卷式石墨烯连续生长设备的制作方法

文档序号:12646399阅读:184来源:国知局
卷式石墨烯连续生长设备的制作方法与工艺

本发明涉及一种石墨烯的生长设备,尤其是一种卷式石墨烯连续生长设备。



背景技术:

众所周知的:石墨烯虽然只有一个碳原子层厚,但由于其自身结构特性使其表现出诸多世界之最,如最薄、最轻、最坚韧、电阻率最小等,石墨烯被称为材料界的“黑金”,21世纪“新材料之王”。

石墨烯薄膜的规模化制备,经过近几年的广泛研究,化学气相沉积法是规模化制备石墨烯薄膜最有前景的方法之一。CVD法制备高质量的石墨烯薄膜是在1000度左右的真空条件下将碳源加热分解成活性碳基团,然后Cu、Ni等过渡金属衬底上进一步分解生成石墨烯。然而,快速、连续规模化制备大面积、高质量石墨烯薄膜的方法一直没有取得大的突破,极大地限制了石墨烯制备效率和产量,阻碍了石墨烯薄膜产业快速发展的步伐。

卷对卷生长石墨烯是一个动态生长过程,与片式静态生长有着本质上的区别。对于片材间歇式生长高质量的石墨烯通常是将石墨烯生长基底在其熔点附近进行长时间高退火,使多晶生长基底再次结晶,增加生长基底晶畴面积,有利于制备高质量的石墨烯薄膜。近几年虽然已有专利开始研究卷对卷制备石墨烯设备及工艺,但因为只设置一个高温工艺腔,退火和生长同时进行,很难实现高质量石墨烯的可控制备。对于一个高温工艺腔,如果先进行卷对卷高温退火,再倒回来进行卷对卷石墨烯生长,严重影响石墨烯生长效率。此外,之前专利均未考虑高温热辐射对密封装置影响和工艺腔内气体均匀分布问题。



技术实现要素:

本发明所要解决的技术问题是提供一种能够将石墨烯生长基底高温退火预处理与高温生长分开且同步进行的卷式石墨烯连续生长设备。

本发明解决其技术问题所采用的技术方案是:

本发明提供了一种卷式石墨烯连续生长设备,包括放料冷却腔、收料冷却腔以及用于所述放料冷却腔和收料冷却腔抽真空的真空泵;所述放料冷却腔内设置有石墨烯生长基底放料辊和放料冷却区导向辊,所述收料冷却腔内设置有长有石墨烯基底收料辊以及收料冷却腔导向辊;

卷式石墨烯连续生长设备,还包括第一高温工艺腔、第二高温工艺腔以及过渡腔;所述第一高温工艺腔的两端和第二高温工艺腔的两端均设置有匀流隔热装置;所述第一高温工艺腔和第二高温工艺腔上均设置有加热器;

所述第一高温工艺腔一端与放料冷却腔连接且连通,另一端与过渡腔连接且连通,所述第二高温工艺腔一端与过渡腔连接且连通,另一端与收料冷却腔连接且连通;石墨烯生长基底放料辊上放料石墨烯生长基底依次经过放料冷却区导向辊、第一高温工艺腔、过渡腔、第二高温工艺腔、收料冷却腔导向辊最终卷收到石墨烯基底收料辊上。

进一步的,所述第一高温工艺腔竖向布置,所述第二高温工艺腔横向布置,所述过渡腔内设置有过渡辊。

进一步的,所述过渡腔内设置有检测石墨烯生长基底张力的张力检测装置。

优选的,所述收料冷却腔导向辊采用水冷导向辊。

进一步的,第一高温工艺腔的两端均通过多点进气密封法兰分别与放料冷却腔和过渡腔连接,第二高温工艺腔的两端均通过多点进气密封法兰分别与过渡腔和收料冷却腔连接。

优选的,所述多点进气密封法兰包括外法兰、内法兰以及密封胶圈,所述内法兰具有凸台端,所述外法兰设置有与内法兰匹配的凹槽,所述密封胶圈安装在凹槽内,所述内法兰的凸台端插入外法兰的凹槽内,且顶紧密封胶圈,所述内法兰上设置有连通内法兰内圈的通气通道。

优选的,所述匀流隔热装置包括至少两层隔热板以及支撑柱,所述支撑柱设置在相邻两层隔热板之间;所述隔热板上设置有均匀分布的透气孔,所述相邻两层隔热板上的透气孔错位分布。

进一步的,所述隔热板上的中心通孔为沿径向的通槽。

优选的,所述放料冷却腔设置有一个真空泵,所述收料冷却腔设置有一个真空泵。

优选的,所述加热器采用电阻加热器。

本发明的有益效果是:本发明所述的卷式石墨烯连续生长设备由于在放料冷却腔、收料冷却腔之间设置有两个高温工艺腔,并且通过过渡腔将两个高温工艺腔分开;因此将石墨烯生长基底高温退火预处理与高温生长分别在两个高温工艺腔内进行,并且同步进行,既解决了基底处理过程中温度设置的自由性、又可随意选择基底处理过程中的工艺气体,排除石墨烯生长碳源对基底表面处理过程中的影响。通过多腔体的设置,将石墨烯生长过程中各个环节分布到各腔体中分开进行,避免卷对卷生长过程中各环节相互影响,进而影响石墨烯薄膜产品的最终品质;此外,通过多腔体的设置能够使得各个工艺同步进行,因此可以提高卷对卷石墨烯薄膜制备效率。

附图说明

图1是本发明实施例中卷式石墨烯连续生长设备的两个高温工艺腔一个横向布置,另一个竖向布置的结构示意图;

图2是本发明实施例中卷式石墨烯连续生长设备的两个高温工艺腔均横向布置的结构示意图;

图3是本发明实施例中卷式石墨烯连续生长设备的两个高温工艺腔均竖向布置的结构示意图;

图4是本发明实施例中均流隔热装置的结构简图;

图5是本发明实施例中多点进气密封法兰横向安装时的结构简图;

图6是本发明实施例中多点进气密封法兰竖向安装时的结构简图;

图中标示:1-放料冷却腔,2-第一高温工艺腔,3-第二高温工艺腔,4-收料冷却腔,41-石墨烯基底收料辊,42-收料冷却腔导向辊,5-过渡腔,51-张力检测装置,52-过渡辊,6-石墨烯生长基底,7-真空泵,8-多点进气密封法兰,81-通气通道,82-外法兰,83-内法兰,84-密封胶圈,9-匀流隔热装置,91-隔热板,92-支撑轴,93-中心通孔,10-加热器,11-石墨烯生长基底放料辊,12-放料冷却区导向辊。

具体实施方式

下面结合附图和实施例对本发明进一步说明。

如图1至图6所示,本发明所述的卷式石墨烯连续生长设备,包括放料冷却腔1、收料冷却腔4以及用于所述放料冷却腔1和收料冷却腔4抽真空的真空泵7;所述放料冷却腔1内设置有石墨烯生长基底放料辊11和放料冷却区导向辊12,所述收料冷却腔4内设置有长有石墨烯基底收料辊41以及收料冷却腔导向辊42;

卷式石墨烯连续生长设备,还包括第一高温工艺腔2、第二高温工艺腔3以及过渡腔5;所述第一高温工艺腔2的两端和第二高温工艺腔3的两端均设置有匀流隔热装置9;所述第一高温工艺腔2和第二高温工艺腔3上均设置有加热器10;

所述第一高温工艺腔2一端与放料冷却腔1连接且连通,另一端与过渡腔5连接且连通,所述第二高温工艺腔3一端与过渡腔5连接且连通,另一端与收料冷却腔4连接且连通;石墨烯生长基底放料辊11上放料石墨烯生长基底6依次经过放料冷却区导向辊12、第一高温工艺腔2、过渡腔5、第二高温工艺腔3、收料冷却腔导向辊42最终卷收到石墨烯基底收料辊41上。

具体的,所述用于所述放料冷却腔1和收料冷却腔4抽真空的真空泵7的主要作用是对整个系统进行抽真空,尤其是对放料冷却腔1和收料冷却腔4进行抽真空。对放料冷却腔1和收料冷却腔4抽真空的方式,可以采用之间在放料冷却腔1和收料冷却腔4上直接设置有真空泵7;放料冷却腔1和收料冷却腔4可以各自单独设置真空泵7也可以共用一个真空泵7;也可以采用将真空泵7设置在高温工艺腔或者过渡腔5上,通过第一高温工艺腔2与放料冷却腔1之间的密封法兰和第二高温工艺腔3与收料冷却腔4之间密封法兰进气,也可以实现多腔室工艺分开进行。

具体的,所述石墨烯生长基底放料辊11上放料石墨烯生长基底6依次经过放料冷却区导向辊12、第一高温工艺腔2、过渡腔5、第二高温工艺腔3、收料冷却腔导向辊42最终卷收到石墨烯基底收料辊41上是指石墨烯生长基底放料辊11上放料石墨烯生长基底6通过导向辊12导向,然后依次经过第一高温工艺腔2、过渡腔5、第二高温工艺腔3,且在经过第一高温工艺腔2、过渡腔5、第二高温工艺腔3时不与各个腔体的内壁接触,最后通过收料冷却腔导向辊42导向后最终卷收到石墨烯基底收料辊41上。

在生产的过程中:

首先将石墨烯生长基底6安装在放料冷却腔1的石墨烯生长基底放料辊11上,通过放料使得石墨烯生长基底6的一端依次经过放料冷却区导向辊12、第一高温工艺腔2、过渡腔5、第二高温工艺腔3、收料冷却腔导向辊42,卷收到石墨烯基底收料辊41上。然后通过真空泵对放料冷却腔1、收料冷却腔4进行抽真空。然后通过第一高温工艺腔2上设置有加热器10对第一高温工艺腔2进行加热,使得第一高温工艺腔2内的温度达到石墨烯高温退火要求的温度,通过第二高温工艺腔3上设置的加热器10对第二高温工艺腔3进行加热,使得第二高温工艺腔3内的温度达到石墨烯生长要求的温度;同时在高温工艺腔内充入对应的工艺气体。然后启动石墨烯生长基底放料辊11放料,启动石墨烯基底收料辊41对石墨烯生长基底6进行收取。从而使得石墨烯生长基底6分别在第一高温工艺腔2内进行高温退火,同时在第二高温工艺腔3内进行生长,从而实现石墨烯的连续生产。

综上所述,本发明所述的卷式石墨烯连续生长设备由于在放料冷却腔1、收料冷却腔4之间设置有两个高温工艺腔,并且通过过渡腔5将两个高温工艺腔分开;因此将石墨烯生长基底高温退火预处理与高温生长分别在两个高温工艺腔内进行,并且同步进行,既解决了基底处理过程中温度设置的自由性、又可随意选择基底处理过程中的工艺气体,排除石墨烯生长碳源对基底表面处理过程中的影响。通过多腔体的设置,将石墨烯生长过程中各个环节分布到各腔体中分开进行,避免卷对卷生长过程中各环节相互影响,而影响石墨烯生长基底最终品质;此外,通过多腔体的设置能够使得各个工艺同步进行,因此可以提高卷对卷石墨烯薄膜制备效率。

所述第一高温工艺腔2和第二高温工艺腔3可以采用多种布置方式,为了适应安装环境,其中一种布置方式为,如图1所示,所述第一高温工艺腔2竖向布置,所述第二高温工艺腔3横向布置,所述过渡腔5内设置有过渡辊52。由于第一高温工艺腔2竖向布置,所述第二高温工艺腔3横向布置,因此通过在过渡腔5内设置有过渡辊52使得石墨烯生长基底6由第一高温工艺腔2经过过渡腔5进入到第二高温工艺腔3能够平滑过渡,避免石墨烯生长基底6与各个腔体的内壁接触。

为了能够实时的检测石墨烯生长基底6的张力,从而获知石墨烯生长基底6的拉力强度,进一步的,如图2所示,所述过渡腔5内设置有检测石墨烯生长基底6张力的张力检测装置51。通过设置张力检测装置51能够监控石墨烯生长基底6基底材料的张力,从而根据张力大小调节石墨烯生长基底放料辊11的放料速度以及控制石墨烯基底收料辊41的收料速度,保证产品品质。

为提高生长石墨烯基底的降温速度,在本发明中进一步的,所述收料冷却腔导向辊42采用水冷导向辊。从而可快速将生长石墨烯基底的温度降低到室温,避免收卷过程中,由于热涨泠缩导致石墨薄膜品质的降低。

所述放料冷却腔1、第一高温工艺腔2、第二高温工艺腔3、收料冷却腔4、过渡腔5之间可以通过多种方式进行连接,比如焊接,或者采用普通法兰进行连接。为了便于设备的安装,维护,同时便于向工艺腔体内通入工艺气体,优选的,第一高温工艺腔2的两端均通过多点进气密封法兰8分别与放料冷却腔1和过渡腔5连接,第二高温工艺腔3的两端均通过多点进气密封法兰8分别与过渡腔5和收料冷却腔4连接。

所述多点进气密封法兰8可以为多种形式,为了简化结构,降低制造成本,同时便于安装,其中的一种优选方式为:如图5和图6所示,所述多点进气密封法兰8包括外法兰82、内法兰83以及密封胶圈84,所述内法兰83具有凸台端,所述外法兰82设置有与内法兰83匹配的凹槽,所述密封胶圈84安装在凹槽内,所述内法兰83的凸台端插入外法兰82的凹槽内,且顶紧密封胶圈84,所述内法兰83上设置有连通内法兰83内圈的通气通道81。

所述匀流隔热装置9可以采用单片的匀流隔热板,为了提高隔热效果和使得气体在高温工艺腔内均匀分布,优选的,如图4所示,所述匀流隔热装置9包括至少两层隔热板91以及支撑柱92,所述支撑柱92设置在相邻两层隔热板91之间;所述隔热板91上设置有中心通孔以及均匀分布的透气孔,所述相邻两层隔热板91上的透气孔错位分布。具体的,隔热板可以是石英、陶瓷、钼、不锈钢、铜等不同材质,本发明中优选石英隔热板。

通过将匀流隔热装置9设置为上述结构,从而能够有效阻隔部分热射对真空密封胶圈的影响;另一方面,还可以将工艺气体均匀分散在工艺腔内部,达到石墨烯生长基底表面都处在一个均匀环境中,达到石墨烯样品均匀制备的目的。

所述放料冷却腔1和收料冷却腔4都需要进行抽真空处理,所述放料冷却腔1和收料冷却腔4可以共同使用一个真空泵7进行抽真空,采用该种设置不便于对放料冷却腔1和收料冷却腔4内压力的单独控制,为了便于放料冷却腔1和收料冷却腔4内压力的单独控制,优选的,所述放料冷却腔1设置有一个真空泵7,所述收料冷却腔4设置有一个真空泵7。

所述加热器10可以采用多种方式,比如电阻加热、红外加热、电磁场加热等,为了便于对所述加热器10的加热温度进行控制,本发明优选的所述加热器10采用电阻加热器。

实施例一

如图1、4、5和6所示,所述卷式石墨烯连续生长设备,包括放料冷却腔1、收料冷却腔4;所述放料冷却腔1内设置有石墨烯生长基底放料辊11和放料冷却区导向辊12,所述收料冷却腔4内设置有长有石墨烯基底收料辊41以及收料冷却腔导向辊42;所述放料冷却腔1设置有一个真空泵7,所述收料冷却腔4设置有一个真空泵7。

所述卷式石墨烯连续生长设备,还包括第一高温工艺腔2、第二高温工艺腔3以及过渡腔5;所述第一高温工艺腔2的两端和第二高温工艺腔3的两端均设置有匀流隔热装置9;所述第一高温工艺腔2和第二高温工艺腔3上均设置有加热器10;所述加热器10采用电阻加热器。

所述第一高温工艺腔2一端通过多点进气密封法兰8与放料冷却腔1连接且连通,另一端通过多点进气密封法兰8与过渡腔5连接且连通,所述第二高温工艺腔3一端通过多点进气密封法兰8与过渡腔5连接且连通,另一端通过多点进气密封法兰8与收料冷却腔4连接且连通;石墨烯生长基底放料辊11上放料石墨烯生长基底6依次经过放料冷却区导向辊12、第一高温工艺腔2、过渡腔5、第二高温工艺腔3、收料冷却腔导向辊42最终卷收到石墨烯基底收料辊41上。

如图1所示,所述第一高温工艺腔2竖向布置,所述第二高温工艺腔3横向布置,所述过渡腔5内设置有过渡辊52。

所述多点进气密封法兰8包括外法兰82、内法兰83以及密封胶圈84,所述内法兰83具有凸台端,所述外法兰82设置有与内法兰83匹配的凹槽,所述密封胶圈84安装在凹槽内,所述内法兰83的凸台端插入外法兰82的凹槽内,且顶紧密封胶圈84,所述内法兰83上设置有连通内法兰83内圈的通气通道81。所述收料冷却腔导向辊42采用水冷导向辊。

所述匀流隔热装置9包括至少两层隔热板91以及支撑柱92,所述支撑柱92设置在相邻两层隔热板91之间;所述隔热板91上设置有中心通孔93以及均匀分布的透气孔,所述相邻两层隔热板91上的透气孔错位分布。

实施例二

如图2、4、5和6所示,所述卷式石墨烯连续生长设备,包括放料冷却腔1、收料冷却腔4;所述放料冷却腔1内设置有石墨烯生长基底放料辊11和放料冷却区导向辊12,所述收料冷却腔4内设置有长有石墨烯基底收料辊41以及收料冷却腔导向辊42;所述放料冷却腔1设置有一个真空泵7,所述收料冷却腔4设置有一个真空泵7。

所述卷式石墨烯连续生长设备,还包括第一高温工艺腔2、第二高温工艺腔3以及过渡腔5;所述第一高温工艺腔2的两端和第二高温工艺腔3的两端均设置有匀流隔热装置9;所述第一高温工艺腔2和第二高温工艺腔3上均设置有加热器10;所述加热器10采用电阻加热器。

所述第一高温工艺腔2一端通过多点进气密封法兰8与放料冷却腔1连接且连通,另一端通过多点进气密封法兰8与过渡腔5连接且连通,所述第二高温工艺腔3一端通过多点进气密封法兰8与过渡腔5连接且连通,另一端通过多点进气密封法兰8与收料冷却腔4连接且连通;石墨烯生长基底放料辊11上放料石墨烯生长基底6依次经过放料冷却区导向辊12、第一高温工艺腔2、过渡腔5、第二高温工艺腔3、收料冷却腔导向辊42最终卷收到石墨烯基底收料辊41上。

如图2所示,所述放料冷却腔1、第一高温工艺腔2、第二高温工艺腔3、收料冷却腔4、过渡腔5均横向布置;并且所述过渡腔5内设置有检测石墨烯生长基底6张力的张力检测装置51。通过横向布置便于安装,通过在过渡腔内设置张力检测装置能够检测石墨烯的张力情况,控制产品质量。

所述多点进气密封法兰8包括外法兰82、内法兰83以及密封胶圈84,所述内法兰83具有凸台端,所述外法兰82设置有与内法兰83匹配的凹槽,所述密封胶圈84安装在凹槽内,所述内法兰83的凸台端插入外法兰82的凹槽内,且顶紧密封胶圈84,所述内法兰83上设置有连通内法兰83内圈的通气通道81。所述收料冷却腔导向辊42采用水冷导向辊。

所述匀流隔热装置9包括至少两层隔热板91以及支撑柱92,所述支撑柱92设置在相邻两层隔热板91之间;所述隔热板91上设置有中心通孔93以及均匀分布的透气孔,所述相邻两层隔热板91上的透气孔错位分布。

实施例三

如图3、4、5和6所示,所述卷式石墨烯连续生长设备,包括放料冷却腔1、收料冷却腔4;所述放料冷却腔1内设置有石墨烯生长基底放料辊11和放料冷却区导向辊12,所述收料冷却腔4内设置有长有石墨烯基底收料辊41以及收料冷却腔导向辊42;所述放料冷却腔1设置有一个真空泵7,所述收料冷却腔4设置有一个真空泵7。

所述卷式石墨烯连续生长设备,还包括第一高温工艺腔2、第二高温工艺腔3以及过渡腔5;所述第一高温工艺腔2的两端和第二高温工艺腔3的两端均设置有匀流隔热装置9;所述第一高温工艺腔2和第二高温工艺腔3上均设置有加热器10;所述加热器10采用电阻加热器。

所述第一高温工艺腔2一端通过多点进气密封法兰8与放料冷却腔1连接且连通,另一端通过多点进气密封法兰8与过渡腔5连接且连通,所述第二高温工艺腔3一端通过多点进气密封法兰8与过渡腔5连接且连通,另一端通过多点进气密封法兰8与收料冷却腔4连接且连通;石墨烯生长基底放料辊11上放料石墨烯生长基底6依次经过放料冷却区导向辊12、第一高温工艺腔2、过渡腔5、第二高温工艺腔3、收料冷却腔导向辊42最终卷收到石墨烯基底收料辊41上。

如图3所示,所述第一高温工艺腔2竖向布置,所述第二高温工艺腔3竖向布置,所述过渡腔5内设置有过渡辊52。通过将两个高温工艺腔竖向布置,能够降低重力作用对石墨烯产品的影响。

所述多点进气密封法兰8包括外法兰82、内法兰83以及密封胶圈84,所述内法兰83具有凸台端,所述外法兰82设置有与内法兰83匹配的凹槽,所述密封胶圈84安装在凹槽内,所述内法兰83的凸台端插入外法兰82的凹槽内,且顶紧密封胶圈84,所述内法兰83上设置有连通内法兰83内圈的通气通道81。所述收料冷却腔导向辊42采用水冷导向辊。

所述匀流隔热装置9包括至少两层隔热板91以及支撑柱92,所述支撑柱92设置在相邻两层隔热板91之间;所述隔热板91上设置有中心通孔93以及均匀分布的透气孔,所述相邻两层隔热板91上的透气孔错位分布。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1