基于力反馈的工业机器人辅助装配柔性对接方法与流程

文档序号:11078598阅读:1005来源:国知局
基于力反馈的工业机器人辅助装配柔性对接方法与制造工艺

本发明属于航天设备装配技术领域。具体来说,涉及一种用于航天设备干涉检测、位姿调整及柔性对接的工业机器人辅助装配柔性对接方法。

技术背景

目前,工业机器人具有载重量大、调整精度高等特点,可实现大重量零部件的稳定保持与精确调整。为了将工业机器人与航天设备的安装结合,现有技术中已经公开了两项中国发明专利两项:(1)《一种航天器机械臂柔性随动控制方法》,申请号:CN2013105721 78.9;(2)《一种航天器机械臂柔性随动控制重力补偿方法》,申请号:CN201310552492.0。以上两种方法已在试验中实现安装设备在工业机器人辅助下,随人手动作进行移动和转动,从而实现安装设备的位姿调整。

但在具体使用时存在一个问题:工业机器人在控制端输入信号的控制下运动,对于外界环境的接触力不具有柔性调节的能力,采用的末端执行器也为刚性结构,没有柔性环节;应用中需要依靠人眼观察实现对接面对接,人眼观察无法保证工件对接面与舱体表面紧密切合;如果两个贴合面间存在间隙,则在紧固件拧紧时会对舱体机构造成牵拉,存在损坏舱体结构的风险,如果贴合过紧,工件对舱体表面压力过大,也可能损坏舱体结构。

因此,如何使两个对接面完全贴合,又能使接触力保持在安全的范围,是工业机器人辅助装配系统需要解决的一个问题。



技术实现要素:

针对装配对接中遇到的对接面不平行造成的受力不均等问题,本发明在工业机器人通过六维传感器得到装配过程中工件受到的外部干涉力,进一步采用力位控制方法,实现了接触对接过程中工件位姿的柔性调整,既使对接 面间的完全贴合,又将接触力控制在安全的范围内,同时,采用“对接柔顺控制”使工业机器人末端顺应工件边界,并能将接触力保持在适当的范围内。

本发明中的干涉检测是当工业机器人末端工件与安装设备接触时,六维力传感器接收到接触时产生的接触力反馈,接触力超过预定值时,控制系统认为接触发生,并采取相应的控制策略。

本发明采用了如下的技术方案:

基于力反馈的工业机器人辅助装配柔性对接方法,其特征在于,通过人手推动或扭转小六维力传感器,使工业机器人末端工件进行相应的即时运动,微调工件对接位姿,实现安装工件的位姿调整,同时,根据大六维力传感器的反馈信息,结合力/位混合的控制方法,由实际作用力与理想作用力之间的误差对工业机器人的运动轨迹进行实时修正,使接触力保持在期望范围内,实现柔性对接。

其中,通过工控机对大六维力传感器、小六维力传感器信号进行采集与融合处理,根据受力信息及柔性力控制方法生成工业机器人运动信号,发送至工业机器人控制器中,控制工业机器人运动,实现工件的位姿调整。

其中,根据接触产生的力与力矩信息调整被安装工件位姿,使两个对接面不断贴近,趋于平行,直至在保证安全接触力的前提下无法继续贴近,即完成了对接面的对接。

其中,在安装面定义机器人基坐标系,记为BASE,定义垂直于安装面向外的方向为BASE的Z轴,工件与安装面发生接触后,工件受到的外力垂直于安装面,得到BASE的Z轴在工业机器人工具坐标系下的方向向量为:

机器人工具坐标系Z轴的方向向量为:

定义BASE的X轴在工业机器人工具坐标系中的方向向量为:

则BASE的Y轴在机器人工具坐标系中的方向向量为:

以上定义了BASE坐标轴在工业机器人工具坐标系下的方向向量,其中Z轴垂直于安装面,X、Y轴构成的平面平行于安装面,在柔性对接中对X、Y、Z轴方向的速度独立控制,实现保持接触力的同时工件能够沿安装面移动。

其中,控制中实时获取负载受到的外部力/力矩信息,根据不同的外部作用信息进行判断控制:

(a)未接触时移动:首先判断外力的合力是否大于预设的阈值Fs1,若则认为未发生接触,按照在自由空间的控制策略控制工业机器人向安装面移动;若则认为接触发生,按照力/位控制的策略控制工业机器人使工件柔性对接;

(b)接触时移动:时认为接触发生,可根据外力按照上述定义算法得到BASE坐标系3个坐标轴方向向量,并对BASE坐标系X、Y、Z轴方向的速度独立控制。由小六维力传感器受力信息换算至BASE坐标系X、Y轴的分量,得到BASE坐标系X、Y方向的速度。BASE坐标系Z方向的速度则根据大六维力传感器感知到接触力的大小进行反馈控制,当时,工件做回退运动,当时,工件做前进运动;

(c)接触时转动:时认为接触发生,判断外力矩大小是否大于预设的阈值Ms,若则认为不需要旋转,若则根据力矩分量换算工业机器人角速度分量,对工件进行姿态调整。

本发明通过力反馈和算法控制使安装设备和安装面完全贴合,贴合精度 远高于利用人眼观察并通过人手随动调整贴合。由于不用反复通过人眼观测对接状况并调整设备位姿,对接效率也大大提高。

附图说明

图1为本发明的工业机器人柔性力控系统的组成示意图。

图2为本发明的工业机器人柔性对接位姿调整示意图。

具体实施方式

以下结合附图对本发明的工业机器人柔性力控系统进行详细说明,这些具体实施方式仅仅是示例性的,并不旨在对本发明的保护范围进行任何限制。

参见图1,图1显示了本发明的工业机器人柔性力控系统,与现有技术中的系统相类似,该系统主要由工控机、工业机器人控制器、工业机器人、大小两个六维力传感器、末端执行器、工件等组成。其中,大六维力传感器的量程较大,安装在工业机器人末端与负载(即末端执行器与工件)之间,通过重力补偿算法消除负载重力的影响后,可感知负载受到的外部作用力。小六维力传感器的量程较小,测量灵敏度高,专用于感知人手的操作力。

本发明可以按照具体安装位置需要,通过人手推动或扭转小六维力传感器,使工业机器人末端工件进行相应的即时运动,微调工件对接位姿,实现安装工件的位姿调整。在一具体的实施方式中,根据大、小六维力传感器的力觉反馈信息,结合力/位混合的控制方法,根据实际作用力与理想作用力之间的误差对工业机器人的运动轨迹进行实时修正,使接触力保持在要求的范围内,实现柔性对接。

本发明的工业机器人柔性对接位姿调整方法的示意图如图2所示。通过人手推动六维传感器(小),使工件移动至安装面处。两对接面在不平行的情况下相互接触时,首先发生点接触或线接触,此时需要在保持接触力在安 全范围的同时,根据接触产生的力与力矩信息调整被安装工件位姿,使两个对接面不断贴近,趋于平行,直至在保证安全接触力的前提下无法继续贴近,即完成了对接面的对接。

在安装面定义机器人基坐标系,记为BASE,定义垂直于安装面向外的方向为BASE的Z轴,工件与安装面发生接触后,工件受到的外力垂直于安装面,因此可得到BASE的Z轴在工业机器人工具坐标系下的方向向量为:

机器人工具坐标系Z轴的方向向量为:

定义BASE的X轴在工业机器人工具坐标系中的方向向量为:

则BASE的Y轴在机器人工具坐标系中的方向向量为:

以上定义了BASE坐标轴在工业机器人工具坐标系下的方向向量,其中Z轴垂直于安装面,X、Y轴构成的平面平行于安装面,在柔性对接中可以对X、Y、Z轴方向的速度独立控制,实现保持接触力的同时工件能够沿安装面移动。

控制中实时获取负载受到的外部力/力矩信息,根据不同的外部作用信息进行判断控制:

(a)未接触时移动:首先判断外力的合力是否大于预设的阈值Fs1,若则认为未发生接触,按照在自由空间的控制策略控制工业机器人向安装面移动;若则认为接触发生,按照力/位控制的策略控制工业 机器人使工件柔性对接;

(b)接触时移动:时认为接触发生,可根据外力按照上述定义算法得到BASE坐标系3个坐标轴方向向量,并对BASE坐标系X、Y、Z轴方向的速度独立控制。由小六维力传感器受力信息换算至BASE坐标系X、Y轴的分量,得到BASE坐标系X、Y方向的速度。BASE坐标系Z方向的速度则根据大六维力传感器感知到接触力的大小进行反馈控制,当时,工件做回退运动,当时,工件做前进运动。

(c)接触时转动:时认为接触发生,判断外力矩大小是否大于预设的阈值Ms,若则认为不需要旋转,若则根据力矩分量换算工业机器人角速度分量,对工件进行姿态调整。

具体而言,本发明的基于力反馈的工业机器人辅助装配柔性对接方法,通过工控机对大六维力传感器、小六维力传感器信号进行采集与融合处理,根据受力信息及柔性力控算法生成工业机器人运动指令,发送至工业机器人控制器中,控制工业机器人运动,实现工件的位姿调整。大六维力传感器的量程较大,安装在工业机器人末端与负载(即末端执行器与工件)之间,通过重力补偿算法消除负载重力的影响后,可感知负载受到的外部作用力,用于干涉检测、位姿调整及柔性对接。小六维力传感器的量程较小,测量灵敏度高,专用于感知人手的操作力,可实现工业机器人末端的人手随动控制。

尽管上文对本发明的具体实施方式给予了详细描述和说明,但是应该指明的是,我们可以依据本发明的构想对上述实施方式进行各种等效改变和修改,其所产生的功能作用仍未超出说明书及附图所涵盖的精神时,均应在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1