Cvd石墨烯温度传感器、传感系统及温度传感器制备方法

文档序号:9469846阅读:1995来源:国知局
Cvd石墨烯温度传感器、传感系统及温度传感器制备方法
【技术领域】
[0001]本发明涉及一种CVD石墨烯温度传感器、传感系统及温度传感器制备方法,属于半导体器件的技术领域。
【背景技术】
[0002]石墨烯是由Sp2杂化的碳原子在二维平面内紧密排列而成的蜂窝状晶体结构,只有一个碳原子厚度,不仅具有优异的光电性能,还具有极高的力学和热学性能,其热导率高达5300W/(m.K)。石墨烯能够通过在表面形成褶皱或吸附其他分子来维持自身稳定性,而且能够承受较大的应力和应变,较高温下依然能够保持结构稳定性。
[0003]拉曼光谱分析法是利用光的散射效应而开发的一种无损检测与表征技术,石墨烯的拉曼光谱是其分子振动和转动的体现。当石墨烯温度发生变化时,其声子结构会发生改变,特别是位于平面内的光学支声子LO (纵向)和TO (横向),而是石墨烯的特征峰G峰是由这两支长波长的光学支声子组成的,因此,石墨烯温度的改变会使其特征峰G峰发生偏移。
[0004]目前,市场上的温度传感器主要分为四种:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。这四种温度传感器均需要外部电源,以及引线连接,且制作工艺复杂,例如,中国专利201220337109.0,名称为“一种一体式热电偶温度传感器”;利用热敏电阻实现温度传感的中国专利201410042690.7,名称为“一种温度传感器制作方法”;中国专利201210438040.5,名称为“RTD温度检测系统”;中国专利201280007908.4,名称为“半导体温度传感器”等。
[0005]与上述传感器的传感方法相比,本发明提供了一种非接触温度传感的装置,及其制备方法,利用石墨烯特征峰峰位进行温度传感,传感装置无需电源和引线连接,制备工艺简单,温度测量范围大,适用于实时测量物体或环境温度,具有巨大的应用潜力。

【发明内容】

[0006]发明目的:本发明的目的在于提出了一种CVD石墨烯温度传感器、传感系统及温度传感器制备方法,利用半导体刚性衬底和石墨烯优良的导热性能,基于石墨烯拉曼光谱特征峰G峰峰位与温度之间的对应关系,实现对物体或环境温度的非接触实时传感,传感装置无需电源和引线,制备工艺简单,温度测量范围广,有望成为一种新型的温度传感方法。
[0007]技术方案:本发明所述的温度传感器,所述温度传感器为层状结构,自下而上依次包括刚性导热衬底层、石墨烯层、三氧化二铝缓冲层和三氧化二铝保护层。如此形成的温度传感器其拉曼光谱的G峰会随着温度传感器的温度变化而发生偏移。
[0008]进一步地,所述石墨烯层的尺寸小于所述刚性衬底层的尺寸,所述三氧化二铝缓冲层的尺寸大于石墨烯层的尺寸,所述三氧化二铝缓冲层覆盖所述石墨烯层,并包覆所述石墨烯层的四围,以便石墨烯和周围环境(如气体、水分等)彻底隔开,提高传感器的抗干扰性能。
[0009]进一步地,所述石墨烯层厚度单层或2-5层,厚度在0.3?2nm,所述三氧化二铝缓冲层的厚度为I?2nm,所述三氧化二招层保护层的厚度为10-50nm。
[0010]进一步地,所述刚性衬底层的长度为5?30mm,宽度为5?30mm,所述石墨稀层的长度为5?20mm,宽度为5?20mmo
[0011]进一步地,包括激光器、入射光纤、温度传感器、出射光纤、光谱分析仪和计算机,激光器发出的激光经过入射光纤照射到温度传感器的表面,所属温度传感器反射激光信号经过出射光纤传输至光谱分析仪中,光谱分析仪将产生的数据信号传送至计算机中。
[0012]本发明的温度传感器的制备方法,包括以下步骤:
[0013]I)将纯度99%以上厚度20?50 μ m的铜箔,表面处理后烘干;
[0014]2)利用化学气相沉积法在铜箔上生长石墨烯;
[0015]3)将铜箔转移至刚性衬底上;
[0016]4)在转移有石墨烯的刚性衬底上用低功率射频溅射法生长一层Al,然后置于空气中使其自氧化形成三氧化二铝缓冲层,较低的溅射功率可确保石墨烯受到较低的损伤以及减小成键几率;
[0017]5)在自氧化形成的三氧化二铝缓冲层上用原子层沉积法生长一层三氧化二铝保护层即得所述温度传感器。
[0018]进一步地,所述步骤2)利用化学气相沉积法在铜箔上生长石墨烯,具体为:
[0019]将铜箔在950 °C?1030 °C的H2气氛中预热30min,然后通入H 2和CH 4混合气体,H 2流量为40?80sccm,CH4流量为10?20sccm ;950°C?1030°C下生长10?30min后,关闭CH4, H2气氛下冷却至室温,在铜箔上得到单层或双层石墨烯;
[0020]进一步地,所述步骤3)将铜箔转移至刚性衬底上,具体为:
[0021]将生长有石墨烯的铜箔裁剪,旋涂一层500nm的PMMA,110 °C下烘150s,置于0.5?1.0moI/L的FeCl3水溶液浸泡8?12h,至铜箔完全溶解,去离子水中清洗2?3次,之后转移至预先准备好的刚性衬底中间,900C烘2h,置于丙酮中溶解PMMA,然后乙醇、水清洗,烘干;
[0022]进一步地,所述步骤4)在转移有石墨烯的刚性衬底上用射频溅射法生长一层Al,然后置于空气中使其自氧化形成三氧化二铝缓冲层,具体为:
[0023]利用射频溅射法在转移有石墨烯的刚性衬底上生长一层很薄的Al,溅射功率2?20W,溅射时间60?180s,溅射气氛Ar,气压0.25?5.0Pa ;然后置于空气中I?2天,使其自氧化,得到I?2nm的Al2O3缓冲层,以便在减小石墨烯受介质生长工艺的损伤的同时提供形核生长。
[0024]所述步骤5)在自氧化形成的三氧化二铝缓冲层上用原子层沉积法生长一层三氧化二铝保护层即得所述温度传感器,具体为:
[0025]利用原子层沉积法生长一层10?50nm Al2O3保护层,所用Al源为三甲基招,本底气压300mTorr,沉积温度150?25CTC,沉积周次100?500cyc。
[0026]本发明与现有技术相比,其有益效果是:1)本发明装置结构简单,体积小,厚度薄,可粘结物体表面,易于操作。
[0027]2)本发明装置的制备方法简单,无需电源和引线,可避免温度漂移。
[0028]3)本发明装置整个结构在低温和高温下均可保持结构稳定,因而温度测量范围大,适用于多种环境。
[0029]4)本发明装置的测量方法为非接触式,对待测物体影响小,能够实时监测。
【附图说明】
[0030]图1为本发明利用石墨烯进行温度传感的结构示意图;
[0031]图2为石墨烯传感装置的制备过程示意图;
[0032]图3为本发明石墨烯G峰峰位随温度的变化规律示意图。
【具体实施方式】
[0033]下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
[0034]实施例1:
[0035]本发明利用本发明所述的温度传感器10进行温度传感的整个结构示意图,如图1所示,其工作原理如下:激光器I产生激光,通过入射光纤2照射到温度传感装置(虚线圆圈内)的石墨烯表面,传感装置与待测物体3紧密接触,反射激光信号经出射光纤11传输到光谱分析仪4中,光谱分析仪4将产生的数据传输到计算机5中,计算机进行数据处理,得出物体此时的温度,实现对待测物体的实时温度传感。
[0036]本发明中石墨烯温度传感器的装置如图1中虚线圆圈及其放大图所示,包括导热性良好的刚性衬底6,转移至刚性衬底中间位置的石墨烯7,覆盖于石墨烯和刚性衬底边缘的Al2O3缓冲层8,以及缓冲层上生长的Al 203保护层9。
[0037]石墨烯温度传感装置的制备过程如图2所示,首先,在利用化学气相沉积法在铜箔10上生长单层或双层石墨烯,然后旋涂一层PMMA薄膜层11,接着将铜箔溶解,把石墨烯转移至导热性良好的刚性基底6上,溶解PMMA后,利用溅射和自氧化技术在其表面生长一层很薄的Al2O3形核点,最后利用原子层沉积法生长一层Al 203保护层。
[0038]计算机进行数据处理的原理如图3所示,对于不同温度下石墨烯特征峰G峰的位置不同,取!\到T 2温度区间内若干温度,测量其对应的G峰峰位,得到如图3所示的若干点,基于这些点进行线性拟合,可得出石墨烯G峰峰位与温度之间的线性关系式ω (T)=
其中ω⑴表示T温度下,石墨烯G峰峰位,ω。为零摄氏度时G峰峰位,x 表示石墨烯G峰峰位的温度偏移率。基于此,通过测量石墨烯特征峰G峰位置推算出待测物体的温度。
[0039]本发明提供了一种CVD石墨烯温度传感器的制备方法的制备方法,包括以下步骤:
[0040]I)准备用于生长石墨烯的铜箔,铜箔厚度20?50um,纯度99%以上,表面处理后烘干。
[004
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1