一种碳包覆的TiO<sub>2</sub>核壳复合纳米粉体的制备方法

文档序号:3381441阅读:188来源:国知局

专利名称::一种碳包覆的TiO<sub>2</sub>核壳复合纳米粉体的制备方法
技术领域
:本发明属于纳米核壳复合粉体材料制备领域,涉及一种廉价的可反复循环使用的有机碳源通过液相包覆制备包碳覆纳米TiQ2核壳复合粉体的方法。
背景技术
:设计和可控构筑具有核壳结构的纳米复合粉体材料是最近几年材料科学前沿的一个日益重要的研究领域。构筑新颖功能化的这类材料之所以受到研究者的青睐是因为它们具有许多独特的性质,例如:单分散性、核壳的可操作性、稳定性、可调控性、自组装和涉及光、电、磁、催化、化学和生物反应的能力。因此通过合理的设计实验条件可以在很大程度上对复合纳米材料的许多性质加以调控。核壳纳米材料主要包括无机-有机、无机-无机、有机-有机和有机-无机等几个类型。本发明主要涉及了一种包碳的纳米Ti02核壳复合粉体材料(可表示为Ti02趣C)的制备方法。目前,制备Ti02@C纳米复合粉体的主要的方法有气态烷烃裂解包碳法该方法是制备包碳纳米核壳复合粉体材料的常用方法,但是,该方法不能实现纳米TiO2粒子在单分散状态下包碳,所制备的Ti02(gC粒子偏大、设备要求髙、耗能大、产物纯度较低等,因此也就限制了这种方法在工业上的应用。电弧放电法通过电弧放电促使碳氢化合物分解,无定形的碳沉积包覆在粉体表面从而制备出纳米核壳复合粉体材料。该方法由于采用了电弧放电来提供热源,所以设备成本较髙同时由于瞬时温度较高较易产生副产物,所得纳米核壳复合粉体往往不纯。该方法同样不能实现纳米Ti02粒子在单分散状态下包碳。溶胶凝胶法该方法一般采用钛的醉盐与其它的一种富碳的有机物作为原料。因此该方法的缺陷显而易见,首先钛的醉盐价格相对较贵,且在潮湿的环境下极易水解其次,相比较其它的包碳方法,该方法工艺较为复杂最后,凝胶中的有机物在热分解时产生的无定形碳的含量较难控制,很容易碳量不足或富集。有机高分子包覆裂解法该方法采用机械混合方式,首先让高分子材料包覆在纳米粉体材料上,然后进行热处理,使有机物热分解为无机碳膜,从而制备出包碳的纳米复合粉体材料。该方法的最大缺陷是工艺较复杂较易出现无机碳富集,同时也不能实现纳米Ti02粒子在单分散状态下包碳,因为商分子的机械混合过程很难均匀。近年来,大量得文献显示,人们一直在研究使用新的有机碳源包碳来减低成本,制备出碳膜厚度均匀且厚度方便可控的包碳的纳米复合核壳粉体材料。Koc,Rasit等人(JournaIofmaterialsscience34(1999)3083-3093)以TiOz粉为原料,通过热分解丙錄((:3&)将单质无机C沉积在TiCb粉末上,来制备包碳的纳米TiOj复合粉体材料。LiminShi,HongshengZhao等人(PowderTechnologyl诉(2006)71-76)将Si粉加入到盼醛树脂的酒精溶液中通过搅拌混合得到有机物包獲的复合粉体,然后在一定条件下热处理形成无机碳包覆的复合材料,并进一步热处理将其转化为亚微米的SiC粉体材料。在本发明中,我们以廉价的无定形的水合二氧化钛为钛源,长链的液态烷烃作为碳源,通过液相回流和后续热处理的方法经制得包覆碳膜的纳米Ti02核壳复合粉体材料。
发明内容本发明通过长时间一定温度下回流,逐步将液态烷烃碳链嵌入到单分散、网络状的水合TK)2骨架中去,再在真空条件及一定温度下热处理使有机碳链热分解为无定形的无机碳并原位包覆在T102粉体表面从而制备出包種有碳膜的纳米级Ti02复合核壳粉体(no2@c)。一种有机碳源可反复循环使用,包覆有碳膜的纳米级TiO2复合核壳粉体(Ti02@C)的制备方法。其特征包括以下具体工序步骤.-(1)备料无水乙醉与液态烷烃混合物的体积比4:1~6:1,每500ml液态烷烃混合物(C-C16)用25100g水合二氧化钛。(2)回流无水乙酵与水合二氧化钛所形成的悬浮液在401001C下回流l10h;然后将液态的烷烃泡合物(CirC,6)与用乙醇回流后所得的沉淀粉体混合,并在10025(TC下回流12~72小时,过滤,得到沉淀物过滤所得的烷烃滤液经水萃(去除乙醇),无水CaCl2干燥(除水)后,循环使用。(3)装料将先驱体粉料装入高铝瓷舟或容器内并压紧,放入管式气氛炉内密闭;(4)高温热处理将管式炉的反应室抽到-0.09~-0.1\1&真空度,然后关闭真空泵。加热升温至60010001C,保温l4h。然后,反应室自然冷却到室温.(5)取样从刚玉管反应室中的瓷舟内取出样品,得到纳米Ti02^粉体,本发明首先使用乙醉进行回流的目的是将自由水从网链状的水合TiOi中去除干净,同时也与水合Tift表面的羟基进行酯化反应;其次经乙醉中回流后的粉体再在液态烷烃混合物中回流,目的是为了让碳链全部或部分的嵌入到无定形水合Ti&的网络状骨架中去最后将过滤所得沉淀物进行热处理,让有机碳链原位裂解提供无机碳,由于无机碳包覆对核壳粉体的粒子生长有显著的抑制粒径作用,因此易于得到纳米级颗粒的无机碳包覆的二氧化钛粒子,从而制备出原位包碳的纳米Ti&复合核壳粉体。本发明与现有技术相比,具有如下的优点和有益效果1.采用新的碳源和新的包碳方式,这使得先驱体颗粒呈单分散状态,晶粒度小、比表面积巨大且具有多孔性,先驱体的反应活性髙,有机碳转变为无机碳的转变率较髙,从而最终产品的产率较高。由于碳的阻隔作用,本发明制备得到的纳米Ti02(gC晶粒和颗粒的尺寸小(均小于20nm),随热处理温度的不同,既可制得锐钛晶型Ti02@C也可制得金红石型Ti02趣C纳米颗粒。2.先驱体粉体含碳量(有机碳)可控,先驱体粉体中有机碳无机化转变的碳量可控,不易产生无定形碳的富集或是不足,这使得本方法制备得到的纳米Ti02⑥C粉体碳量可调、可控且纯度较高。通过调整先驱体制备时的回流温度与时间可以控制先驱体粉体的含碳量通过控制先驱体粉体的热处理工艺可以实现对有机碳无机化转变量的控制.3.本发明的工艺简单,易于实现工业化,本制备方法原料之间不需要严格的配量关系,因此工艺操作简单;同时制备、热处理设备简单,烷烃滤液回收净化再生设备简单,便于工业化作业。4.本发明中使用的钛源与有机碳源廉价且有机碳源可以反复循环使用。本发明使用的液态烷烃混合物碳链长度在11-16个C原子左右,烷烃混合物回流后,过滤所得的烷烃滤液可以转变为可循环使用的液态烷烃混合物。具体实施方案实例一(1)备料液态烷烃混合物(Cu-Cu5)1000m1,无水乙醇5000ml,水合二氧化钛100g。(2)回流100g水合二氧化钛与1000ml的无水乙醇在70lC下回流一小时,然后过滤所得沉淀与新鲜的1000ml的无水乙醉混合,再次在701C下回流一小时,以上的回流过程重复5次然后将过滤所得的沉淀物与1000ml液态烷烃混合物(C《16)首先在1201C下回流2小时,而后将粉体过滤出,用蒸馏水反复萃取烷烃滤液中的乙醇,接下来向滤液中加入适量无水CaCl2去除残留下来的水,得到可重复使用的垸烃混合物,将再生的液态烷烃混合物与过滤出的粉体混合再在1501C下回流4小时,用上述同样的方法得到循环使用的烷烃混合物,接下来依次在1抑TC,210TC下各回流3小时,最后过滤出粉体,并用液态烷烃混合物反复洗涤5次。(3)装料将先驱体粉料放入到髙铝瓷舟内并压紧,置于管式气氛炉中密闭.(4)离温热处理将管式炉的反应室抽到力.09>0.1\4&真空度,然后关闭真空泵。加热升温至600TC,保温4h,反应室自然冷却到室温。(5)取样从管式炉反应室中的瓷舟内取出样品,得到纳米Ti02^粉体,粉体的评价见表一.实例二(1)备料液态垸烃混合物(C,rCw)lOOOml,无水乙醇5000ml,水合二氧化钛200g。(2)回流200g水合二氧化钛与1000ml的无水乙醇在85TC下回流一小时,然后过滤;所得沉淀与新鲜的1000ml的无水乙醉混合,再次在85TC下冋流一小时,以上的冋流过程重复5次;然后将过滤所得的沉淀物与1000ml液态烷烃混合物(CirC16)首先在1201C下回流8小时,而后将粉体过滤出,用蒸馏水反复萃取烷烃滤液中的乙醉,接下来向滤液中加入适量无水CaCl2去除残留下来的水,得到可重复使用的烷烃混合物,将再生的液态烷烃混合物与过滤出的粉体混合再在1501C下回流8小时,用上述同样的方法得到循环使用的烷烃混合物,接下来依次在180"C,2101C下各回流6小时,最后过滤出粉体,并用液态烷烃混合物反复的洗涤5次。(3)装料将先驱体粉料放入到高铝瓷舟内并压紧,置于管式气氛炉中密闭。(4)高温热处理将管式炉的反应室抽到-0.09"0.1旨8真空度,然后关闭真空泵。加热升温至7001C,保温2h,反应室自然冷却到室温。(5)取样从管式炉反应室中的瓷舟内取出样品,得到纳米Ti02②C粉体,粉体的评价见表一。实例三(1)备料液态烷烃混合物(Cn-d6)1000ml,无水乙醉5000ml,水合二氣化钛50g,(2)回流50g水合二氧化钛与1000ml的无水乙醉在60TC下回流一小时,然后过滤;所得沉淀与新鲜的1000ml的无水乙醇混合,再次在601C下回流一小时,以上的回流过程重复5次然后将过滤所得的沉淀物与1000ml液态烷烃混合物(C>C16)首先在12(TC下回流8小时,而后将粉体过滤出,用蒸馏水反复萃取烷烃滤液中的酒精,接下来向滤液中加入适量无水CaCl2去除残留下来的水,得到可重复使用的烷烃混合物,将再生的液态烷烃混合物与过滤出的粉体混合再在150X;下回流8小时,用上述同样的方法得到循环使用的烷烃混合物,接下来依次在1801C,210TC下各回流8小时,最后过滤出粉体,并用液态烷烃混合物反复的洗涤5次。(3)装料将先驱体粉料放入到髙铝瓷舟内并压紧,置于管式气氛炉中密闭。(4)高温热处理将管式炉的反应室抽到-0,09"0.1MPa真空度,然后关闭真空泵。加热升温至8001C,保温lh,反应室自然冷却到室温。(5)取样从管式炉反应室中的瓷舟内取出样品,得到纳米T102(gC粉体,粉体的评价见表一.实例四(1)备料液态烷烃混合物(Cn"Cw)1000ml,无水乙醉5000ml,水合二氧化钛100g。(2)回流100g水合二氧化钛与1000ml的无水乙醇在卯"下回流一小时,然后过滤;所得沉淀与新鲜的1000ml的无水乙醇混合,再次在卯1C下回流一小时,以上的回流过程重复5次然后将过滤所得的沉淀物与lOOOml液态烷烃混合物(CirC16)首先在1201C下回流8小时,而后将粉体过滤出,用蒸馏水反复萃取烷烃滤液中的酒精,接下来向滤液中加入适量无水CaCb去除残留下来的水,得到可重复使用的烷烃混合物,将再生的液态烷烃泡合物与过滤出的粉体混合再在150"下回流8小时,用上述同样的方法得到循环使用的烷烃混合物,接下来依次在1抑1C,2101C下各回流8小时,最后过滤出粉体,并用液态烷烃混合物反复的洗涤5次。(3)装料将先驱体粉料放入到高铝瓷舟内并压紧,置于管式气氛炉中密闭。(4)高温热处理将管式炉的反应室抽到"a09-0.1MPa真空度,然后关闭真空泵。加热升温至9001C,保温lh,反应室自然冷却到室温。(5)取样从管式炉反应室中的瓷舟内取出样品,得到纳米Ti02^粉体,粉体的评价见表一。实例五(1)备料液态烷烃混合物(Cn-d6)1000ml,无水乙醇5000ml,水合二氧化钛150g。(2)回流150g水合二氧化钛与1000ml的无水乙醉在70TC下回流一小时,然后过滤;所得沉淀与新鲜的l加Oml的无水乙酵混合,再次在701C下回流一小时,以上的回流过程重复5次然后将过滤所得的沉淀物与lOOOml液态烷烃混合物(C-C16)首先在1201C下回流8小时,而后将粉体过滤出,用蒸馏水反复萃取烷烃滤液中的酒精,接下来向滤液中加入适量无水CaCl2去除残留下来的水,得到可重复使用的烷烃混合物,将再生的液态烷烃混合物与过滤出的粉体混合再在150"下回流10小时,用上述同样的方法得到循环使用的烷烃混合物,接下来依次在180",2101C下各回流12小时,最后过滤出粉体,并用液态烷烃混合物反复的洗涤5次。(3)装料将先驱体粉料放入到高铝瓷舟内并压紧,置于管式气氛炉中密闭。(4)离温热处理将管式炉的反应室抽到"0.09>0.1\1&真空度,然后关闭真空泵。加热升温至9001C,保温lh,反应室自然冷却到室温。取样从管式炉反应室中的瓷舟内取出样品,得到纳米Ti02⑥C粉体,粉体的评价见表一。表一各实例中先驱体粉体与!102@€:产物的评价<table>tableseeoriginaldocumentpage7</column></row><table>权利要求权利要求1、一种碳包覆的纳米级TiO2核壳复合粉体(可表示为TiO2@C)的制备方法,其特征在于包含以下工序步骤(1)备料无水乙醇与液态烷烃混合物的体积比4∶1~6∶1,每500ml液态烷烃混合物用25~200g水合二氧化钛。(2)回流无水乙醇与水合二氧化钛所形成的悬浮液在40~100℃下回流1~10h;然后将液态的烷烃混合物与用乙醇回流后所得的沉淀粉体混合,并在100~250℃下回流12~72小时,过滤,得到沉淀物;过滤所得的烷烃滤液经水萃(去除乙醇),无水CaCl2干燥(除水)后,循环使用。(3)装料将黑色先驱体粉料装入高铝瓷舟或容器内并压紧,放入管式气氛炉内密闭;(4)高温热处理将管式炉的反应室抽到-0.09~-0.1MPa真空度,然后关闭真空泵。加热升温至600~1000℃,保温1~4h。然后,反应室自然冷却到室温。(5)取样从管式炉反应室中的瓷舟内取出样品,得到纳米TiO2@C粉体。2、由权利要求1所述Ti02@C纳米粉体的制备方法,其特征是碳源由液态烷烃混合物提供,钛源由水合二氧化钛提供,通过液相回流实现包碳混合。3、由权利要求1所述Ti02(gC纳米粉体的制备方法,其特征是液态烷烃混合物的碳链长度在11个碳原子与16个碳原子之间,沸点180250'C。4、由权利要求l所述Ti02⑨C纳米粉体的制备方法,其特征是先驱体粉体晶粒尺寸4-9nm,比表面较大(300400m2/g),且具有非材料自身的多孔性结构,总的孔体积0.5lcm3/g,平均孔径1015nm。5、由权利要求1所述Ti02@C纳米粉体的制备方法,其特征是通过调整先驱体制备时的回流温度与回流时间可以控制先驱体粉体的含碳量。6、由权利要求1所述Ti02@C纳米粉体的制备方法,其特征是不同含碳量的先驱体粉体,通过不同的热处理工艺对有机碳转变为无机碳的碳量控制,均能制备得到纳米Ti02⑥C粉体。全文摘要本发明公开了一种碳包覆的纳米级TiO<sub>2</sub>核壳复合粉体(可表示为TiO<sub>2</sub>@C)的制备方法。它是以廉价的无定形的水合二氧化钛为氧化钛源,长链的液态烷烃混合物(C<sub>11</sub>-C<sub>12</sub>)作为碳源,通过回流原位包覆有机碳链,再经真空条件下的一定温度热处理制得TiO<sub>2</sub>@C纳米粉体。该方法具有碳源、氧化钛源来源廉价且碳源可以反复循环使用,包覆的碳量可控可调,工艺操作简单、易于工业化等优点。文档编号C23C18/00GK101182635SQ200710050748公开日2008年5月21日申请日期2007年12月12日优先权日2007年12月12日发明者飞刘,姚亚东,尹光福,康云清,廖晓明,李永第,伟邵,黄忠兵申请人:四川大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1