双轴向取向聚烯烃薄膜制造的包装材料的制作方法

文档序号:2411655阅读:274来源:国知局
专利名称:双轴向取向聚烯烃薄膜制造的包装材料的制作方法
技术领域
本发明涉及由双轴向取向聚烯烃薄膜制成的包装。
聚烯烃薄膜作为包装薄膜被广泛地应用。这些材料的成功应用是基于其良好的光学性能和机械性能,而且薄膜的焊接简单。除了焊接性以外,薄膜的热封性也变得越来越重要。可热封薄膜具有的聚合物外层的微晶熔点低于其基层聚合物。为了热封,将薄膜层的一层置于另一层之上,并加热到仅低于微晶熔点10至20℃,即外层没有完全熔化。虽然热封层之间所实现的粘合明显地低于相同材料焊接的情况,但对于许多应用来说是足够的。(Kunststoff-Handbuch[塑料手册],Volume IV,CarlHanser Verlag,Munich,1969,623-640页)。
除了可热封层的应用外,所谓的冷封层的应用也是已知的。特别地,在将热敏感包装物,例如巧克力包装在薄膜中时,使用冷封层。冷封层的应用是一种附加的加工步骤,其大大地增加了包装的成本。
独立于这些包装技术如焊接、热封或冷封,标记聚合物材料方法近几年来得到了发展。这种类型的材料含有对辐射敏感的添加剂,在暴露于一定波长范围的辐射时可导致材料颜色的变化。适宜这种应用的添加剂是例如激光颜料。
另外,现有技术中公开了借助激光连接塑料组件的方法,其中所述组件上的热负荷和机械负荷较低。对于许多应用来说,透射激光焊接已经得到了确定。在这一方法中,激光束无阻碍地穿过透明组件,击中可吸收激光的接合对。激光束的作用使吸收接合对的塑料在表面上熔化,并在冷却时粘合在接合对上。在该方法中,采用波长在近红外区的二极管激光器或固态激光器。
因此,本发明的目的在于提供由聚烯烃薄膜制成的包装,其避免了冷封包覆的缺点,而同样地适合于热敏感产品的包装。
通过由含有基础层和至少一个第一外层的多层的取向聚烯烃薄膜制成的包装来实现这一目的,其中薄膜的第一外层与其本身接触或与该薄膜的反面接触或与另一个薄膜的表面接触,其特征在于所述薄膜在此第一外层中含有可在激光的波长范围内进行吸收的添加剂,这样在采用所述激光对薄膜局部辐射时,受辐射的区域温度升高,使受辐射区域处的第一外层的聚烯烃软化或熔化并在冷却时粘合到另一层上。从属权利要求给出了本发明更多的实施方案。
本发明的另一个发明目的在于给出了包含带盖子容器的便利包装。
这一目的可通过由含有基础层和至少一个第一外层的多层的取向聚烯烃薄膜制成的包装来实现,其中聚烯烃薄膜在第一外层中含有可在激光的波长范围内进行吸收的添加剂,这样在采用所述激光对薄膜局部辐射时,受辐射的区域温度升高,使在受辐射区域处的第一外层的聚烯烃软化或熔化并在冷却时粘合到另一层上。
除了可吸收激光的颜料外,薄膜的外层一般含有至少80%重量,优选85至小于100%重量,特别是90至98%重量的聚烯烃,每一种情况都是基于该层的重量计。
适宜的外层烯烃聚合物的实例有丙烯均聚物乙烯均聚物乙烯和丙烯或乙烯和1-丁烯或丙烯和1-丁烯的共聚物,或者乙烯、丙烯和1-丁烯的三元共聚物,或者所述的均聚物、共聚物和三元共聚物的两种或多种的混合物或共混物。
特别优选乙烯含量1-10%重量,优选2.5-8%重量的无规乙烯-丙烯共聚物,或者丁烯含量2-25%重量,优选4-20%重量的无规丙烯-1-丁烯共聚物,每一种情况都基于共聚物的总重量计;或者乙烯含量1-10%重量、优选2-6%重量,和1-丁烯含量为2-20%重量、优选4-20%重量的无规乙烯-丙烯-1-丁烯三元共聚物,每一种情况都基于三元共聚物的总重量计;或者乙烯含量为0.1-7%重量,丙烯含量为50-90%重量并且1-丁烯含量为10-40%重量的乙烯-丙烯-1-丁烯三元共聚物和丙烯-1-丁烯共聚物的共混物,每一种情况都基于聚合物共混物的总重量计。
上述的用于外层的共聚物和/或三元共聚物的熔体流动指数通常为1.5至30g/10min,优选3至15g/10min。熔点在120至140℃的范围。上述的共聚物和三元共聚物的共混物的熔体流动指数为5至9g/10min和熔点为120至150℃。上面提到的所有熔体流动指数是在230℃和21.6N的力下测定的(DIN 53 735)。
用于外层的的丙烯均聚物的熔体流动指数通常为1.5至30g/10min,优选3至15g/10min。该均聚物的熔点为150至170℃,优选为155至165℃。优选的是全同立构规整度大于92%,优选为94至98%的全同立构均聚物。这种全同立构的丙烯均聚物的正庚烷溶解量小于10%重量,优选为1-8%重量,基于均聚物的重量计。上面提到的所有熔体流动指数是在230℃和负荷21.6N下测定的(DIN 53 735)。
若需要,可将常规的添加剂如抗静电剂、中和剂、润滑剂和/或稳定剂,和若需要的另外的抗结块剂以每一种情况中的有效量加入外层中。对本发明来说,薄膜的吸收性外层中含有可吸收激光波长范围内的辐射的添加剂是必要的。这类添加剂在下面用于本发明时将被称为颜料或激光颜料。
在薄膜外层中加入这类激光颜料可使薄膜在受辐射时吸收辐射,即吸收能量。现有技术中,已知在给定的适当的波长下,激光束在着色的塑料中以白色线条或彩色线条的形式留下可见的轨迹。这种效果被用于通过激光标记塑料组件和塑料薄膜。作为本发明的一部分,现已发现采用激光束对一个放置于另一个上面的两个薄膜进行辐射,如果两薄膜中至少有一个薄膜具有含激光颜料的外层,而且该含激光颜料的外层面向第二个薄膜使含有颜料的外层与第二个薄膜层相接触,则在两薄膜层间会产生强的接合,类似于热封或焊接缝合。在此还发现,其特别有利于生产含有相应的、优选含有相同吸收颜料的两个相接触外层间的密封接缝。
令人惊喜地,激光束通过薄膜的其他层后不会象激光标记中已知的那样在其中留下可见的轨迹,而且也不会留下其他的损害。令人意外的是,激光吸收如此显著以至于薄膜吸收了可使外层软化或发热的足够能量。特别地,有疑问的是在薄外层中的激光颜料的绝对含量是否足以有助于外层通过吸收而均匀熔化。同时已发现外层的发热或熔化严格局限于受辐射的区域。对于包装的生产来说,这使得只在需要接合的地方采用激光进行密封接缝成为可能。
通过激光束,在此有利地避免了被包装产品的热量负荷。因此这种新技术适合于替代已知的冷封包覆来包装热敏感的产品。
所述含有激光颜料的外层也可应用于本身已公知的不透明和透明的薄膜中,或者应用于它们的基础层或中间层中。对于不透明的或白色的薄膜,特别惊奇的是其它层中的起增加薄膜的浊度或白色的填料并不阻碍激光辐射在着色的外层中的吸收和对含激光颜料外层的加热。已经注意到,在含有填料和/或颜料层中的吸收非常少,或不发生,以至于激光束不会对激光的密封性或薄膜的完整性或薄膜的其他性能产生损害。
为了本发明的目的,激光颜料是对母体聚合物惰性的不相容粒子,并且在拉伸中不会导致任何明显的气泡形成。激光颜料的平均粒径一般为0.01至4μm,优选为0.1至2μm,特别为0.1至1μm。外层一般含有激光颜料的量为0.01-10%重量,优选为0.5-5%重量,特别是0.8-3%重量,基于外层的重量计。如果激光颜料的浓度太低,则仅产生激光束的中度吸收,这将导致差的密封强度。高的激光颜料浓度对于激光的吸收并不会产生任何附加的效果。当彩色、金属和黑色颜料的浓度高时,会产生色效应(灰色效应),它可能是不利的,但对于有些应用来说可能是需要的。
使用的激光颜料优选是金属颜料,例如铝或铜或锡颜料,或铜合金例如铜/锌合金或铜/锡合金,和黑色和彩色的颜料,特别是炭黑或石墨、铁氧化物类、金红石混合相、群青类、尖晶石类和硅酸锆类。在上述的颜料中,铝颜料、铜/锌合金和炭黑和石墨是特别优选的。现已发现,特别有利的是,在炭黑的情况下含量为0.1-1.0%重量,在铝颜料的情况下含量为0.5-1.5%重量和在铜合金的情况下含量为0.5-3.0%重量,优选为1-2%重量,基于外层的重量计。
上面提到的可吸收激光的金属、黑色或彩色颜料,如果需要,可采用与下列材料的混合物的形式使用金属氧化物类,例如白色颜料如二氧化钛、氧化铝、二氧化硅,相应的金属氢氧化物和金属氧化物的水合物,和碳酸盐及硅酸盐,例如碳酸钙、硅酸铝(高岭土)、硅酸镁(滑石粉)或云母。
颜料混合物是有利的,因为第一它们具有一个宽的吸收波谱,特别是在所使用的激光的波长范围内。第二,采用了具有高吸收能力的吸收激光的金属、黑色或彩色颜料,而且同时这些可吸收激光的颜料的色彩又通过相应的白色颜料而减轻。这些白色颜料的光散射作用增强了在此的金属、黑色或彩色颜料的吸收性能和促进了外层中热量的累积。
白色颜料与金属、黑色或彩色颜料的混合比可在宽范围内变化并且能够根据所采用的激光控制最佳的吸收范围。另外,混合物还能将薄膜控制在所需的色调。如果需要,这种混合物可扩大得到一个含有多种组分的体系。例如,白色颜料与金属、黑色或彩色颜料的比例范围为5∶1至1∶5,在混合物中优选采用TiO2作为减轻色彩的白色颜料。
颜料混合物通过适宜的方法均匀混合,例如通过球磨法。同时可控制适宜的平均粒径和适宜的粒径分布宽度。
另外,颜料或颜料混合物可以被涂覆,以便例如更好地附着于聚合物母体和有效地防止裂缝和气泡的形成(如所知的拉伸中引起气泡的粒子那样)。涂覆如采用树脂或蜡,特别有利于金属颜料,例如铝粉。这也防止了不希望的粉尘的形成,粉尘可危害健康和造成爆炸的危险。另外,这些蜡涂层改善了颜料在聚合物中的分散性(解凝聚作用)并使颜料在浓色体制备中具有好的计量性。一般地,商购的金属颜料已带有这种类型的蜡和/或树脂涂层。这种颜料涂层的生产方法在现有技术中是已知的。在这些方法中,采用这些低粘度的蜡或树脂将颜料弄湿,和如果需要,则彻底润湿,这将有利于分散。
顾料可具有球形或柱形或叶片形的形状。粒子的大小、几何形状和取向可影响对激光束的吸收行为。
在一个优选的实施方案中,本发明的聚烯烃薄膜还包含具有2至10个碳原子的烯烃聚合物的第二外层,它施加于含激光颜料层的相反一侧。在一个优选的实施方案中,这个第二外层具有这样的组成使其在用于密封的激光的波长范围内基本上不吸收辐射。对于本发明包装的生产,激光束穿透到着色层,因此在那里可发生足够的吸收是必要的。
第二外层的烯烃聚合物的实例有丙烯均聚物乙烯和丙烯或乙烯和1-丁烯或丙烯和1-丁烯的共聚物,或者乙烯、丙烯和1-丁烯的三元共聚物,或者所述的均聚物、共聚物和三元共聚物的两种或多种的混合物或共混物。
对于第二外层特别优选的也是上述的着色外层所优选的聚合物。另外,聚乙烯,如HDPE、MDPE或LDPE,如果需要与用作第二外层的丙烯聚合物混合,也是合适的。
用于第二外层的上述的共聚物和/或三元共聚物的熔体流动指数通常为1.5-30g/10min,优选为3-15g/10min。熔点为120至140℃。上述的共聚物和三元共聚物的共混物的熔体流动指数为5-9g/10min,熔点为120-150℃。上面提到的所有熔体流动指数是在230℃和21.6N力下测定的(DIN 53 735)。
若需要,可将常规的添加剂如抗静电剂、中和剂、润滑剂和/或稳定剂,和若需要的另外的抗结块剂以每一种情况下的有效量,采用本身已知的方式加入到第二外层中。
在另一个实施方案中,第二外层也可以含有可在激光辐射波长范围内吸收辐射的颜料。然而,在这一类型的实施方案中,第二外层中的这些激光颜料必须在不同于其反面外层的激光颜料的波长范围内进行吸收。这种类型的薄膜特别有利地应用在组合工艺中,其中一方面通过激光产生密封接缝,另一方面通过第二种激光进行其他的加工步骤,例如激光切割、激光标记和/或激光穿孔。在这种类型的工艺中,采用具有不同波长的激光。
多层薄膜的基础层基本上包含聚烯烃,优选丙烯聚合物,和如果需要的不透明的填料,及如果需要的每一种情况下有效量的其他添加剂。一般地,基础层含有至少50%重量,优选60-99%重量,特别是70-98%重量的聚烯烃,每一种情况都基于基础层的重量计。
优选的聚烯烃是丙烯聚合物。这些丙烯聚合物含有90-100%重量,优选95-100%重量,特别是98-100%重量的丙烯单元,熔点为120℃或更高,优选150至170℃,在230℃和21.6N负荷(DIN 53 735)下测定的熔体流动指数通常为0.5-8g/10min,优选为2-5g/10min。优选的核心层丙烯聚合物是无规物含量为15%重量或更低的全同立构丙烯均聚物、乙烯含量为10%重量或更低的乙烯和丙烯共聚物、α-烯烃含量为10%重量或更低的丙烯与C4-C8α-烯烃的共聚物、乙烯含量为10%重量或更低和丁烯含量为15%重量或更低的丙烯、乙烯和丁烯的三元共聚物,特别优选全同立构丙烯均聚物。所述的重量百分比是基于相应的聚合物计。
所述的丙烯均聚物和/或共聚物和/或三元共聚物与其他的聚烯烃,特别是由具有2至6碳原子的单体制造的聚烯烃的混合物也是适宜的,其中混合物含有至少50%重量、特别是至少75%重量的丙烯聚合物。在聚合物混合物中的适宜的其他聚烯烃为聚乙烯,特别是HDPE、LDPE、VLDPE或LLDPE,其中这些聚烯烃在每一种情况中的比例都不超过15%重量,基于聚合物混合物计。
对于不透明的实施方案,薄膜的不透明基础层含有填料的量最多为40%重量,优选为1-30%重量,特别是2-20%重量,基于不透明层的重量计。为了达到本发明的目的,填料为颜料和/或致泡粒子。
为实现本发明目的,基础层的颜料为在薄膜拉伸中基本上不会导致气泡形成的不相容粒子,通常平均粒径为0.01至最大1μm。基础层通常含有的颜料量为0.5-10%重量,优选为1-8%重量。常规的颜料是,例如,氧化铝、硫酸铝、硫酸钡、碳酸钙、碳酸镁、硅酸盐如硅酸铝(高岭土)和硅酸镁(滑石粉)、二氧化硅和二氧化钛,其中优选采用白色颜料,例如二氧化钛、碳酸钙、二氧化硅和硫酸钡。
“致泡填料(vacuole-initiating fillers)”是与聚合物母体不相容并导致在薄膜拉伸中形成气泡状空穴的固体粒子。一般地,致泡填料的最小尺寸为1μm。一般地,颗粒的平均粒径为1-6μm。致泡填料的含量为0.5-25%重量,优选为1-15%重量。常规的致泡填料是无机的和/或有机的、与聚丙烯不相容的材料,例如氧化铝、硫酸铝、硫酸钡、碳酸钙、碳酸镁、硅酸盐如硅酸铝(高岭土)和硅酸镁(滑石粉)及二氧化硅,其中碳酸钙和二氧化硅是优选采用的。
适宜的有机填料通常采用与基础层聚合物不相容的聚合物,特别是那些聚合物例如HDPE、环烯烃的共聚物如降冰片烯或四环十二碳烯与乙烯或丙烯的共聚物(COC)、聚酯、聚苯乙烯、聚酰胺和卤化的有机聚合物,优选聚酯如聚对苯二甲酸丁二醇酯和环烯烃的共聚物。对于本发明,“不相容材料或不相容聚合物”是指所述材料或聚合物在薄膜中以分离粒子或分离相的形式存在。
本发明的薄膜包含至少一个含有激光颜料的外层。大体上,薄膜优选具有3-、4-、或5-层结构。优选所有的其他层对于所采用的激光辐射实质上是透明的。
含激光颜料的第一外层的厚度通常大于0.1μm,并优选为0.3至6μm。反面的第二外层的厚度可以相同或不同。其厚度优选为0.3至3μm。
中间层可由所述适用于基础层的烯烃聚合物构成。中间层可含有所述适用于各个层的常规的添加剂,如抗静电剂、中和剂、润滑剂和/或稳定剂,和若需要的抗结块剂。中间层的厚度大于0.3μm,优选为1.0至15μm,特别为1.5至10μm。
本发明聚烯烃薄膜的总厚度可在宽范围内变化,并且取决于其预期的用途。薄膜的总厚度优选为4至100μm,特别为5至80μm,特别优选为10至50μm,基础层通常占薄膜总厚度的约40-100%。
本发明还涉及一种通过本身已知的共挤出方法、平膜方法(flat-film process)或吹膜方法制造本发明聚烯烃薄膜的方法。
平膜方法是将相应于薄膜各单层的熔体通过平膜模头共挤出,以一个或多个辊引出所得的薄膜以固化,然后拉伸薄膜(使其取向),热定型拉伸的薄膜,并且如果需要,电晕处理或热处理需要处理的表面层。
相继地或同步地进行双轴向拉伸(取向)。其中首先进行纵向(沿机器方向)拉伸,然后进行横向(垂直于机器方向)拉伸的顺序拉伸是优选的。可通过平膜方法进行同步的拉伸,例如通过LISIM技术,或通过吹制法。采用平膜挤出然后顺序拉伸的实例来进一步描述薄膜的制备。
首先,在挤出机中将各层的聚合物或聚合物混合物压缩和液化,其中聚合物或聚合物混合物中可以已经含有了激光颜料和任选地加入的任何其他添加剂。然后强制地使这些熔体同时通过平膜模头(缝口模头),并将挤出的多层薄膜在10至100℃,优选20至50℃温度下从一个或多个引出辊上引出,在此期间多层薄膜冷却和固化。
然后将按此方式获得的薄膜沿挤出方向的纵向和横向拉伸,这样使分子链校整。纵向拉伸可借助在相应于目标拉伸比的不同速度下运转的两个辊有利地进行,横向拉伸可借助于一个适当的拉幅架有利地进行。纵向拉伸比为4至8,优选为5至6。横向拉伸比为5至10,优选为7至9。纵向拉伸优选在80至150℃温度下进行,横向拉伸优选在120至170℃温度下进行。
薄膜拉伸后接着进行其热定型(热处理),其中将薄膜在100至160℃温度下保持约0.1至10秒。随后将该薄膜按常规的方式通过卷绕装置卷起。
双轴向拉伸后,任选地通过已知方法中的一种对薄膜的一个表面或两个表面进行电晕或火焰处理。处理强度通常为37至50mN/m,优选39至45mN/m。这里采用以下的电晕处理实例描述薄膜的表面处理。
在电晕处理中,一种有利的工艺是使薄膜从作为电极的两个导电元件之间通过,将高的电压施于两个电极之间,所述电压通常为交流电压(约5至20kV和5至30kHz),这样使电极能够发生喷射放电(spraydischarge)或电晕放电。由于喷射放电或电晕放电,薄膜表面上的空气离子化并与薄膜表面的分子进行反应,导致在基本上为非极性的聚合物基体上形成极性的夹杂物。
为了制造本发明的包装,例如采用这样的方式对上述的薄膜进行加工,即使两个着色的薄膜的第一外层或着色的第一外层与第二外层彼此相互接触。在随后的激光辐射过程中,激光束穿过薄膜的其他外层一直到达接触着的外层,其中的一层或两层是着色的。在这一外层或这些外层中,被加入的颜料吸收辐射,导致发热,类似于使用热封钳。如果相对地移动薄膜幅或相对地移动激光束,则可以这种方式制造接缝,类似于热封缝合,其适合于密封包装。
对于产生激光束来说适宜的是市售的Nd∶YAG、二极管、eximer或CO2激光器,它们的能量与外层中聚合物的类型、加工速度和颜料的类型是相匹配的。原则上,脉冲激光和连续工作的激光都可使用。特别地,由于二极管激光器的稳定性和近红外区的波长,因此它们是特别优选的。通过改变激光的焦距可调节密封区域的宽度。激光能量密度的相应调节是必要的。通过孔径光圈和借助适宜的光学系统将产生的激光束聚焦在需密封的薄膜上。为了在单一操作中进行多种焊接和密封接缝,相应的光圈使得可以产生平行的激光束。如果需要,本发明也可以在此操作中结合另外的加工步骤,如切割和打孔。
令人惊奇地,已发现激光和薄膜间的作用可以以这样一种方式控制,即一方面使激光束在基础层不被吸收而是以期望的方式不受阻碍地穿过其他层,而另一方面在相应外层中的吸收横截面足够大以导致外层熔化,并因此得到密封接缝。令人惊奇的是,此处吸收横截面虽然足够大,但激光束并不会损害包装的产品,特别是热敏感的产品。
原料和薄膜用下面的测试方法来表征。
熔体流动指数熔体流动指数按照DIN 53 735在230℃和21.6N负荷下测定。
平均颗粒尺寸平均颗粒尺寸通过图像分析测定。为此,将样品分散于水中以使颗粒分离,并涂于玻璃片上。然后将样品干燥并在扫描电子显微镜下检测。为此,通过适当地调整亮度和对比度,可观察到各个颗粒的灰色图像。在10mm2的面积内,测定分离的颗粒的各自的面积,并以其等面积圆的直径给出颗粒的直径。这些测量值按大小范围进行分级并给出颗粒尺寸分布。分布曲线的平均值确定为平均颗粒尺寸。
熔点DSC测量,熔化曲线的最大值,加热速率20℃/min。
下面通过工作实施例解释本发明。
比较例1通过共挤出和接着进行的纵向和横向逐步取向生产具有不对称结构和总厚度为33μm的5层不透明薄膜。外层A的厚度为1.2μm,在其下面的中间层B的厚度为3.5μm。外层E的厚度为0.5μm,在其下面的中间层D的厚度为0.1μm。详细地,各层具有如下组成基础层87.0%重量的全同立构丙烯均聚物,其熔点为159℃和熔体流动指数为3.4g/10min9.0%重量的白垩浓色体(Omyalite 90T),含有28%重量的丙烯均聚物和72%重量的CaCO3中间层B和D100%重量的全同立构丙烯均聚物,其熔点为150℃和熔体流动指数为3.4g/10min外层A100%重量的含5%重量乙烯的C2-C3无规共聚物,其微晶熔点为125℃和熔体流动指数为6.5g/10min外层E98.8%重量的乙烯含量为3%重量和丁烯含量为7%重量(余量为丙烯)的乙烯-丙烯-丁烯三元无规共聚物,其微晶熔点(空缺)和熔体流动指数(空缺)各工艺步骤的生产条件如下挤出 温度 基础层260℃中间层255℃
外层240℃引出辊的温度 20℃纵向拉伸 温度 110℃纵向拉伸比 5.5横向拉伸 温度 160℃横向拉伸比 9定型 温度 150℃收敛度 5%实施例1按比较例1所述制备薄膜。与比较例1不同的是,薄膜的外层E中含0.6%重量的炭黑,基于该层的重量计。其余的组成和生产条件与比较例1比没有变化。
实施例2按比较例1所述制备薄膜。与比较例1不同的是,这次薄膜的外层E中含有比例(重量比)为1∶1的炭黑和金红石(TiO2)的混合物。在外层E中炭黑和金红石的总含量为0.6%重量,基于外层E的重量计。其余的组成和生产条件与比较例1比没有变化。
实施例3按比较例1所述制备薄膜。与比较例1不同的是,这次外层E中含有0.8%重量的银颜料,基于该层的重量计,所述银颜料由小铝片组成。其余的组成和生产条件与比较例1比没有变化。
比较例2按比较例1所述制备薄膜。与比较例1不同的是,薄膜的外层E中含2.5%重量的细白垩(Socal),基于该层的重量计。其余的组成和生产条件与比较例1比没有变化。
比较例3按比较例1所述制备薄膜。与比较例1不同的是,薄膜的外层E中含2.5%重量的长石(Minex),基于该层的重量计。其余的组成和生产条件与比较例1比没有变化。
实施例4按比较例1所述制备薄膜。与比较例1不同的是,薄膜的外层E中含1.0%重量的作为金颜料的铜与锌的合金,基于该层的重量计。其余的组成和生产条件与比较例1比没有变化。
实施例5(共聚物外层变体)按比较例1所述制备薄膜。与比较例1不同的是,薄膜的外层A中含0.8%重量的银颜料,基于该层计。其余的组成和生产条件与比较例1比没有变化。
将按比较例和实施例所述生产的各种薄膜在金属板上放置两层,一层在另一层上面。所述薄膜层这样摆放,即直接置于金属板上的薄膜将不含颜料的外层(比较例1-3和实施例1-4的外层A,实施例5的外层E)放置在金属板上,而反面的含颜料外层与第二个薄膜层接触。同样的薄膜构成的第二个薄膜层这样摆放,即其含颜料外层与第一个薄膜层的含颜料外层相接触。因此,两个含颜料外层是相互接触的。另外,将一个透明的聚乙烯板置于两薄膜层之上,并且轻轻地挤压两个薄膜层使其彼此倚靠。然后连续地通过波长为980nm,激光功率为15~25W的二极管激光器,也可以通过功率为约50~80W、脉冲宽度为10至14μs的CO2激光器(10600nm)对这一排列物进行辐射。在辐射过程中,将薄膜层匀速地和保持轻微的接触压力从两板间拉过。其速度范围为0.4-4m/min。
在使用CO2激光器时,所有薄膜均形成了高强度的线形密封接缝。同时,由于整个薄膜熔化和薄膜表面的损伤造成的密封接缝变形是明显的。
在实施例的含有炭黑和铝颜料薄膜的情况下,二极管激光辐射也同样形成了线形的“密封接缝”,而在比较例的样品情况下,激光束穿过薄膜后没有产生任何明显的效果。在实施例5薄膜的情况下,需要稍微高一点的激光功率才能产生足够强的密封接缝。实施例3与实施例5的比较表明,由于使用了较高熔点的密封原料(共聚物),为了达到特定的密封接缝强度,需要更高的激光能量。
详细地,观察到实施例的薄膜在焊接区域具有很好的粘结强度。通过薄膜进料速度的微小变化,可以实现密封接缝宽度的变化。
权利要求
1.由含有一个基础层和至少一个第一外层的多层的取向聚烯烃薄膜制成的包装,其特征在于聚烯烃薄膜在第一外层中含有可在激光的波长范围内吸收辐射的添加剂,这样在采用激光对薄膜局部辐射时,受辐射的区域温度升高,使第一外层的聚烯烃在受辐射区域处软化或熔化并在冷却时粘合到另一层上。
2.根据权利要求1的包装,其特征在于所述外层含有至少80%重量的丙烯聚合物,优选乙烯-丙烯共聚物或三元共聚物。
3.根据权利要求1和/或2的包装,其特征在于所述添加剂的含量为0.01至10%重量,基于第一外层的重量计,和平均颗粒直径为0.01至4μm。
4.根据权利要求1至3一项或多项的包装,其特征在于所述第一外层的厚度为0.1至5μm。
5.根据权利要求1至4一项或多项的包装,其特征在于所述添加剂是可吸收激光的金属、黑色或彩色颜料。
6.根据权利要求1至5一项或多项的包装,其特征在于所述薄膜是透明的。
7.根据权利要求1至5一项或多项的包装,其特征在于所述薄膜具有含致泡填料的不透明基础层。
8.根据权利要求1至7一项或多项的包装,其特征在于所述薄膜在反面具有一个第二外层,其含有可在一种激光波长范围内吸收辐射的添加剂,其中此第二外层的添加剂在不同于第一外层添加剂的波长范围内吸收。
9.根据权利要求1至9一项或多项的包装,其特征在于所述薄膜仅在第一外层中含有可在一种激光的波长范围内吸收辐射的添加剂,而在其他层中则不含有。
10.由含有一个基础层和至少一个第一外层的多层取向聚烯烃薄膜制成的包装的生产方法,其特征在于聚烯烃薄膜在第一外层中含有可在激光的波长范围内进行吸收的添加剂,并且采用激光辐射聚烯烃薄膜,这样受辐射的区域局部温度升高,并且第一外层的聚烯烃在受辐射区域处软化或熔化,并在冷却时粘合到另一层上。
11.根据权利要求10的方法,其特征在于所述聚烯烃薄膜具有一个反面的第二外层,在这个第二外层中含有可在一种激光波长范围内吸收的添加剂,借助于第一种波长范围的激光可生产用于密封所述包装的接缝,借助于具有不同于第一种激光的波长范围的另一种波长范围的第二种激光,可进行薄膜的标记和/或切割和/或穿孔。
12.根据权利要求9的方法,其特征在于借助于多种不同波长的激光的加工可同时进行。
13.包含带盖子容器的包装的生产方法,其中盖子置于容器的边缘,并且其中这种盖子由多层的取向聚烯烃薄膜制成,该薄膜含有一个基础层和至少一个第一外层,并且该第一外层与容器边缘相接触,其特征在于薄膜在第一外层中含有可在一种激光的波长范围内进行吸收的添加剂,这样在采用该激光对薄膜局部辐射时,第一外层的温度升高,使第一外层的聚烯烃在这一区域内软化或熔化并在冷却时粘合到容器边缘上。
14.多层的取向聚烯烃薄膜,它含有一个基础层和至少一个第一外层,其特征在于第一外层中包含含有铜合金的颜料。
15.多层的取向聚烯烃薄膜,其特征在于铜合金是铜/锌合金,并且颜料的含量为0.5至3%重量,基于外层的重量计。
16.多层的取向聚烯烃薄膜,其特征在于薄膜的其他层不含有任何可在激光的波长范围内吸收辐射的颜料。
17.多层的取向聚烯烃薄膜,其特征在于第一外层还含有白色颜料,优选TiO2。
18.多层的取向聚烯烃薄膜,其特征在于基础层含有含量最高达40%重量的填料,优选CaCO3、TiO2、聚对苯二甲酸乙二醇酯或聚对苯二甲酸丁二醇酯。
19.含有一个基础层和至少一个第一外层的多层取向聚烯烃薄膜的应用,其特征在于为了包装的生产,所述聚烯烃薄膜在第一外层中含有可在激光的波长范围内进行吸收的添加剂。
20.应用,其特征在于包装具有通过激光辐射产生的密封接缝。
全文摘要
本发明涉及一种由多层取向聚烯烃薄膜制成的包装材料,该聚烯烃薄膜含有基础层和至少一个第一外层,由此使所述第一外层与其本身接触或与该薄膜的反面接触或与另一个薄膜的表面接触。这个第一外层中含有可在一种激光的波长范围内吸收光的添加剂,这样在采用该激光对薄膜局部辐射时,受辐射区域的温度升高,使第一外层的聚烯烃在受辐射区域软化或熔化并在冷却时粘合到另一层上。
文档编号B32B27/32GK1395525SQ01803864
公开日2003年2月5日 申请日期2001年1月23日 优先权日2000年1月26日
发明者T·德里斯, W·艾瑟 申请人:特拉丝帕番有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1