYA,从而启动第二对相对放置的光电二极管170c和170d,以感应Y位置。在感应Y位置之时,信号EXC和EXA被保持在高阻抗输入状态。控制信号在微控制器180的管脚3输出到传统的红外发射器190,后者将控制信号发射到传统的红外接收器,如红外接收器110(图11)。红外发射器190的运行类似于上面所述的红外发射器100(图9)的运行。已调制的控制信号接着被用来驱动现有技术中的电子游戏机(没有示出)的四个方向键输入。如上所述,采用一个“扩散激光二极管”(例如加利福尼亚州Cupertino的西门子器件公司制造的SFH495P扩散激光二极管)比采用传统的红外LED来产生用于发射控制信号到红外接收器的红外光束更有优越性。在一个实施例中,微控制器122的计算机程序可以采用亚利桑那州Phoenix的摩托罗拉公司制造的M68HC705KICS汇编程序来汇编。当被汇编并装入微控制器122(图12)之后,各种计算机程序可以构成分别根据前面描述的数字方式、相对方式和绝对方式来操作控制器40c的计算机进程。所采用的特定计算机语言和特定的微控制器不是本发明的主要方面。就本发明所作的公开来说,本领域的技术人员可以采用不同的计算机语言和/或不同的微控制器来实施本发明。根据本发明,控制器(没有示出)采用扩散激光二极管202(图16)来发射控制信号到受控装置204。受控装置204包括一个红外接收器206,用来接收控制信号。扩散激光二极管202被示于两个交替的位置202A和202B,它们相应于控制器的两个交替位置,并且其中扩散激光二极管202并没有对准接收器206的方向。由于扩散激光二极管202没有产生被聚焦的红外光束,因此由接收器206接收的信号基本上与扩散激光二极管202直接对准接收器206时一样强。因此,不管扩散激光二极管202对准的方向如何,由接收器206接收的红外信号的强度基本上是恒定的。因此,受控装置204中的AGC电路(没有示出)只需作微小的调整以补偿接收信号的强度变化,在某些情况下,可以全部省去。由于只需要对接收信号的强度作微调,受控装置204中的AGC电路通常用于以足够快速作这种调节以避免接收信号中控制信息的损失。扩散激光二极管(如激光二极管202)产生的红外光的强度实际上比由非激光LED产生的红外光的强度要强。因此,尽管由扩散激光二极管202发射的红外光具有扩散、非聚焦特性,由扩散激光二极管202发射的红外信号可由受控装置206接收。扩散激光二极管202从传统控制器将控制信号发射到受控装置206的距离将控制信号发射到受控装置206。图17示出了控制器302中扩散激光二极管304的第二用途。扩散激光二极管304被控制器302用来发射红外信号到受控装置306,后者通过接收器308接收该红外信号。如图17所示,障碍物310被放置在扩散激光二极管304和接收器308之间,从而由扩散激光二极管304发射的红外光不能直接传向接收器308。然而,由于由扩散激光二极管304发射的红外光不聚焦,因此沿箭头A1方向发射的红外光与直接向接收器308发射的红外光具有大致相同的强度。沿箭头A1方向发射的光被一个物体(如顶板(没有示出))反射回来,并由接收器308接收(如箭头A2所示)。在一个实施例中,扩散激光二极管304和202(图16)是加利福尼亚州Cupertino的西门子器件公司制造的SFH495P扩散激光二极管。扩散激光二极管202和304一般可以直接替代传统控制器中的传统红外LED,而不需要对其中电路作任何改变。通过扩散激光二极管202和304编码并发射如红外信号一类的控制信号的电路(没有示出)是传统并公知的。与此类似,控制信号被作为接收器206和308的红外信号接收并译码的电路(没有示出)也是传统并公知的。上面所作的描述仅是示例性而非限定性的。本发明只受下述权利要求的限制。应该理解,上面所作的描述是用作示例性而非限定性说明的。对本领域的普通技术人员来说,根据本文所作的公开可以了解本发明的许多改进。因此本发明的保护范围不是由上述说明确定的,而是由所附权利要求书及其所有等效范围所确定的。一个实施例中的元件标称值</tables></tables></tables></tables>权利要求1.一个位置传感器模块,包括用于发射信号的一个信号源;第一和第二信号传感器;以及相对于第一和第二信号传感器可移动放置的一个反射物;其中第一和第二信号传感器被放置来接收从反射物反射的信号;此外其中第一信号传感器和第二信号传感器被连接在一起来提供一个传感器输出信号,指示反射物相对于第一和第二信号传感器的位置。2.根据权利要求1所述的位置传感器模块,其中第一和第二信号传感器定义一个参考轴,并且其中的传感器输出信号与参考轴和一个参考平面之间的角度相关。3.根据权利要求1所述的位置传感器模块,其中反射物被可移动地放置在一个容器内。4.根据权利要求3所述的位置传感器模块,其中该容器是圆柱形的。5.根据权利要求3所述的位置传感器模块,其中容器定义了一个纵向轴,并且其中容器绕纵向轴的旋转导致反射物与第一和第二信号传感器之间的相对移动。6.根据权利要求1所述的位置传感器模块,其中反射物是球形的。7.根据权利要求1所述的位置传感器,其中反射物包括一个在液体中的泡。8.根据权利要求7所述的位置传感器,其中所述的泡是一个气泡。9.根据权利要求7所述的位置传感器,其中所述的泡是与上面首次提及的液体不同的第二种液体,并且其中第一种液体具有第一密度,第二种液体具有不同于第一密度的第二密度,此外,其中第一和第二种液体在容器内保持完全分离。10.根据权利要求1所述的位置传感器模块,其中传感器输出信号正比于由第一信号传感器接收的信号的强度与由第二信号传感器接收的信号的强度之比。11.一个控制器包括根据权利要求1所述的一个位置传感器模块;一个信号调节器,可操作地连接到第一位置传感器模块,用于将传感器输出信号转换为控制信号。12.根据权利要求11所述的控制器,其中信号调节器将传感器输出信号转换为已调节的输出信号。13.根据权利要求12所述的控制器,其中已调节的输出信号有一个脉冲宽度,该脉冲宽度正比于由第一信号传感器接收的信号的强度和由第二信号传感器接收的信号的强度。14.根据权利要求13所述的控制器,其中信号调节器进一步包括一个微控制器,用于将已调节的输出信号转换为控制信号。15.根据权利要求14所述的控制器,进一步包括一个红外发射器,用于向接收器发射控制信号。16.根据权利要求15所述的控制器,其中红外发射器进一步包括一个扩散激光二极管。17.根据权利要求14所述的控制器,进一步包括一个射频发射器,用于向接收器发射控制信号。18.根据权利要求14所述的控制器,进一步包括一个超声波发射器,用于向接收器发射控制信号。19.根据权利要求14所述的控制器,其中微控制器采用数字模式接口与受控装置通信。20.根据权利要求14所述的控制器,其中微控制器采用滑动窗口模式接口与受控装置通信。21.根据权利要求14所述的控制器,其中微控制器采用比例模式接口受控装置通信。22.根据权利要求14所述的控制器,其中微控制器采用相对模式接口与受控装置通信。23.根据权利要求14所述的控制器,其中微控制器采用绝对模式接口与受控装置通信。24.根据权利要求11所述的控制器,进一步包括一个红外发射器,用于向接收器发射控制信号。25.根据权利要求24所述的控制器,其中红外发射器进一步包括一个扩散激光二极管。26.根据权利要求11所述的控制器,进一步包括一个射频发射器,用于向接收器发射控制信号。27.根据权利要求11所述的控制器,进一步包括一个超声波发射器,用于向接收器发射控制信号。28.根据权利要求11所述的控制器,其中信号调节器采用数字模式接口与受控装置通信。29.根据权利要求11所述的控制器,其中信号调节器采用滑动窗口模式接口与受控装置通信。30.根据权利要求11所述的控制器,其中信号调节器采用比例模式接口与受控装置通信。31.根据权利要求11所述的控制器,其中信号调节器采用相对模式接口与受控装置通信。32.根据权利要求11所述的控制器,其中信号调节器采用绝对模式接口与受控装置通信。33.根据权利要求11所述的控制器,进一步包括与首次提及的位置传感器模块不同并可操作地连接到信号调节器的第二位置传感器模块,该第二位置传感器模块包括与首次提及的信号源不同的第二信号源,用于发射与首次提及的信号不同的第二信号;第三和第四信号传感器;不同于第一次所提到反射物,并相对于第三和第四信号传感器可移动地放置的第二反射物;其中第三和第四信号传感器被放置来接收由第二反射物反射的第二信号;此外,其中第三信号传感器和第四信号传感器被耦合来提供第二传感器输出信号,它与第一次提及的传感器输出信号不同并指示第二反射物相对于第三和第四信号传感器的位置;其中信号调节器将第二传感器输出信号转换为与第一次述及的控制信号不同的第二控制信号。34.根据权利要求33所述的控制器,其中第一和第二信号传感器定义第一参考轴,第三和第四信号传感器定义第二参考轴;此外,其中第一传感器输出信号与第一参考轴和一个参考平面之间的角度相关;第二传感器输出信号与第二参考轴和该参考平面之间的角度相关。35.根据权利要求34所述的控制器,其中第一参考轴与第二参考轴实际上正交。36.根据权利要求33所述的控制器,其中第一反射物被可移动地放置在第一容器内,第二反射物被可移动地放置在第二容器内。37.根据权利要求36所述的控制器,其中第一和第二容器是圆柱形的。38.根据权利要求36所述的控制器,其中第一容器定义第一纵轴,第二容器定义第二纵轴;并且其中第一容器绕第一纵轴的旋转导致第一反射物与第一和第二信号传感器之间的相对移动;以及其中第二容器绕第二纵轴的旋转导致第二反射物与第三和第四信号传感器之间的相对移动。39.根据权利要求33所述的控制器,其中第一传感器输出信号正比于由第一信号传感器接收的第一信号的强度与由第二信号传感器接收的第一信号的强度之比;并且第二传感器输出信号正比于由第三信号传感器接收的第二信号的强度与由第四信号传感器接收的第二信号的强度之比。40.根据权利要求39所述的控制器,其中信号调节器将第一和第二传感器输出信号分别转换为第一和第二已调节输出信号。41.根据权利要求40所述的控制器,其中第一已调节输出信号的脉宽正比于由第一信号传感器接收的第一信号的强度与由第二信号传感器接收的第一信号的强度之比;并且第二已调节输出信号的脉宽正比于由第三信号传感器接收的第二信号的强度与由第四信号传感器接收的第二信号的强度之比。42.根据权利要求39所述的控制器,其中信号调节器进一步包括一个微控制器,用于将第一和第二已调节输出信号转换为第一和第二控制信号。43.根据权利要求33所述的控制器,其中信号调节器通过交替地启动第一和第二信号源来分别交替地启动第一和第二位置传感器模块。44.一个位置传感器模块包括用于发射信号的一个信号源;第一、第二、第三和第四信号传感器;相对于第一、第二、第三和第四信号传感器可移动放置的一个反射物;其中第一、第二、第三和第四信号传感器被放置来接收从反射物反射的信号;此外其中第一信号传感器和第二信号传感器被连接在一起来提供第一传感器输出信号,指示反射物相对于第一和第二信号传感器的位置;以及其中第三信号传感器和第四信号传感器被连接在一起来提供第二传感器输出信号,指示反射物相对于第三和第四信号传感器的位置。45.根据权利要求44所述的位置传感器模块,其中第一传感器输出信号正比于由第一信号传感器接收的信号的强度与由第二信号传感器接收的信号强度之比;并且第二传感器输出信号正比于由第三信号传感器接收的信号的强度与由第四信号传感器接收的信号的强度之比。46.根据权利要求44所述的位置传感器模块,其中第一和第二信号传感器定义第一参考轴,第三和第四信号传感器定义第二参考轴;并且其中位置传感器模块绕第一或第二轴的旋转导致反射物相对于第一和第二信号传感器或相对于第三和第四信号传感器的移动。47.根据权利要求44所述的位置传感器模块,其中反射物是球形的。48.根据权利要求44所述的位置传感器模块,其中反射物是非球形的。49.根据权利要求44所述的位置传感器模块,其中反射物包括一个在液体中的泡。50.根据权利要求49所述的位置传感器模块,其中反射物包括一个气泡。51.根据权利要求49所述的位置传感器,其中所述的泡是与首次述及的液体不同的第二种液体;并且第一种液体具有第一密度,第二种液体具有不同于第一密度的第二密度;此外,其中第一和第二种液体保持实际分离。52.根据权利要求44所述的位置传感器模块,其中第一和第二信号传感器定义第一参考轴,第三和第四信号传感器定义第二参考轴;此外,其中第一传感器输出信号与第一参考轴和一个参考平面之间的角度相关;第二传感器输出信号与第二参考轴和该参考平面之间的角度相关。53.根据权利要求52所述的位置传感器模块,其中第一参考轴与第二参考轴实际上正交。54.根据权利要求44所述的位置传感器模块,其中反射物被可移动地放置在一个容器内。55.根据权利要求54所述的位置传感器模块,其中容器的内表面至少部分是球形的。56.根据权利要求52所述的位置传感器模块,其中反射物被可移动地放置在一个容器内;另外其中容器绕第一纵轴的旋转造成反射物与第一和第二信号传感器之间的相对移动,所述第一纵轴与第一参考轴实际上正交;并且其中容器绕第二纵轴的旋转造成第二反射物与第三和第四信号传感器之间的相对移动,所述第二纵轴与第二参考轴实际上正交。57.一个控制器,包括一个如权利要求44所述的位置感应器模块;一个可操作地连接到位置感应器模块的信号调节器,用于将第一和第二传感器输出信号转换为控制信号。58.根据权利要求57所述的控制器,其中信号调节器将第一传感器输出信号转换为第一已调节输出信号,该信号的脉宽正比于由第一信号传感器接收的信号的强度与由第二信号传感器接收的信号的强度之比;并且信号调节器将第二传感器输出信号转换为第二已调节输出信号,该信号的脉宽正比于由第三信号传感器接收的信号的强度与由第四信号传感器接收的信号的强度之比。59.根据权利要求58所述的控制器,其中信号调节器包括一个微控制器,用于将第一和第二已调节输出信号转换为控制信号。60.根据权利要求59所述的控制器,其中微控制器采用数字模式接口与受控装置通信。61.根据权利要求59所述的控制器,其中微控制器采用滑动窗口模式接口与受控装置通信。62.根据权利要求59所述的控制器,其中微控制器采用比例模式接口与受控装置通信。63.根据权利要求59所述的控制器,其中微控制器采用相对模式接口与受控装置通信。64.根据权利要求59所述的控制器,其中微控制器采用绝对模式接口与受控装置通信。65.根据权利要求57所述的控制器,其中信号调节器控制位置传感器模块,通过交替启动(i)第一和第二信号传感器以及(ii)第三和第四信号传感器,来多路转换第一和第二传感器输出信号。66.根据权利要求57所述的控制器,进一步包括一个红外发射器,用于发射控制信号到一个接收器。67.根据权利要求66所述的控制器,其中红外发射器进一步包括一个扩散激光二极管。68.根据权利要求57所述的控制器,进一步包括一个射频发射器,用于发射控制信号到一个接收器。69.根据权利要求57所述的控制器,进一步包括一个超声波发射器,用于发射控制信号到一个接收器。70.根据权利要求57所述的控制器,其中信号调节器采用数字模式接口与受控装置通信。71.根据权利要求57所述的控制器,其中信号调节器采用滑动窗口模式接口与受控装置通信。72.根据权利要求57所述的控制器,其中信号调节器采用比例模式接口与受控装置通信。73.根据权利要求57所述的控制器,其中信号调节器采用相对模式接口与受控装置通信。74.根据权利要求57所述的控制器,其中信号调节器采用绝对模式接口与受控装置通信。75.一种方法,包括以下步骤从信号源发射一个信号;从一个反射物反射该信号,该反射物相对于第一和第二信号传感器可移动地放置;用第一和第二信号传感器接收该信号;连接第一和第二信号传感器来提供指示反射物相对于第一和第二信号传感器的位置的一个传感器输出信号。76.根据权利要求75所述的方法,进一步包括将传感器输出信号转换为控制信号。77.根据权利要求75所述的方法,其中第一传感器输出信号直接相关于第一参考轴和一个参考平面之间的角度,该第一参考轴由第一和第二信号传感器限制。78.根据权利要求75所述的方法,其中传感器输出信号正比于由第一信号传感器接收的信号的强度与由第二信号传感器接收的信号的强度之比。79.根据权利要求78所述的方法,进一步包括产生一个已调节的信号,该信号的脉宽正比于由第一信号传感器接收的信号的强度与由第二信号传感器接收的信号的强度之比。80.根据权利要求75所述的方法,进一步包括以下步骤从与首次述及的信号源不同的第二信号源发射与首次述及的信号不同的第二信号;从与首次述及的反射物不同并相对于第三和第四信号传感器可移动地放置的第二反射物反射该信号;用第三和第四信号传感器接收该第二信号;连接第三和第四信号传感器来提供第二传感器输出信号,该信号与首次述及的传感器输出信号不同,它指示第二反射物相对于第三和第四信号传感器的位置。81.根据权利要求80所述的方法,进一步包括将第二传感器输出信号转换为一附加控制信号。82.根据权利要求80所述的方法,其中第一传感器输出信号相关于第一参考轴和一个参考平面之间的角度,该第一参考轴由第一和第二信号传感器限定;并且其中第二传感器输出信号相关于第二参考轴和该参考平面之间的角度,该第二参考轴由第三和第四信号传感器限定。83.根据权利要求80所述的方法,其中第一传感器输出信号正比于由第一信号传感器接收的第一信号的强度和由第二信号传感器接收的第一信号的强度之比;并且其中第二传感器输出信号正比于由第三信号传感器接收的第二信号的强度和由第四信号传感器接收的第二信号的强度之比。84.根据权利要求83所述的方法,进一步包括产生第一已调节信号,该信号的脉宽正比于由第一信号传感器接收的第一信号的强度与由第二信号传感器接收的第一信号的强度之比;产生第二已调节信号,该信号的脉宽正比于由第三信号传感器接收的第二信号的强度与由第四信号传感器接收的第二信号的强度之比。85.一种方法,包括以下步骤从信号源发射一个信号;从一个反射物反射该信号,该反射物相对于第一、第二、第三和第四信号传感器可移动地放置;用第一、第二、第三和第四信号传感器接收该信号;连接第一和第二信号传感器来提供第一传感器输出信号,该信号指示该反射物相对于第一和第二信号传感器的位置;连接第三和第四信号传感器来提供第二传感器输出信号,该信号指示该反射物相对于第三和第四信号传感器的位置。86.根据权利要求85所述的方法,进一步包括将第一和第二传感器输出信号转换为控制信号。87.根据权利要求85所述的方法,其中第一传感器输出信号相关于第一参考轴和一个参考平面之间的角度,该第一参考轴由第一和第二信号传感器限定;并且其中第二传感器输出信号相关于第二参考轴和该参考平面之间的角度,该第二参考轴由第三和第四信号传感器限定。88.根据权利要求85所述的方法,其中第一传感器输出信号正比于由第一信号传感器接收的信号的强度和由第二信号传感器接收的信号的强度之比;并且其中第二传感器输出信号正比于由第三信号传感器接收的信号的强度和由第四信号传感器接收的信号的强度之比。89.根据权利要求88所述的方法,进一步包括产生第一已调节信号,该信号的脉宽正比于由第一信号传感器接收的信号的强度与由第二信号传感器接收的信号的强度之比;产生第二已调节信号,该信号的脉宽正比于由第三信号传感器接收的信号的强度与由第四信号传感器接收的信号的强度之比。90.一种控制器包括位置指示电路,它产生代表控制器位置的一个控制信号;以及一个无线发射器,与位置传感电路相连,以便发射位置信号到与受控装置运行连接的无线接收器,该无线发射器包括一个扩散激光二极管。91.一种位置传感电路,包括接收第一信号的第一传感器;接收第二信号的第二传感器;用于产生比率输出信号的比率放大器,所述比率输出信号正比于由第一传感器接收的第一信号的强度与由第二传感器接收的第二信号的强度之比。92.根据权利要求91所述的位置传感电路,其中比率输出信号是一个数字信号,其脉宽正比于由第一传感器接收的第一信号的强度与由第二传感器接收的第二信号的强度之比。93.一种用于向受控装置发射以一个光信号编码的控制信号的控制器,该控制器包括一个扩散激光二极管。94.根据权利要求93所述的控制器,其中光信号是一个红外信号。95.向受控装置发射控制信号的方法,该方法包括采用扩散激光二极管发射光信号。96.根据权利要求95所述的方法,其中光信号是一个红外信号。97.根据权利要求95所述的方法,还包括在受控装置内接收一个光信号。全文摘要一种改进的位置传感器控制器(40),允许人们通过简单地倾斜手持式控制器(40)来产生控制信号,从而精确地控制远程目标或装置在一维或二维空间移动,位置传感器(48a)包括在液体中的一个泡(56),它被用于确定控制器关于水平面的角位置,光源64将由该泡反射的光发射到两个相对的光电二极管(68a,68b)。比率放大器(80)产生与入射到每个光电二极管的光的比率相应的信号以提供与控制器相对水平面倾斜的角度相应的信号。控制器(40)可采用扩散激光发光二极管向受控装置发射信号。文档编号A63F13/06GK1157664SQ95194950公开日1997年8月20日申请日期1995年7月24日优先权日1994年7月26日发明者彼得·M·雷德福,唐纳德·S·斯特恩申请人:电视交互数据公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1