石墨烯/碳化物增强镁基复合材料骨植入体及其成形方法与流程

文档序号:15601254发布日期:2018-10-02 20:19阅读:148来源:国知局

本发明涉及一种复合材料骨植入体及成形方法,特别涉及一种石墨烯/碳化物协同增强镁基纳米复合材料骨植入体及成形方法。



背景技术:

目前,临床广泛应用的不锈钢、钛合金和钴铬合金的弹性模量均远高于人体自然骨的弹性模量,由此产生的“应力遮挡”效应不利于病变骨的生长和愈合。镁合金与人骨的弹性模量接近,可有效缓解“应力遮挡”效应。同时,镁合金具有良好的生物相容性。镁是人体内仅次于钙、钠和钾的常量元素之一,能够激活多种酶,参与体内系列代谢过程,促进钙的沉积,是骨生长的必需元素;另一方面,镁及其合金具有较高的比强度和比刚度,在骨折愈合初期能够提供稳定的力学性能,逐渐降低其应力遮挡作用,使骨折部位承受逐步增大至生理水平的应力刺激,从而加速骨折愈合,防止局部骨质疏松和再骨折的发生。更为重要的是,镁合金标准电极电位(-2.37v)较低,具有完全可降解性,在人体生理环境中易生成镁离子被周围机体组所吸收。鉴于镁合金拥有优异的力学相容性、生物相容性和可降解性等诸多优点,镁及其合金已逐渐发展成为新一代生物医用可降解金属骨植入材料的研究焦点。然而,骨植入体因患者年龄、性别等不同导致其空间结构呈现较大差异。同时,骨植入体的结构异常复杂,尤其是人工髋关节结构,尤为重要的是,镁合金熔点及沸点较低,极易在空气中氧化,甚至燃烧,而传统制造工艺,如,铸造、机械合金化、熔体浸渗、粉末冶金等,难以满足复杂结构的人工骨植入体的精密与高效制造。

激光选区熔化技术作为一种基于增材原理的复杂金属构件的精密制造工艺,可将复杂结构构件离散为系列较薄的二维截面(厚度通常低于100μm),可实现复杂构件的精密制造。相比于传统制造工艺而言,激光选区熔化工艺具有如下优势:由金属粉末直接获得最终构件产品,工艺简单;可实现高致密度构件的成形,致密度最高可达98%以上;适合任意复杂形状的构件的精密制造;适合小批量、复杂构件的个性化定制。

通常情况下,激光选区熔化技术涉及到高能激光束与镁合金粉体的瞬态交互作用,而镁合金电阻率低导致其对高能激光束的吸收率较低,这是制约镁合金材料进行激光选区熔化成形的首要问题。其次,镁合金的热导率高,激光选区熔化成形镁合金时须采用较高的激光功率将其熔化,但镁的氧化性强,在激光的高能量密度条件下,易被氧化和氮化,生成脆硬的氧化物、氮化物而影响加工区域的性能。同时,镁合金的熔点及沸点较低,在高功率作用下易发生元素的气化烧损而影响最终构件的化学成分、组织及性能。另一方面,单一镁合金骨植入体在人体生理条件下的耐蚀性能不理想,降解速率较快,在植入人体初期,镁合金骨植入体降解少,力学性能满足服役需求,而随其快速的降解,力学性能也伴随大幅下降,导致其提前失效。因此,研发一种高性能镁合金骨植入体及其成形方法已成为当前亟需解决的难题。



技术实现要素:

发明目的:针对镁合金电阻率低、热导率高制约镁合金材料激光选区熔化成形、以及现有的镁基骨植入体耐蚀性能差的问题,本发明提供一种石墨烯/碳化物协同增强镁基纳米复合材料骨植入体,并提供了一种该镁基纳米复合材料骨植入体的成形方法。

技术方案:本发明所述的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体,包括镁合金骨植入体基体,基体内部分散有纳米石墨烯及原位生成的纳米tic陶瓷相。

其中,纳米tic陶瓷相由石墨烯与经磁控溅射工艺沉积在石墨烯表面的金属ti在高能激光束作用下原位反应生成。反应式为ti+c→tic。

本发明所述的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体的成形方法,包括下述步骤:

(1)采用非平衡磁控溅射工艺在纳米级石墨烯表面沉积纳米金属ti;

(2)称取医用球形镁合金粉末与经纳米ti改性的石墨烯,利用惰性气体辅助保护的无球式球磨工艺,获得混合均匀的复合材料粉末;

(3)在高纯氩气保护下,采用激光选区熔化成形工艺,将所述复合材料粉末成形得到原位合成纳米tic陶瓷和纳米石墨烯协同增强的镁基纳米复合材料骨植入体。

优选的,步骤(1)中,非平衡磁控溅射工艺条件为:石墨烯粉末施加的偏压为-10~-100v,溅射功率为50~200w,石墨烯粉末样品架的超声摇摆频率为0.5~3hz。

上述步骤(2)中,球形镁合金粉末与经纳米ti改性的质量比优选为200:1~1000:1。

其中,球形镁合金为医用mg-al合金、mg-si合金或mg-ca合金。进一步的,球形镁合金粉末的粒径优选为15~65μm。

进一步的,步骤(3)中,激光选区熔化成形工艺条件为:激光束能量密度为200~400j/m,含氧量低于10ppm。

发明原理:本发明以提升医用镁合金粉末的激光成形性能及镁合金骨植入体在人体生理条件下的耐蚀性能为出发点,基于高能激光束与镁合金粉末复杂的非平衡热/力耦合交互作用、镁合金对激光的吸收行为、高比表面纳米二维石墨烯材料的物性以及原位纳米陶瓷相优异的耐蚀性能,充分结合非平衡磁控溅射工艺及激光选区熔化技术,精密成形几何结构较为复杂、具有原位纳米tic陶瓷及纳米石墨烯双相协同增强镁合金复合材料植入体。

有益效果:与现有技术相比,本发明的有益效果在于:(1)本发明的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体基于高比表面积纳米二维石墨烯较高的激光吸收能力(其比表面积通常为1000~2200m2/g)及其优异的生物相容性,通过惰性气体辅助无球式球磨工艺将纳米石墨烯分散于微米级球形镁合金粉末表面,有效提高医用镁合金粉末的激光吸收率,即,采用较低的激光能量输入可实现镁合金粉末的激光选区熔化成形,避免其元素的气化,进而显著提升其激光成形性能;另一方面,纳米石墨烯具有良好的耐蚀性能,能明显改善镁合金骨植入体的耐蚀性能;

(2)本发明的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体基于石墨烯与ti相互物性及原位反应的热力学条件,借助于非平衡磁控溅射和激光选区熔化复合工艺,利用高能激光束诱导高比表面纳米二维石墨烯与其表面沉积纳米金属ti间产生原位反应,生成纳米tic陶瓷增强相,显著提升镁合金骨植入体的耐蚀性能;同时,原位纳米tic陶瓷增强相为后续高温镁合金熔体凝固提供形核质点,加之激光选区熔化瞬态快速熔化/凝固特性,显著细化镁合金复合材料的晶粒,进一步强化了细晶强化效应;

(3)本发明提供的骨植入体成形方法基于镁合金骨植入体的性能需求及几何结构特点、ti+c→tic原位反应的热力学及动力学条件,借助激光选区熔化技术,利用高能激光束与镁合金复合材料粉体强烈的交互作用,实现了镁合金骨植入体的复杂结构-材料-性能的一体化精密无模化制造,获得了高性能的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体。

附图说明

图1为实施例1~2制得的石墨烯/碳化物协同增强镁基纳米复合材料粉体的激光吸收率;

图2为实施例3制得的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体的显微组织形貌图;

图3为实施例4制得的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体在人体模拟体液中的极化曲线;

图4为实施例5制得的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体在人体模拟体液中的阻抗曲线;

图5为实施例6制得的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体的室温抗拉强度图。

具体实施方式

下面结合附图对本发明的技术方案作进一步说明。

本发明的一种石墨烯/碳化物协同增强镁基纳米复合材料骨植入体,为内部分散有纳米石墨烯及原位生成的纳米tic陶瓷相的镁合金骨植入体;其中,纳米tic陶瓷相可通过石墨烯与经磁控溅射工艺沉积在石墨烯表面的金属ti在高能激光束作用下发生ti+c→tic原位反应形成。

本发明基于镁合金骨植入体的性能需求及几何结构特点、ti+c→tic原位反应的热力学及动力学条件,借助激光选区熔化技术,利用高能激光束与镁合金复合材料粉体强烈的交互作用,在高能激光束的诱导作用下原位生成几何结构复杂、拥有纳米tic陶瓷相与纳米石墨烯协同增强镁合金骨植入体,能显著提升医用镁合金粉末的激光成形性能及镁合金骨植入体在人体生理环境中的耐蚀性能。

实施例1

(1)采用非平衡磁控溅射工艺,在具有较大比表面积的纳米级石墨烯表面沉积纳米金属ti,设定非平衡磁控溅射石墨烯粉末施加的偏压为-10v,溅射功率为50w,石墨烯粉末样品架的超声摇摆频率为0.5hz;

(2)称取质量比为200:1的医用球形mg-al合金粉末与经纳米ti改性的石墨烯,利用惰性气体辅助保护的无球式球磨工艺,获得混合均匀的复合材料粉末,其中,医用球形镁合金粉末粒径为15~65μm;

(3)在高纯氩气保护下,通过激光选区熔化制造技术,设定激光束能量密度为200j/m,含氧量低于10ppm,成形得到原位合成纳米tic陶瓷、纳米石墨烯协同增强的镁基纳米复合材料骨植入体。

实施例2

参照实施例1的成形方法制备石墨烯/碳化物协同增强镁基纳米复合材料骨植入体,区别在于:本实施例步骤(1)中将石墨烯粉末样品架的超声摇摆频率设定为1.5hz;步骤(2)中采用的医用镁合金为mg-ca合金;将步骤(3)中的能量密度设置为400j/m。

实施例3

参照实施例2的成形方法制备石墨烯/碳化物协同增强镁基纳米复合材料骨植入体,区别在于:本实施例步骤(1)中将非平衡磁控溅射石墨烯粉末施加的偏压调整为-35v,将溅射功率设置为200w,将石墨烯粉末样品架的超声摇摆频率设定为2.5hz;步骤(2)中采用的医用镁合金为mg-si合金,医用球形mg-si合金粉末与经纳米ti改性的石墨烯的质量比调整为600:1;将步骤(3)中的能量密度设置为200j/m。

实施例4

参照实施例3的成形方法制备石墨烯/碳化物协同增强镁基纳米复合材料骨植入体,区别在于:本实施例步骤(1)中将非平衡磁控溅射石墨烯粉末施加的偏压调整为-70v,将溅射功率设置为150w,将石墨烯粉末样品架的超声摇摆频率设定为0.5hz;将步骤(3)中的能量密度设置为400j/m。

实施例5

参照实施例4的成形方法制备石墨烯/碳化物协同增强镁基纳米复合材料骨植入体,区别在于:本实施例步骤(1)中将非平衡磁控溅射石墨烯粉末施加的偏压调整为-100v,将溅射功率设置为100w;步骤(2)中采用的医用镁合金为mg-al合金,医用球形mg-al合金粉末与经纳米ti改性的石墨烯的质量比调整为1000:1;将步骤(3)中的能量密度设置为350j/m。

实施例6

参照实施例5的成形方法制备石墨烯/碳化物协同增强镁基纳米复合材料骨植入体,区别在于:本实施例步骤(1)中将将溅射功率设置为200w,将石墨烯粉末样品架的超声摇摆频率设定为0.5hz;步骤(2)中采用的医用镁合金为mg-ca合金,医用球形mg-ca合金粉末与经纳米ti改性的石墨烯的质量比调整为600:1;将步骤(3)中的能量密度设置为275j/m。

经性能测试,实施例1~6步骤(2)均得到了激光吸收率较高的复合材料粉体,并最终制得了优异耐蚀性的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体。以下随意选取实施例1~6中制得的复合材料粉体及镁基纳米复合材料骨植入体,分别给出激光性能、形貌结构、耐蚀性能及力学性能测试结果,测试结果如图1~5,可以看到,各实施例制得的镁基纳米复合材料骨植入体均获得了优异性能。

具体而言,图1为实施例1~2中制造的复合材料粉体的激光吸收率,其值均大于0.5,高于现有镁合金的激光吸收率(0.1以下);图2为实施例3制得的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体的显微组织形貌图,可以看到,原位生成的纳米tic陶瓷与片状石墨烯分散于镁合金骨植入体基体中;图3为实施例4制得的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体在人体模拟体液中的极化曲线,其腐蚀电位接近于0v,远高于镁合金自身的腐蚀电位(-2.37v),说明本发明提供的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体耐蚀性能得到显著提升;图4为实施例5制得的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体在人体模拟体液中的阻抗曲线,其阻抗值可达e+5ω数量级,进一步说明本发明提供的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体具有优异的耐蚀性能;图5为实施例6制得的石墨烯/碳化物协同增强镁基纳米复合材料骨植入体的室温抗拉强度图,可明显看出,其抗拉强度高于350mpa,远大于现有镁合金的280mpa,说明本发明的纳米石墨烯及原位纳米tic陶瓷增强镁基复合材料骨植入体在显著提升耐蚀性能的同时,其强度也得到明显提高。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1