抗菌陶瓷及其生产方法

文档序号:1822484阅读:241来源:国知局
专利名称:抗菌陶瓷及其生产方法
技术领域
本发明涉及具有抗菌效果的抗菌陶瓷及其生产方法。尤其是本发明涉及通过汽相沉积将金属如银沉积其上的陶瓷。
当细菌附着在陶瓷如瓦和卫生陶器的表面上,由于垢斑和污点的滋养加速了细菌的繁殖以致于表面易变脏和不卫生。因此,有人研制了具有抗菌效果的陶瓷。
按常规,通过喷洒光催化剂(锐钛矿TiO2)或在表面上施以抗菌金属或施以在其中混有抗菌金属的釉料然后烘烤陶瓷来向陶瓷的表面提供抗菌效果。
然而,当抗菌金属与釉料混合时,金属扩散于整个釉料中。即,虽然提供抗菌效果所必需的部分仅在表面上,但金属却均匀扩散于其中以致于金属使用较多。另外,这样使用的金属通常是昂贵的金属如铜或银,因此使陶瓷昂贵。另一方面,在喷洒抗菌金属的方法中,把金属或金属化合物均匀地涂到陶瓷的表面是不可能的而且与陶瓷的表面构型相匹配是困难的。当在烘烤陶瓷之前喷洒金属或金属化合物时,在烘烤过程中金属或金属化合物有时被吹散以致于陶瓷不具备抗菌效果。另一方面,当在烘烤陶瓷之后喷洒金属或金属化合物时,金属或金属化合物容易脱落。
本发明是考虑了上述问题以后而发明的。本发明的目的是提供通过将抗菌金属牢固和均匀地只固定在陶瓷表面上而使得使用少量的抗菌金属如银就能制造的抗菌陶瓷,因此也降低了成本。本发明的抗菌陶瓷其特征在于具有抗菌作用的金属或金属化合物通过汽相沉积被固着在陶瓷如瓦或卫生陶器的表面。
通过汽化具有抗菌活性的金属或金属化合物和在陶瓷如瓦或卫生陶器的表面上沉积金属或金属化合物来生产陶瓷。
陶瓷优选在大气压力下生产。
汽相沉积优选在低于1300℃的温度下进行。
按照本发明的一方面,具有抗菌作用的金属或金属化合物被填充在一个或更多的多孔陶瓷的贮器中和通过该贮器汽化以便把金属或金属化合物通过汽相沉积附着在陶瓷如瓦或卫生陶器的表面。
贮器可以是中空辊子以便具有抗菌作用的金属或金属被填充在中空辊子中。
中空辊子可以是一些传送陶瓷如瓦和卫生陶器到窑中烘烤的传送辊子,陶瓷是在传送辊子上。
贮器可以从窑的边墙处放入和与陶瓷如瓦和卫生陶器水平排列。
贮器在窑内可以旋转。


图1是表示按照第一方案在辊道窑内通过汽相沉积把金属或金属化合物沉积在瓦上情况的示意图;图2是瓦的放大剖面图;图3是表示按照第二方案在辊道窑内通过汽相沉积把金属或金属化合物沉积在瓦上情况的示意结构图;图4是第三方案的示意结构图,其中烘烤和沉积在辊道窑内同时进行;
图5是第四方案的示意结构图,其中烘烤和沉积在辊道窑内同时进行;图6是表示在图7中所示的贮器的实例的透视图;图7是表示辊道窑,其中从辊道窑的边墙插入贮器的透视图;图8表示第五方案的透视图,其中辊道窑具有排列在其内的传送辊子并且用于沉积的金属银填充在一些辊子中;图9表示第六方案的示意图,其中对放在窑车上的每个匣钵内的瓦进行烘烤和沉积;图10是表示匣钵内部的放大结构图;和图11是表示第七方案的示意图,其中瓦的烘烤和沉积在间歇窑内同时进行。
下面,参考附图描述本发明的方案。
图1是第一方案的示意图,其中当瓦坯被送入辊道窑内并且烘烤,银离子通过汽相沉积沉积在每片瓦坯的表面上。辊道窑1装备许多辊子2,它们旋转地在辊道窑1内从其入口到出口排成一线。每个辊子2的轴水平延伸与瓦坯的装入方向垂直。每个辊子2是由耐火材料制成。所有的辊子由电动机旋转。按照辊子2的旋转方向瓦坯3,3,3从辊道窑的入口喂入并到达出口。在辊道窑1内各自的瓦坯3在预热区11被有效加热,在烧成区12烘烤然后在冷却区13冷却。在辊道窑1内烧成区12的温度优选大于1000℃而小于1400℃,更优选大于1100℃而小于1300℃。
在辊道窑1内冷却区13处也装备了银金属圆棒4。银从圆棒4汽化以便汽化的银在冷却区13处沉积在每片瓦3的表面上。在冷却区13置放银金属圆棒4区域的温度优选大于600℃而小于920℃更优选大于800℃小于900℃。在这个温度下,大量的银能从圆棒4上汽化。当银的圆棒4位于离瓦表面1-50mm,优选2-10mm时,银被有效地沉积在瓦3的表面上。尽管在上述中只排列了一个圆棒4,但是可以排列许多圆棒4,4。圆棒4的直径优选大于5mm而小于80mm,更优选大于20mm而小于50mm。
如上所述,因为冷却区13有600℃到900℃的温度范围以便冷却区13的气氛包含低密度的汽化银,在冷却区13的这样一个温度范围,银可以非常薄地沉积在瓦3的表面上。因为冷却区13有一个接近于辊道窑1的出口温度的较低温度,沉积在表面上的银不会再汽化。沉积在瓦3的表面上的银量为每1m2瓦3表面优选在0.01mg和0.50mg之间,更优选在0.05mg和0.20mg之间。
如图2的瓦的剖面图所示,银均匀地被沉积在瓦3的瓦坯3a上的釉料层3b的表面上,因此提高了瓦3表面的抗菌效果。从而有可能使瓦3具有改善的外观,其中微量银沉积在其表面上并没有改变釉料3b的颜色。通过改变瓦3的送入速度,能控制沉积在瓦3表面的银Ag量。
如上所述,按照这个方案,银只沉积在釉料层3b的表面上,因此减少了扩散到釉料层3b的内部的银量和总的银量,并且与以前的混合银和釉料的常规方法相比较,制造瓦成本低。因为银坚固附着在瓦3的表面上,没有银从表面脱落的麻烦。所以,银对表面具有抗菌效果。
应该注意即使当瓦3有不平的表面,银也基本上均匀地沉积在与其不平度相吻合的表面上。
尽管在图2中瓦3上具有釉料层3b,但在不使用釉料的情况下,银Ag可以直接沉积在瓦坯3a的表面上。
参照图3,描述第二方案。
辊道窑1在冷却区13中装备一个容器4如熔罐,氧化银填充其中。容器4联结到加热器上如高频加热装置或电子束加热装置。在冷却区13的温度下通过热解氧化银变为银金属。用加热器加热银使得银从容器4如熔罐中汽化然后通过汽相沉积沉积在每片瓦3的表面上。在冷却区13置放容器4的区域的温度优选大于700℃而小于1100℃,更优选大于800℃而小于1000℃。因此,在冷却区13的气氛中包含低密度的汽化银,能把银非常薄地沉积在瓦3的表面上。
于是,由于银基本均匀地沉积在瓦3的表面上,使得银Ag坚固地附着在瓦3上和局部附着在瓦3的表面上,因此改善了瓦3的表面的抗菌效果。从而有可能不改变釉料3b的颜色而使瓦3具有极好的外观。
图4表示第三方案,其中当瓦坯3连续喂入辊道窑1中时,在其上放有氧化银6的架砖5(耐火托架)也送入辊道窑1中。在辊道窑1中通过热解使氧化银6变为银,然后加热银以达到汽化以便辊道窑1的气氛中包含汽化银。因此,银均匀地沉积在送入辊子2上的瓦3,3的表面上。
在将氧化银6和瓦3送入辊道窑1的过程中,汽化银有效地向每片瓦的表面上提供银并且银基本均匀并局部地沉积在表面上。这样就有可能通过有效地把用量减少的银只附着在表面上而改善了瓦表面抗菌效果。
图5表示第四方案,其中辊道窑1按区段从烧成区的末端到辊道窑1的冷却区有许多贮器7。在这个方案中,每个贮器7是由中空辊子制成,银金属和氧化银8填充其中,如图6的透视图所示。中空辊子7的两端由rids密封。中空辊子7用多孔陶瓷如莫来石制成,每个细孔具有的直径小于500μm,优选0.1μm和100μm之间。
这种中空辊子7从辊道窑的边墙9处插入辊道窑中并且水平放置在被送入窑中的瓦3的上面1-60cm优选5-10cm的位置处,辊子7被安装在窑的边墙9上,如图7所示。中空辊子7可以适当旋转。银金属或氧化银8汽化且通过中空辊子7陶瓷的细孔扩散入窑内并且沉积在瓦3的表面上。
每个辊子7的直径优选大于10mm和小于50mm,更优选大于20mm和小于30mm。每个辊子7的壁厚优选大于1mm和小于10mm,更优选大于2mm和小于4mm。辊子7的数量是大于1和小于20,更优选大于5和小于15,其互相间隔优选为10-100cm,更优选20-50cm。
因为中空辊子7水平放置,辊子安装在窑的边墙9上,所以,中空辊子7在边墙9的外边能被恰当替换以便能在进行中空辊子7的替换时不中断被连续送入窑内的瓦3的沉积作业。旋转中空辊子7防止中空辊子的弯曲。中空辊子7的多孔陶瓷可以预先用银金属浸透以便使银金属Ag成功地扩散沉积在瓦3上。
尽管在这个方案中,中空辊子如作为贮器7来加以说明,但是贮器可以以其它结构形成,如具有上端开口的槽形。这种贮器,其中充满银金属Ag,它也可以具有相同的效果。
图8表示了第五方案,其中辊道窑1有许多辊子2旋转排成一线,其中一些是置放在烧成区的出口部分的辊子2A。每个辊子2A内包含银金属棒、银金属粉或氧化银。
每个辊子2A是用多孔陶瓷如莫来石制成且形成中空的结构,其直径如20-40mm。辊子2从辊道窑1的边墙处旋转插入窑内,辊子安装在边墙上,因此通过取出辊子2便于向辊子2A补充银金属Ag。填充在辊子2A内的银金属或氧化银汽化并通过空气循环向上扩散在窑内并且沉积在瓦3的表面上。
通过置放在辊道窑1内的辊子2,瓦3从窑入口被传送到出口,瓦3在辊子2上。在这个过程中,银金属Ag从旋转辊子2A中连续汽化以便通过空气循环扩散和沉积在瓦3上。不需要改变常规的辊道窑1的结构。
图9和图10表示第六方案,其中窑20有许多窑车21,大量匣钵22堆放其上。每个匣钵22包括许多以直立状态如图10所示排列的瓦3。在这个方案中,瓦是成双放置,其背面相互接触。匣钵22中有氧化银。在每个匣钵22中氧化银的数量为每1cm2置放在匣钵22中瓦3的正面优选在0.5g和20g之间,更优选在5g和10g之间。
如上所述,在从窑20的入口到出口传送窑车21的过程中,许多匣钵22堆放在其上并且瓦3,3,3直立在每个匣钵22中,窑车21在烧成区25被加热到1000℃和1400℃之间优选1100℃和1300℃之间的温度,以便在匣钵22中氧化银23被汽化,如图10所示并且汽化的银随后沉积在直立瓦3的正面上。
按照这个方案,在将瓦3传送通过窑的预热区24、烧成区25和冷却区26的过程中,在烘烤瓦3的同时银沉积在瓦3的正面,因此通过同时进行烘烤和沉积以低成本制得抗菌瓦。
图11表示第七方案,其中间歇式窑30装备许多堆放的小台31,瓦3,3,3分别放在其上,并且氧化银块32,32,32分别放在窑的底部和顶部大多数台31上。当窑30的内部加热到1000℃和1400℃之间,更优选在1100℃和1300℃之间温度来烘烤瓦,氧化银块通过热解而汽化以扩散在间歇式窑30内并且这种汽化的氧化银沉积在瓦3的正面。银Ag均匀地沉积在每片瓦的釉料层的表面上,所以制得在其表面上具有高效抗菌效果的瓦。
在上述方案中描述了在保持大气压力下的窑内进行烘烤和沉积,尽管如此,即使当窑内是加压或真空或减压气氛时银仍可以有效地沉积在瓦的正面。
对瓦来说,银的沉积没有限制而且可以按照上述相同的方法在陶瓷如其它卫生陶器和搪瓷浴缸表面上进行。此外,锌,铜或其组合物可以代替银用作沉积的抗菌金属。另外,银、锌或铜的金属化合物例如硝酸银、磷酸银和氯化银可以用作沉积的抗菌金属。这种具有抗菌活性的金属或金属化合物坚固和均匀地只沉积在陶瓷的表面上,所以制得具有高效的抗菌效果的陶瓷。
在本发明中,因为具有抗菌活性的金属或金属化合物通过汽相沉积坚固和均匀地只沉积在陶瓷的表面上,陶瓷表面因为由此沉积的金属或金属化合物而具有改进的抗菌效果。因此即使当细菌在表面上时,通过金属离子细菌的繁殖被有效地阻止。即如上处理的陶瓷能具有抗菌效果、防霉效果和除臭效果。
在本抗菌陶瓷的生产方法中,其中具有抗菌活性的金属或金属化合物被汽化沉积在陶瓷如瓦和卫生陶器的表面上,金属或金属化合物在烘烤陶瓷的窑中汽化并且汽化的金属或金属化合物均匀和坚固地沉积在陶瓷的表面上。因此,金属或金属化合物能有效地固着在陶瓷表面上并容易控制汽化的金属或金属化合物量。
因为抗菌陶瓷的生产是在大气压力下进行,在烘烤陶瓷的过程中,通过在窑内的汽相沉积金属或金属化合物能被沉积在陶瓷的表面上。
在窑内的正常温度范围内金属或金属化合物能被汽化沉积在陶瓷的表面上以便陶瓷的烘烤和在陶瓷表面上金属或金属化合物的沉积能同时进行,因此减小了陶瓷的生产成本。
当具有抗菌活性的金属或金属化合物填充在多孔陶瓷的贮器并且汽化和通过贮器扩散以便由此汽化的金属或金属化合物能沉积在陶瓷如瓦或卫生陶器的表面上,金属或金属化合物能有效地通过多孔陶瓷的细孔扩散以便金属或金属化合物的细粒汽化沉积在陶瓷的表面上,因此成为牢固和有效的沉积。
当贮器是中空辊子并且具有抗菌活性的金属或金属化合物填充在中空辊子中时,金属或金属化合物完全从中空辊子的表面汽化和扩散,因此改善了可操作性。
当中空辊子是一些在辊道窑内原来就放置的用来传送在窑内烘烤的陶瓷如瓦和卫生陶器的传送辊子时,在通过旋转辊子(辊子是陶瓷)从窑的入口到出口传送陶瓷的过程中,金属或金属化合物的细粒从旋转辊子陆续汽化并通过空气循环在窑内有效地扩散以便通过传送辊子金属或金属化合物能有效地沉积在陶瓷的表面上而不改变常规辊道窑的结构以及不需要其它装置。
贮器从窑的边墙水平排列在陶瓷如瓦和卫生陶器的上面,并且贮器被安装在边墙上,因此使得从窑边墙的外边适当更换贮器。因此,不需要中断连续沉积就能进行贮器的更换。
通过在窑内旋转贮器,防止了贮器的弯曲,所以还能有效地进行连续沉积。
实施例实施例1使用图1描述的辊道窑制备尺寸为15cm×15cm×0.7cm的抗菌陶瓷瓦,其详细数据如下窑的内部容积 22m3预热区11的长度 8m烧成区12的长度 12m冷却区13的长度 16m燃烧器的数量27银棒4的直径 30mm银棒4的长度 2m辊子的运送速度 108m/Hr窑内停留时间 21分钟烧成温度 1300℃在这样制备的瓦上沉积了16mg银。实施例2使用图3描述的辊道窑制备具有与上述相同尺寸的抗微生物陶瓷瓦。
容器有1000cm3容积,氧化银包含在其中以便大约100cm2的氧化物暴露在窑内的气氛中。容器被放置在温度为1200℃的区域。
氧化银以0.3kg/Hr的比率消耗。
在这样制备的瓦上沉积了16mg银。实施例3使用图4描述的辊道窑制备具有与上述相同尺寸的抗微生物陶瓷瓦。
架砖尺寸为15cm×15cm,与瓦相同尺寸,每30个瓦就有一个架砖且被送入窑内,瓦成批排成一线。在每个架砖上所放的氧化银量大约为20g。
在这样制备的瓦上沉积了16mg银。实施例4使用图5描述的辊道窑制备具有与上述相同尺寸的抗微生物陶瓷瓦。
在窑内温度为1000到1100℃的区域中装载贮器。贮器相互隔离50cm,并位于瓦上10cm的位置处。每个中空辊子贮器直径为35mm,长度为3000mm,和厚度为6mm贮器是由具有25%孔隙率的莫来石制成。
在中空贮器中的氧化银以0.3kg/Hr的比率消耗。
在这样制备的瓦上沉积了16mg银。实施例5使用图8描述的辊道窑制备具有与上述相同尺寸的抗微生物陶瓷瓦。
窑在温度为1000到1100℃的区域内装备十五个中空辊子2A。每个辊子2A直径为25mm,长度为3000mm,和厚度为2mm。辊子2A是由具有25%孔隙率的莫来石制成,并且其中包含氧化银,辊子2A相互隔离大约90cm。
氧化银以0.3kg/Hr的比率消耗。
在这样制备的瓦上沉积了16mg银。实施例6使用图9描述的窑制备具有与上述相同尺寸的抗微生物陶瓷瓦。
匣钵堆放12层。
匣钵容积为30×30×12cm且其中包含50片瓦和5g氧化银。每小时送入窑内480个匣钵。
在这样制备的瓦上沉积了7mg银。实施例7使用图11描述的容积为1m3的窑制备具有10cm×10cm尺寸的抗微生物陶瓷瓦。在窑内每批处理中用银沉积2000片瓦。在每批处理中,氧化银的消耗量为0.3kg。用10小时把窑内的温度从室温升高到1000℃,保持相同温度1小时,然后降温。
在这样制备的瓦上沉积了7mg银。
权利要求
1.一种抗菌陶瓷,其中具有抗菌活性的金属或金属化合物通过汽相沉积牢固附着在陶瓷如瓦或卫生陶器的表面上。
2.一种抗菌陶瓷的生产方法,它包括汽化具有抗菌活性的金属或金属化合物以便把这种汽化的金属或金属化合物通过汽相沉积附着在陶瓷如瓦或卫生陶器的表面上的步骤。
3.权利要求2所述的抗菌陶瓷的生产方法,其中所说的汽相淀积是在大气压力下进行。
4.权利要求2所述的抗菌陶瓷的生产方法,其中所说的汽相淀积是在减压或加压下进行。
5.权利要求2、3和4中的任何一个所述的抗菌陶瓷的生产方法,其中所说的具有抗菌活性的金属或金属化合物填充在一个或更多多孔陶瓷的贮器中并且通过该贮器汽化以便通过汽相沉积把金属或金属化合物附着在陶瓷如瓦或卫生陶器的表面上。
6.权利要求5所述的抗菌陶瓷的生产方法,其中所说的贮器是中空辊子并且所说的具有抗菌活性的金属或金属化合物填充在所说的中空辊子中。
7.权利要求6所述的抗菌陶瓷的生产方法,其中所说的中空辊子是一些用来传送在窑内烘烤的陶瓷如瓦或卫生陶器的传送辊子。
8.权利要求5和6的任何一个所述的抗菌陶瓷的生产方法,其中所说的贮器从窑边墙处插入且水平放置在陶瓷如瓦或卫生陶器的上面。
9.权利要求6和8的任何一个所述的抗菌陶瓷的生产方法,还包括在窑中旋转所说的贮器的步骤。
10.权利要求8的生产方法,其中所说的窑是辊道窑并且所说的贮器放置在被传送辊子传送的陶瓷的正上方。
11.权利要求2到10的任何一个所述生产方法,其中所说的金属是银。
12.权利要求2到10的任何一个所述生产方法,其中所说的金属化合物是氧化银。
全文摘要
本发明的目的是减少金属使用量并通过汽相沉积把抗菌金属均匀并坚固地只附着在陶瓷的表面。具有抗菌活性的金属或金属化合物通过汽相沉积附着在陶瓷如瓦或卫生陶器的表面上。通过在窑内加热银或氧化银来汽化银或氧化银。在冷却区中蒸汽与陶瓷接触以便将之沉积在陶瓷上。通过窑的高温或加热器可以加热银或氧化银。银或氧化银可以容纳在容器,优选是多孔容器中,其被放置在窑中。
文档编号C04B41/45GK1149039SQ96110479
公开日1997年5月7日 申请日期1996年6月22日 优先权日1995年6月22日
发明者今井茂雄, 杉山纪幸, 守山嘉人, 杉浦浩二, 新开诚司, 外山公也 申请人:株式会社伊奈斯
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1