一种钕铁硼稀土永磁材料的成型方法

文档序号:3313438阅读:251来源:国知局
一种钕铁硼稀土永磁材料的成型方法
【专利摘要】本发明公开了一种钕铁硼稀土永磁体的成型方法,在氮气保护下在密封磁场压机内将称重的料放入组装后的模具模腔,之后将上压头装入模腔,接着将模具送入电磁铁的取向空间,对模具内的合金粉末加压和保压,然后对磁块退磁,之后将模具拉回到装粉位置,打开模具将磁块取出用塑料或胶套将磁块包装,包装后的磁块放入料盘批量从密封磁场压机取出,送入等静压机进行等静压。
【专利说明】一种钕铁硼稀土永磁材料的成型方法
【技术领域】
[0001]本发明属于永磁器件领域,特别是涉及一种钕铁硼稀土永磁体的成型方法。
【背景技术】
[0002]钕铁硼稀土永磁材料,以其优良的磁性能得到越来越多的应用,被广泛用于医疗的核磁共振成像,计算机硬盘驱动器,音响、手机等;随着节能和低碳经济的要求,钕铁硼稀土永磁材料又开始在汽车零部件、家用电器、节能和控制电机、混合动力汽车,风力发电等领域应用。
[0003]1982年日本住友特殊金属公司首先公开了钕铁硼稀土永磁材料的日本专利1,622,492和2,137,496,随即申请了美国专利和欧洲专利,公布了钕铁硼稀土永磁材料的特性、成分和制造方法,确认了主相:Nd2Fel4B相,晶界相:富Nd相、富B相和稀土氧化物杂质。
[0004]2007年4月I日日本日立金属与日本住友金属合并,并且继承了住友金属的钕铁硼稀土永磁体的专利许可的权利与义务。2012年8月17日,日立金属为了向美国国际贸易委员会(ITC)提出诉讼,提出其拥有在美国申请的US6, 461,565 ;US6, 491,765 ;US6,537,385 ;US 6,527,874 专利。
[0005]专利CN1120507公开了 R-Fe-B系永磁体的制造方法,通过机械研磨对合金粉粗碎,然后通过机械研磨进行细磨,这些粉末以1.4-3.5g/cm3的冲填密度装入模具,施加场强大于IOKOe的反复取向的脉冲磁场;该发明充磁取向复杂,产品磁能积(MGOe) +矫顽力(KOe)大于59.5,明显低于本发明。
[0006]专利CN1162233C公开了一种粉末成型装置,由于该装置没有氮气保护箱,粉末生产过程易氧化,影响产品磁性能。

【发明内容】

[0007]现有技术在提高磁性能和降低成本存在不足,为此,本发明找到一种新的制造方法和设备。
[0008]随着钕铁硼稀土永磁材料的应用市场的扩大,稀土资源短缺的问题越来越严重,尤其在电子元器件、节能和控制电机、汽车零部件、新能源汽车、风力发电等领域的应用,需要更多的重稀土以提高矫顽力。因此,如何减少稀土的使用,尤其是重稀土的使用,是摆在我们面前的重要课题。经过探索,我们发现了一种高性能钕铁硼稀土永磁器件制造方法。
[0009]本发明通过以下技术方案实现:
一种钕铁硼稀土永磁体的成型方法,将前序的钕铁硼稀土永磁合金粉末在氮气保护下装入氮气保护密封磁场压机,在氮气保护下在密封磁场压机内将称重的料放入组装后的模具模腔,之后将上压头装入模腔,接着将模具送入电磁铁的取向空间,在取向磁场区间对模具内的合金粉末加压和保压,然后对磁块退磁,退磁后液压缸复位,之后将模具拉回到装粉位置,打开模具将磁块取出用塑料或胶套将磁块包装,然后再将模具组装,循环操作,包装后的磁块放入料盘批量从密封磁场压机取出,送入等静压机进行等静压。
[0010]所述的等静压后带着包装将磁块送入真空烧结炉的氮气保护进料箱,在氮气保护进料箱内通过手套将磁块去掉包装,装入烧结料盒。
[0011]所述的等静压后带着包装将磁块送入氮气保护箱,在氮气保护箱内通过手套将磁块去掉包装,装入烧结料盒。
[0012]所述的模具置于模架上,成型时夹在两个电磁铁极柱中间,模具由与电磁铁极柱相接触的两侧板、前板、后板构成的空心阴模和上下压头,两侧板为导磁材料,前板、后板和上下压头为非导磁材料,上压头材料平均密度低于6g/cm,一次成型可以压制一个或一个以上的磁块。
[0013]所述的氮气保护密封磁场压机的电磁铁极柱和磁场线圈通有冷却介质,冷却介质为水、油或制冷剂,成型时由电磁铁极柱和磁场线圈构成的放置模具的空间温度低于25°C。
[0014]所述的冷却介质为水、油或制冷剂,成型时由电磁铁极柱和磁场线圈构成的放置模具的空间温度低于5°C高于-10°C。
[0015]所述的等静压是将包装好的磁块置于等静压机有一个高压腔体内,腔体内剩余空间用液压油充满,密封后对腔体内液压油加压,加压最高压力范围150-300MPa,泄压后将磁块取出。
[0016]所述的等静压机有两个高压腔体,一个腔体套在另一个腔体的外侧,形成一个内腔体和一个外腔体,带有包装的磁块装入等静压机的内腔体内,内腔体内剩余空间充满液体介质,等静压机的外腔体充有液压油,与产生高压的装置相连,外腔体的液压油压力通过与内腔体之间的隔套传递给内腔体,内腔体也随之产生高压,内腔体的压力范围150-300MPa。
[0017]一种钕铁硼稀土永磁体的制造方法,首先将原料熔炼成合金制成速凝合金片,接着进行氢破碎和气流磨制粉,制粉后将收料器中的粉末进行混料,混料后将合金粉末在氮气保护下装入氮气保护密封磁场压机,在氮气保护下在密封磁场压机内将称重的料放入组装后的模具模腔,之后将上压头装入模腔,接着将模具送入电磁铁的取向空间,在取向磁场区间对模具内的合金粉末加压和保压,然后对磁块退磁,退磁后液压缸复位,之后将模具拉回到装粉位置,打开模具将磁块取出用塑料或胶套将磁块包装,然后再将模具组装,循环操作,包装后的磁块放入料盘批量从密封磁场压机取出,送入等静压机进行等静压,等静压后带着包装将磁块送入真空烧结炉的氮气保护进料箱,在氮气保护进料箱内通过手套将磁块去掉包装,装入烧结料盒,之后送入真空烧结炉烧结,然后进行时效,制成烧结磁体,之后再对烧结磁体进行机械加工和表面处理,制成稀土永磁器件。
[0018]所述的将原料熔炼成合金制成速凝合金片,首先将R-Fe-B-M原料在真空条件下加热到500°C以上,之后充入氩气继续加热将R-Fe-B-M原料熔化并精炼成熔融合金,在此过程中加入T2O3氧化物微粉,之后将熔融的合金液通过中间包浇铸到带水冷却的旋转辊上,形成合金片;
其中R代表包含Nd的稀土元素中的一种以上;
M代表元素Al、Co、Nb、Ga、Zr、Cu、V、T1、Cr、N1、Hf元素中的一种或多种;
T2O3 代表氧化物 Dy2O3' Tb2O3' Ho2O3' Y2O3> Al2O3' Ti2O3 中的一种或一种以上;
所述的T2O3氧化物微粉的加入量:0 ( T2O3 ( 2% ; 优选的T2O3氧化物微粉的加入量:0 < T2O3 ( 0.8% ;
优选的T2O3氧化物微粉为Al2O3和Dy2O3中的一种以上;
进一步优选的T2O3氧化物微粉为Al2O3 ;
再进一步优选的T2O3氧化物微粉为Dy2O3 ;
所述的将原料熔炼成合金制成速凝合金片,先将R-Fe-B-M原料和T2O3氧化物微粉在真空条件下加热到500°C以上,之后充入氩气继续加热将R-Fe-B-M原料熔化成合金,精炼后将熔融的合金液通过中间包浇铸到带水冷却的旋转辊上,熔融合金经过旋转辊冷却后形成合金片。
[0019]所述的对合金片进行氢破碎首先将前序的合金片装入旋转滚筒内,抽真空后充入氢气让合金吸氢,控制合金吸氢温度在20-30(TC,然后旋转滚筒并进行加热和抽真空脱氢,脱氢保温温度500-900°C,保温时间3-15小时,保温结束后停止加热、撤离加热炉对滚筒冷却,并继续旋转滚筒和抽真空,温度低于500°C,对滚筒喷水冷却。
[0020]所述的对合金片进行氢破碎采用连续氢碎设备,装有稀土永磁合金片的料框,在传动装置的驱动下顺序通过连续氢碎设备的吸氢室、加热脱氢室、冷却室,通过出料阀进入出料室,氢碎后的合金片从料框导出,落入出料室下部的储料罐,在氮气保护下将储料罐封装,料框从出料室的出料门移出,重新装料后循环运行;所述的吸氢室的吸氢温度50-3500C,所述的加热脱氢室一个以上,脱氢温度600-900°C,所述的冷却室一个以上。
[0021]所述的连续氢碎设备具有两个加热脱氢室,料框依次在两个加热脱氢室停留,在单个加热脱氢室的停留时间在2-6小时;所述的连续氢破设备具有两个冷却室,料框依次在两个冷却室停留,在单个冷却室的停留时间在2-6小时。
[0022]所述的加热脱氢结束前充入定量的氢气。
[0023]所述的将储料罐放到混料机进行前混料前将润滑剂或防氧化剂加入储料罐。
[0024]所述的将储料罐放到混料机进行前混料前将T2O3氧化物微粉加入储料罐。
[0025]所述的气流磨制粉前将氢破碎后的合金片加入到混料机进行前混料,前混料时加入防氧化剂和润滑剂一种以上。
[0026]所述的气流磨制粉前将氢破碎后的合金片加入到混料机进行前混料,前混料时加入氧化物微粉一种以上。
[0027]所述的气流磨制粉前将氢破碎后的合金片加入到混料机进行前混料,前混料时加入T2O3氧化物微粉为YA、Al2O3和Dy2O3中的一种以上。
[0028]所述的气流磨制粉前将氢破碎后的合金片加入到混料机进行前混料,前混料时加入T2O3氧化物微粉为Y2O3。
[0029]所述的气流磨制粉前将氢破碎后的合金片加入到混料机进行前混料,前混料时加入T2O3氧化物微粉为Al2O3。
[0030]所述的气流磨制粉前将氢破碎后的合金片加入到混料机进行前混料,前混料时加入T2O3氧化物微粉为Dy2O3。
[0031]所述的气流磨制粉,采用氮气保护气流磨制粉,首先将混料后的氢破碎粉末装入加料器的料斗,通过加料器将粉末加入到磨室,利用喷嘴喷射的高速气流进行磨削,磨削后的粉末随气流进入离心式分选轮选粉,未达到制粉粒度的粗粉在离心力的作用下返回到磨室继续磨削,达到粒度的细粉通过分选轮分选后进入旋风收集器收集,少量的细粉会随着旋风收集器排气管的气流排出,再进入后旋风收集器收集,后旋风收集器排出的气体经过压缩机压缩和冷却机冷却后再进入到喷嘴的进气管,氮气循环使用。
[0032]所述的进入旋风收集器收集的粉末通过交替开关的阀门收集在旋风收集器下部的混粉机中,进入后旋风收集器收集的粉末也通过交替开关的阀门收集在旋风收集器下部的混粉机中,粉末在混粉机中混合后装入收料罐。
[0033]所述的旋风收集器收集的粉末和后旋风收集器收集的粉末通过收料器导入收料罐中。
[0034]所述的进入后旋风收集器收集的粉末通过并联的2-6个的后旋风收集器收集。
[0035]所述的进入后旋风收集器收集的粉末通过并联的4个的后旋风收集器收集。
[0036]所述的气流磨制粉后送入到混料机上进行后混料,后混料后的粉末平均粒度
1.6-2.9 μ mD
[0037]所述的气流磨制粉后送入到混料机上进行后混料,后混料后的粉末平均粒度
2.1-2.8 μ m。
[0038]所述的烧结是在氮气保护下将磁块送入连续真空烧结炉进行烧结,在传动装置的带动下,装有磁块的料架依次进入连续真空烧结炉的准备室、预热脱脂室、第一脱气室、第二脱气室、预烧结室、烧结室、时效室和冷却室进行预热脱去有机杂质,进而加热脱氢脱气、预烧结、烧结、时效和冷却,冷却后从连续真空烧结炉中取出再送入到真空时效炉中进行二次时效,二次时效温度450-650°C,二次时效后快冷,制成烧结钕铁硼稀土永磁体,烧结钕铁硼稀土永磁体再经过机械加工和表面处理制成钕铁硼稀土永磁器件。
[0039]所述的料架在进入连续真空烧结炉的准备室前先进入装料室,等静压后的磁块在装料室内去掉包装,装入料盒,再把料盒装在料架上,之后在传动装置驱动下,通过阀门把料架送入准备室。
[0040]所述的真空预烧结是在连续真空预烧结炉进行,装有成型后的磁块的料盒装在烧结料架上,在传动装置的带动下,烧结料架依次进入连续真空预烧结炉的准备室、脱脂室、第一脱气室、第二脱气室、第三脱气室、第一预烧结室、第二预烧结室和冷却室进行预热脱月旨、加热脱氢脱气、预烧结和冷却,冷却采用氩气,冷却后烧结料架从连续真空预烧结炉取出再将料盒装到时效料架上,时效料架吊着送入连续真空烧结时效炉的预热室、加热室、烧结室、高温时效室、预冷室、低温时效室和冷却室进行烧结、高温时效、预冷却、低温时效和快速气冷。
[0041 ] 所述的预热脱脂温度范围在200-400 °C,加热脱氢脱气温度范围在400-900 V,预烧结温度范围在900-1050 °C,烧结温度范围在1010-1085 °C,高温时效温度范围在800-9500C,低温时效温度范围在450-650°C,保温后送入冷却室用氩气或氮气快冷。
[0042]所述的预热脱脂温度范围在200-400°C,加热脱氢脱气温度范围在550_850°C,预烧结温度范围在960-1025 °C,烧结温度范围在1030-1070°C,高温时效温度范围在860-9400C,低温时效温度范围在460-640°C,保温后送入冷却室用氩气或氮气快冷。
[0043]所述的预烧结真空度高于5X KT1Pa,烧结真空度在5X KT1Pa至5X10_3Pa范围内。
[0044]所述的预烧结真空度高于5Pa,烧结真空度在500Pa至5000Pa范围内,烧结时充入IS气。[0045]所述的烧结料架的有效宽度400-800mm,时效料架的有效宽度300_400mm,
所述的预烧结的磁体密度范围在7.2-7.5g/cm3,烧结的磁体密度范围在7.5-7.7g/
3.cm [0046]所述的钕铁硼永磁体由主相和晶界相组成,主相具有R2 (Fe, Co) 14B结构,其中主相从外缘向内1/3范围内的重稀土HR含量高于主相中心处的重稀土HR含量,晶界相中存在微小的氧化钕微粒,R代表包含Nd的稀土兀素一种以上,HR代表Dy、Tb、Ho、Y稀土兀素中的一种以上。
[0047]所述的钕铁硼永磁体的金相结构具有在R2 (Fe1^xCox) 14B晶粒的周围包围着重稀土含量高于 R2 (Fe1^xCox) 14B 相的 ZR2 (Fe1^xCox) 14B 相的金相结构,ZR2 (Fe1^xCox) 14B 相和R2 (Fe1^xCox) 14B之间无晶界相,ZR2 (Fe1^xCox) 14B相之间通过晶界相连接;文中ZR表示在晶相中重稀土含量高于平均稀土含量中的重稀土的含量的相的稀土 ;0 < X < 0.5。
[0048]所述的钕铁硼永磁体的金相结构中的两个以上ZR2 (Fe1^xCox) 14B相晶粒的交界处的晶界相中存在微小的氧化钕微粒,晶界中的氧含量高于主相中的氧含量。
[0049]所述的烧结钕铁硼永磁体的制造方法制造的烧结钕铁硼永磁体的晶粒尺寸3-25 μ m,优选 5-15 μ m。
[0050]烧结时当温度大于500°C后,富R相开始逐渐融化,当温度大于800°C后,融化的动能加大,磁块逐渐合金化,本发明的显著特点是在合金化的同时,发生稀土扩散和置换反应,分布在R2 (Fe1^xCox)14B相周围的HR元素和T2O3氧化物微粉中的HR元素与R2 (Fe1^xCox)14B相外围的Nd发生置换,随着反应的时间的加长,越来越多的Nd被HR取代,形成HR含量较高的 ZR2 (Fe1^xCox)14B 相,ZR2 (Fe1^xCox)14B 相包围在 R2 (Fe1^xCox)14B 相的外围,形成 ZR2(Fe1^xCox) 14B相包围R2 (Fe1^xCox) 14B相的新结构主相;Nd进入晶界后优先与O结合,形成微小的Nd2O3微粒,Nd2O3颗粒在晶界中有效抑制R2Fe14B相的长大,尤其是Nd2O3颗粒位于两个以上晶粒的交界处时,有效抑制晶粒的融合,限制晶粒的异常长大,明显提高了磁体的矫顽力,因此本发明的一个显著特点是在两个以上晶粒的晶界交汇处存在Nd2O3颗粒;测试发现晶界相元素有Nd、Co、Al、Ga、O。
【具体实施方式】
[0051]下面通过实施例的对比进一步说明本发明的显著效果。
[0052]实施例1
按成分N (I3ciDy1Coh2Cuai B 0 9A101 Fe余量选取合金600Kg加热熔化,加入氧化物Dy2O3微粉,在熔融状态下将合金浇铸到带水冷却的旋转铜辊上冷却形成合金片;使用连续真空氢碎炉氢碎,先把前序的R-Fe-B-M合金片装入吊着的料筐,顺序送入连续氢碎炉的吸氢室、加热脱氢室、冷却室分别进行吸氢、加热脱氢和冷却,然后在保护气氛下将氢碎后的合金装入储料罐,氢破碎后进行混料,混料后采用本发明具有2个后旋风收集器的氮气保护气流磨进行气流磨制粉,气流磨气氛氧含量0-50ppm,旋风收集到的粉末和后旋风收集器收集的细粉收集在收料罐,在氮气保护下用混料机混料后送到本发明的氮气保护密封磁场压机成型,保护箱内的氧含量小于190ppm,取向磁场强度1.8T,模腔内温度小于3°C,磁块尺寸62X52X42mm,取向方向为42尺寸方向,成形后在保护箱内封装,然后取出进行等静压,等静压压力150-180MPa,之后进行烧结和时效,制成烧结钕铁硼永磁体;之后取出进行机械加工,加工成方片50X30X20 mm,经过电镀后制成稀土永磁器件;测试结果列入表一。
[0053]实施例2
按成分N Cl3tlDy1CC^2Cuai B α9Α1αι Fe ^选取合金600Kg加热熔化,在熔融状态下将合金浇铸到带水冷却的旋转铜辊上冷却形成合金片;使用真空氢碎炉氢碎,氢破碎后进行混料,混料时加入氧化物Y2O3微粉和润滑剂,混料后采用本发明具有3个后旋风收集器的氮气保护气流磨进行气流磨制粉,气流磨气氛氧含量0-40ppm,旋风收集到的粉末和后旋风收集器收集的细粉收集在收料罐,在氮气保护下用混料机混料后送到本发明的氮气保护密封磁场压机成型,保护箱内的氧含量小于150ppm,取向磁场强度1.5T,模腔内温度小于4°C,磁块尺寸62X52X42mm,取向方向为42尺寸方向,成形后在保护箱内封装,然后取出进行等静压,等静压压力185-195MPa之后进行烧结和时效,制成烧结钕铁硼永磁体;之后取出进行机械加工,加工成方片50X30X20 mm,经过电镀后制成稀土永磁器件;测试结果列入表
O
[0054]实施例3
按成分N Cl3tlDy1CC^2Cuai B α9Α1αι Fe ^选取合金600Kg加热熔化,在熔融状态下将合金浇铸到带水冷却的旋转铜辊上冷却形成合金片;使用真空氢碎炉氢碎,氢破碎后进行混料,混料时加入氧化物Al2O3微粉,混料后采用本发明具有4个后旋风收集器的氮气保护气流磨进行气流磨制粉,气流磨气氛氧含量0-20ppm,旋风收集到的粉末和后旋风收集器收集的细粉收集在收料罐,在氮气保护下用混料机混料后送到本发明的氮气保护密封磁场压机成型,保护箱内的 氧含量小于IIOppm,取向磁场强度2.0T,模腔内温度小于5°C,磁块尺寸62X52X42mm,取向方向为42尺寸方向,成形后在保护箱内封装,然后取出进行等静压,等静压压力190-240MPa之后进行烧结和时效,制成烧结钕铁硼永磁体;之后取出进行机械加工,加工成方片50X30X20 mm,经过电镀后制成稀土永磁器件;测试结果列入表一。
[0055]实施例4
按成分N d30Dy1Co1.2Cu0.1 B O^AIq.! Fe ^选取合金600Kg加热熔化,在熔融状态下将合金浇铸到带水冷却的旋转铜辊上冷却形成合金片;使用真空氢碎炉氢碎,氢破碎后进行混料,混料时加入氧化物Dy2O3微粉,混料后采用本发明具有5个后旋风收集器的氮气保护气流磨进行气流磨制粉,气流磨气氛氧含量0-18ppm,旋风收集到的粉末和后旋风收集器收集的细粉收集在收料罐,在氮气保护下用混料机混料后送到本发明的氮气保护密封磁场压机成型,保护箱内的氧含量0-90ppm,取向磁场强度1.9T,模腔内温度0_25°C,磁块尺寸62X52X42mm,取向方向为42尺寸方向,成形后在保护箱内封装,然后取出进行等静压,等静压压力240-300MPa之后进行烧结和时效,制成烧结钕铁硼永磁体;之后取出进行机械加工,加工成方片50X30X20 mm,经过电镀后制成稀土永磁器件;测试结果列入表一。
[0056]实施例5
按成分N d30Dy1Co1.2Cu0.1 B O^AIq.! Fe ^选取合金600Kg加热熔化,在熔融状态下将合金浇铸到带水冷却的旋转铜辊上冷却形成合金片;使用真空氢碎炉氢碎,氢破碎后采用本发明具有6个后旋风收集器的氮气保护气流磨进行气流磨制粉,气流磨气氛氧含量0-20ppm,旋风收集到的粉末和后旋风收集器收集的细粉收集在收料罐,在氮气保护下用混料机混料后送到本发明的氮气保护密封磁场压机成型,保护箱内的氧含量10-150ppm,取向磁场强度1.6T,模腔内温度6-14°C,磁块尺寸62X52X42mm,取向方向为42尺寸方向,成形后在保护箱内封装,然后取出进行等静压,等静压压力26-280MPa之后进行烧结和时效,制成烧结钕铁硼永磁体;之后取出进行机械加工,加工成方片50X30X20 mm,经过电镀后制成稀土永磁器件;测试结果列入表一。
[0057]对比例
按成分N Cl3tlDy1CC^2Cuai B α9Α1αι Fe ^选取合金600Kg加热熔化,在熔融状态下将合金浇铸到带水冷却的旋转的冷却辊上冷却形成合金片,然后使用真空氢碎炉对合金片进行粗破碎,氢破碎后进行现有技术的气流磨,之后送到通用技术的磁场成型压机成型,磁块尺寸62X52X42mm,取向方向为42尺寸方向,成形后在保护箱内封装,然后取出进行等静压,等静压压力210MPa,之后进行烧结和时效,制成烧结钕铁硼永磁体;之后取出进行机械加工,加工成方片50X30X20 mm,经过电镀后制成稀土永磁器件。
[0058]表一、实施例和对比例的性能测量结果:
【权利要求】
1.一种钕铁硼稀土永磁体的成型方法,其特征在于:将钕铁硼稀土永磁合金粉末在氮气保护下装入氮气保护密封磁场压机,在氮气保护下在密封磁场压机内将称重的料放入组装后的模具模腔,之后将上压头装入模腔,接着将模具送入电磁铁的取向空间,在取向磁场区间对模具内的合金粉末加压和保压,然后对磁块退磁,退磁后液压缸复位,之后将模具拉回到装粉位置,打开模具将磁块取出用塑料或胶套将磁块包装,然后再将模具组装,循环操作,包装后的磁块放入料盘批量从密封磁场压机取出,送入等静压机进行等静压。
2.根据权利要求1所述的一种钕铁硼稀土永磁体的成型方法,其特征在于:所述的等静压后带着包装将磁块送入真空烧结炉的氮气保护进料箱,在氮气保护进料箱内通过手套将磁块去掉包装,装入烧结料盒。
3.根据权利要求1所述的一种钕铁硼稀土永磁体的成型方法,其特征在于:所述的等静压后带着包装将磁块送入氮气保护箱,在氮气保护箱内通过手套将磁块去掉包装,装入烧结料盒。
4.根据权利要求1所述的一种钕铁硼稀土永磁体的成型方法,其特征在于:所述的模具置于模架上,成型时夹在两个电磁铁极柱中间,模具由与电磁铁极柱相接触的两侧板、前板、后板构成的空心阴模和上下压头,两侧板为导磁材料,前板、后板和上下压头为非导磁材料,上压头材料平均密度低于6g/cm,一次成型可以压制一个或一个以上的磁块。
5.根据权利要求1所述的一种钕铁硼稀土永磁体的成型方法,其特征在于:所述的氮气保护密封磁场压机的电磁铁极柱和磁场线圈通有冷却介质,冷却介质为水、油或制冷剂,成型时由电磁铁极柱和磁场线圈构成的放置模具的空间温度低于25°C。
6.根据权利要求1所述的一种钕铁硼稀土永磁体的成型方法,其特征在于:所述的冷却介质为水、油或制冷剂,成型时由电磁铁极柱和磁场线圈构成的放置模具的空间温度低于5°C高于-10°C。
7.根据权利要求1所述的一种钕铁硼稀土永磁体的成型方法,其特征在于:所述的等静压是将包装好的磁块置于等静压机有一个高压腔体内,腔体内剩余空间用液压油充满,密封后对腔体内液压油加压,加压最高压力范围150-300MPa,泄压后将磁块取出。
8.根据权利要求1所述的一种钕铁硼稀土永磁体的成型方法,其特征在于:所述的等静压机有两个高压腔体,一个腔体套在另一个腔体的外侧,形成一个内腔体和一个外腔体,带有包装的磁块装入等静压机的内腔体内,内腔体内剩余空间充满液体介质,等静压机的外腔体充有液压油,与产生高压的装置相连,外腔体的液压油压力通过与内腔体之间的隔套传递给内腔体,内腔体也随之产生高压,内腔体的压力范围150-300MPa。
9.一种钕铁硼稀土永磁体的制造方法,其特征在于:首先将原料熔炼成合金,制成速凝合金片,接着进行氢破碎和气流磨制粉,制粉后将收料器中的粉末进行混料,混料后将合金粉末在氮气保护下装入氮气保护密封磁场压机,在氮气保护下在密封磁场压机内将称重的料放入组装后的模具模腔,之后将上压头装入模腔,接着将模具送入电磁铁的取向空间,在取向磁场区间对模具内的合金粉末加压和保压,然后对磁块退磁,退磁后液压缸复位,之后将模具拉回到装粉位置,打开模具将磁块取出用塑料或胶套将磁块包装,然后再将模具组装,循环操作,包装后的磁块放入料盘批量从密封磁场压机取出,送入等静压机进行等静压,等静压后带着包装将磁块送入真空烧结炉的氮气保护进料箱,在氮气保护进料箱内通过手套将磁块去掉包装,装入烧结料盒,之后送入真空烧结炉烧结,然后进行时效,制成烧结磁体,之后再对烧结磁体进行机械加工和表面处理,制成稀土永磁器件。
10.根据权利要求9所述的一种钕铁硼稀土永磁体的制造方法,其特征在于:所述的原料熔炼成合金制成速凝合金片,是将R-Fe-B-M原料加热熔化,加入T2O3氧化物微粉,在1400-1470°C精炼,精炼后将熔融的合金液通过中间包浇铸到带水冷却的旋转辊上,熔融合金经过旋转辊冷却后形成合金片,在这里,R代表包含Nd的稀土元素一种以上,M代表元素Al、Co、Nb、Ga、Zr、Cu、V、T1、Cr、N1、Hf 元素中的一种或多种,T2O3 代表氧化物 Dy203、Tb2O3'Ho2O3、Y2O3> Al2O3' Ti2O3 中的一种或一种以上。
11.根据权利要求9所述的一种钕铁硼稀土永磁体的制造方法,其特征在于:所述的气流磨制粉前将氢破碎后的合金片加入到混料机进行前混料,前混料后进行气流磨,前混料时加入T2O3氧化物微粉,在这里T2O3为Y203、A1203和Dy2O3中的一种以上。
12.根据权利要求9所述的一种钕铁硼稀土永磁体的制造方法,其特征在于:所述的之后送入真空烧结炉烧结,然后进行时效是首先进行预烧结,预烧结工艺首先开始抽真空,抽真空后开始加热,先在200-500°C保温2-6小时,接着在400-1000°C升温和保温5_12小时,在900-1080°C保温2-8小时预烧结,预烧结后冷却出炉,重新装炉后进行烧结和二次时效,烧结温度950-1120°C,保温时间1-8小时,一次时效温度在800_950°C,二次时效温度在450-650°C,二次时效后快冷,烧结后的磁块密度在7.5-7.7g/cm3。
13.根据权利要求9所述的一种钕铁硼稀土永磁体的制造方法,其特征在于:所述的之后送入真空烧结炉烧结,然后进行时效是将真空烧结炉的氮气保护进料箱内的料盒在氮气保护下送入烧结炉的加热室,抽真空后开始加热,先在200-50(TC保温2-6小时,接着在400-1000 V升温和保温5-12小时,在900-1025 V保温2_8小时预烧结,然后在1025-1080°C保温2-8小时进行烧结,烧结后进行800-950°C的一次时效和450_650°C的二次时效,二次时效后快冷。
14.根据权利要求9所述的一种钕铁硼稀土永磁体的制造方法,其特征在于:所述的钕铁硼永磁体由主相和晶界相组成,主相具有R2 (Fe, Co) 14B结构,其中主相从外缘向内1/3范围内的重稀土 HR含量高于主相中心处的重稀土 HR含量,晶界相中存在微小的氧化钕微粒,R代表包含Nd的稀土兀素一种以上,HR代表Dy、Tb、Ho、Y稀土兀素中的一种以上。
15.根据权利要求9所述的一种钕铁硼稀土永磁体的制造方法,其特征在于:所述的钕铁硼永磁体的金相结构具有在R2 (Fe1^xCox) 14B晶粒的周围包围着重稀土含量高于R2(FehCox)14B 相的 ZR2 (Fe^Cox)14B 相的金相结构,ZR2 (Fe^Cox)14B 相和 R2 (Fe1^xCox)14B之间无晶界相,ZR2 (Fe1^xCox) 14B相之间通过晶界相连接;文中ZR表示在晶相中重稀土含量高于平均稀土含量中的重稀土的含量的相的稀土 ;0 < X < 0.5。
16.根据权利要求9所述的一种钕铁硼稀土永磁体的制造方法,其特征在于:所述的钕铁硼永磁体的金相结构中的两个以上ZR2 (Fe1^xCox) 14B相晶粒的交界处的晶界相中存在微小的氧化钕微粒,晶界中的氧含量高于主相中的氧含量。
【文档编号】B22F3/16GK103996518SQ201410194942
【公开日】2014年8月20日 申请日期:2014年5月11日 优先权日:2014年5月11日
【发明者】孙宝玉 申请人:沈阳中北通磁科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1