一种超极限镁合金及其制备方法与流程

文档序号:17397363发布日期:2019-04-13 00:55阅读:268来源:国知局
一种超极限镁合金及其制备方法与流程

本发明属于一种镁合金金属材料领域,具体涉及一种超极限镁合金及其制备方法。



背景技术:

镁合金作为当今一种重要的金属材料,具有密度小(1.8g/cm3左右)、强度高、弹性模量大、散热好、消震性好、承受冲击载荷能力比大、耐有机物和碱的腐蚀性能好等优良特性,主要用于航空、航天、运输、化工、火箭等工业部门。镁合金是飞行器、航天器和火箭导弹制造工业中使用的最轻金属结构材料,主要用于制造低承力的零件。

随着技术的发展与社会的实际需求,对飞行器的速度要求也越来越高,飞行器的提速就意味着发动机运转速度提升,而发动机的运行温度也随之提升,从而使得发动机的齿轮机匣、油泵和油管等温度也提升。而镁合金在汽油、煤油和润滑油中很稳定,因此通常发动机齿轮机匣、油泵和油管是由镁合金制备的。镁合金的镁合金熔点在650℃左右,使用温度更是在其熔点的70%左右,且在高温下镁合金极易氧化,因此当飞行器提速时,镁合金不能满足在发动机的各部件温度升高的条件下使用,因此满足在超极限温度下使用(超极限温度即超过镁合金的熔点温度)。

而在提升飞行器飞行速度的研究过程中,为了适应其发动机温度的提升,通常会利用铁合金等熔点较高的合金作为制作飞行器的主要结构材料,但是铁合金的重量较大,利用铁合金作为制造飞行器发动机的原材料,会导致飞行器发动机的重量大幅度的增加,反而会导致飞行器的飞行速度减慢,不能满足实际的需求。而若是在不改变材料的情况,对飞行器进行提速,就只能缩短飞行器的使用寿命。



技术实现要素:

本发明意在提供一种超极限镁合金及其制备方法,以解决镁合金无法满足在超极限温度下使用的问题。

为实现上述目的,本发明提供如下基础方案,一种超极限镁合金,包括镁合金基体,镁合金基体表面依次沉积有抗氧化复合粘结层和复合陶瓷层;抗氧化复合粘结层包括沉积在镁合金基体表面的粘结层和沉积在粘结层表面的贵金属层;复合陶瓷层包括陶瓷a层和陶瓷b层。

本技术方案的有益效果:

发明人通过大量的研究,研发了一种超极限镁合金,满足镁合金在超极限温度(超过其熔点温度)下使用。在研发过程中,通常人们会认为当环境温度高于合金的使用温度之后,便会认为该合金不能在该温度下进行使用,进而需要其他高熔点的合金进行使用,而发明人反其道而行,尝试对镁合金进行改进,以满足航空器制造的需求。在发明人不断尝试的过程中非常惊喜的发现,通过在镁合金表面沉积一定配比的涂层,能够将镁合金使用温度提高至高于原熔点100-500℃,将大大的提高镁合金的使用温度,从而满足制造航空器的需求;而在高温环境下,将镁合金的使用温度提升2-3℃都是非常困难的,因此申请人的这一研究是在镁合金的使用上非常大的进步。

本技术方案通过在镁合金基体上沉积抗氧化复合粘结层和复合陶瓷层,能够大大的提高镁合金的使用温度,以适应镁合金在超极限温度的使用。沉积抗氧化复合粘结层,能够提高各涂层与镁合金基体之间的粘结效果,避免涂层在使用过程中脱落。沉积复合陶瓷层,能够降低热量的传导,从而提高镁合金基体的使用温度。

综上所述,本发明具有以下技术效果:

1、本发明提供的超极限镁合金具有极佳的高温力学和化学稳定性,能够在超过其镁合金基体熔点的条件下使用,增强了使用范围。

2、本发明通过在镁合金基体表面沉积多层涂层,能够将其使用温度提升至高于原镁合金基体熔点100-500℃,以实现镁合金在超极限环境下的使用。

3、本发明提供的超极限镁合金具有极佳的耐腐蚀性,因而在酸性或碱性条件下的使用时间大大增加,因此能减少材料腐蚀而造成的浪费,节约成本。

4、本发明打破了当环境温度高于材料的使用温度便只能更换材料的传统思想的禁锢,通过在材料表面沉积涂层,提高材料的使用温度,使得超极限镁合金能够适用于提速后的飞行器制备上,并且不会缩短飞行器的使用寿命。

进一步,所述抗氧化复合粘结层的厚度为100-200μm,复合陶瓷层的厚度为150-500μm,复合陶瓷层外还依次沉积有10-30μm厚的反射层、10-30μm厚的抗折射层、10-200μm厚的绝缘层和20-200μm厚的泡沫碳层。

有益效果:沉积反射层具有反射热源的效果,从而降低镁合金表面的热源,从而提高使用温度。沉积抗折射层,能阻挡红外线在涂层内的折射,从而降低镁合金基体的温度,因此使得制备的镁合金的使用温度提高。绝缘层能够隔绝镁合金基体表面电离的产生,抵抗电荷对基体材料的侵蚀。在使用时泡沫碳层的碳汽化降温,并在镁合金基体表面形成汽化膜,进一步阻止热传输,从而提高镁合金的使用温度。本技术方案通过各涂层的配合,使得镁合金的使用温度得到了大大的提升。并且通过对各涂层的厚度的设置,能够使得制备的超极限镁合金的使用温度提高,且其重量增加较少,具有轻质的特性,便于制作航空器使用。

进一步,所述粘结层的成分为mcraly、nial、nicr-al、mo中的一种或几种的混合物,mcraly为nicrcoaly、nicocraly、conicraly或cocraly;粘结层的成分为au、pt、ru、rh、pd、ir中的一种或几种的合金。

有益效果:nicrcoaly、nicocraly、conicraly三种材料中各元素之间的配比不同,因此制得的材料不同。粘结层具有良好的粘结效果,使得后续的涂层与镁合金机体的粘结效果佳,降低涂层的脱落概率;而贵金属本身具有抗氧化的特性,能有效的阻止,高温下,氧向粘结层和镁合金基体内扩散,从而提高涂层的抗氧化性能,提高涂层的寿命。

进一步,所述陶瓷a层的成分为ysz或稀土锆酸盐(re2zr2o7);陶瓷b层的成分为zro2-retao4。

有益效果:ysz或稀土锆酸盐,是一种作为热障涂层普遍使用的物质,易于获得。zro2-retao4具有低导热率、高膨胀的特性,低导热率能够减少热量的传导,使得在高温环境下,镁合金基体保持低温,从而提高制备的镁合金的使用温度;而高膨胀系数是为了与粘结层的热膨胀系数相匹配,由于贵金属粘结层的热膨胀系数也较大,这样在热循环过程中(即不断加热冷却的过程中),陶瓷层与粘结层的热失配应力(热膨胀系数不同产生的应力)较小,进而提高涂层的使用寿命。(通俗来讲,当两个热膨胀系数相差较大的涂层沉积在一起时,升温或者降温时,两个涂层的膨胀程度严重不同,就会导致两个涂层之间的应力增大,从而导致两个涂层之间产生裂纹,甚至脱落的问题。)

进一步,所述zro2-retao4呈球形,且粒径为10-70μm。

有益效果:能够使得沉积陶瓷b层时,喷涂效果佳,且使得陶瓷b层的粘结效果佳。

进一步,所述反射层的成分为revo4、retao4、y2o3中的一种或几种的混合物。

有益效果:revo4、retao4、y2o3的反射系数高,因此能够反射热源,降低热辐射,降低镁合金基体温度,从而提高制备的镁合金的使用温度。

进一步,所述抗折射层的成分为石墨烯或碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的晶体结构均呈无序排列状态。

有益效果:石墨烯和碳化硼虽然具有较高的折射率,当入射光在照射到抗折射层上时,无序排列的石墨烯和碳化硼可以增强光在各个方向的折射,避免入射光在同一方向上发生折射,达到折射分散的效果,这样进入到涂层内的入射光强度下降。

进一步,所述绝缘层的成分为环氧树脂、酚醛树脂、abs树脂中的一种或几种的混合物。

有益效果:飞行器使用时,外壳与空气发生摩擦而电离时,环氧树脂、酚醛树脂、abs树脂能隔离导电电子,抵抗电荷对镁合金基体的侵蚀。

本发明还提供另一基础方案,一种超极限镁合金的制备方法,包括以下步骤:

步骤一:

首先在镁合金基体表面沉积粘结层,再在粘结层表面沉积贵金属层,使得粘结层和贵金属层形成抗氧化复合粘结层,抗氧化复合粘结层的总厚度为100-200μm;

步骤二:

在贵金属层表面沉积陶瓷a层和陶瓷b层,使得陶瓷a层和陶瓷b层形成复合陶瓷层,复合陶瓷层的总厚度为150-500μm;

步骤三:

在复合陶瓷层表面沉积反射层,反射层的厚度为10-30μm;

步骤四:

在反射层表面涂刷抗折射层,抗折射层的厚度为10-30μm;

步骤五:

在抗折射层表面涂刷绝缘层,绝缘层的厚度为10-200μm;

步骤六:

绝缘层表面涂刷泡沫碳层,泡沫碳层的厚度为20-200μm,从而形成超极限镁合金。

本技术方案的有益效果为:

通过对沉积在镁合金基体上的各涂层的厚度进行控制,既能实现制备的超极限镁合金的使用温度提高至高于原镁合金熔点的100-500℃,并且具有极佳的耐腐蚀性。同时还能够避免涂层厚度较大导致的制备的超极限镁合金的重量增加较大的情况出现,从而使得超极限镁合金能保持轻质的特性,又能够在超极限的温度下使用,从而满足现有飞行器提速的使用要求。

进一步,所述步骤一中,在沉积粘结层之前,去除镁合金基体表面的油污;并对镁合金基体的表面进行喷丸处理,使得镁合金基体的表面粗糙度为60-100μm。

有益效果:通过去除镁合金基体表面的油污能够增加镁合金基体与涂层之间的粘结效果。并且涂层固化的过程中会产生较大的内应力,利用喷丸机喷丸处理后的镁合金基体表面的粗糙度能有效的消除应力集中的问题,因此能防止涂层开裂。并且表面粗糙度的存在可以支撑一部分涂料的质量,有利于消除流挂现象。

附图说明

图1为本发明超极限镁合金的结构示意图;

图2为本发明实施例1和对比例13在50mpa、900℃下的蠕变实验的曲线图;

图3为本发明实施例1和对比例13的盐雾腐蚀实验结果示意图。

具体实施方式

下面通过具体实施方式进一步详细说明:

说明书附图中的附图标记包括:镁合金基体1、抗氧化复合粘结层2、粘结层21、贵金属层22、复合陶瓷层3、陶瓷a层31、陶瓷b层32、反射层4、抗折射层5、绝缘层6、泡沫碳层7。

本发明提供了一种超极限镁合金,如图1所示,包括镁合金基体1,镁合金基体1表面依次沉积有100-200μm厚的抗氧化复合粘结层2、150-500μm复合陶瓷层3、10-30μm厚的反射层4、10-30μm厚的抗折射层5、10-200μm厚的绝缘层6和20-200μm厚的泡沫碳层7。其中抗氧化复合粘结层2为沉积在镁合金基体1表面的粘结层21和沉积在粘结层21表面的贵金属层22,粘结层21的成分为mcraly、nial、nicr-al、mo中的一种或几种的合金,mcraly为nicrcoaly、nicocraly、conicraly或cocraly,贵金属层22的成分为au、pt、ru、rh、pd、ir中的一种或几种的合金;复合陶瓷层3包括沉积在陶瓷a层31和陶瓷b层32,陶瓷a层31靠近贵金属层22或陶瓷b层32靠近贵金属层22,陶瓷a层31的成分为ysz或稀土锆酸盐(re2zr2o7,re=y、nd、eu、gd、dy、sm),陶瓷b层32的成分为zro2-retao4,zro2-retao4呈球形,且粒径为10-70μm,其化学通式为re1-x(ta/nb)1-x(zr/ce/ti)2xo4,re=y、nd、eu、gd、dy、er、yb、lu、sm;反射层4的成分为revo4、retao4、y2o3中的一种或几种的混合物,re=y、nd、eu、gd、dy、er、yb、lu、sm。抗折射层5的成分为石墨烯和碳化硼中的一种或两种的混合物,且石墨烯和碳化硼的晶体结构均呈无序排列状态;绝缘层6的成分为环氧树脂、酚醛树脂、abs树脂中的一种或几种的混合物。

本发明利用zro2-retao4作为陶瓷b层,具有低热导率、高膨胀率的效果,能实现降低热量的传导;并且通过以下方法制备的zro2-retao4能够满足aps喷涂技术的要求。

zro2-retao4采用以下方法进行制备,包括以下步骤:

步骤(1):

将氧化锆(zro2)粉末、稀土氧化物粉末(re2o3)、五氧化二钽(ta2o5)粉末进行预干燥,预干燥的温度为600℃,预干燥的时间为8h;并按照摩尔比为2x:(1-x):(1-x)称取氧化锆(zro2)粉末、稀土氧化物粉末re2o3、氧化二钽(ta2o5)粉末加入到乙醇溶剂中,得到混合溶液,使得混合溶液中re:ta:zr的摩尔比为(1-x):(1-x):2x;再采用球磨机对混合溶液进行球磨10h,球磨机的转速为300r/min。

将球磨后得到的浆料采用旋转蒸发仪(型号:n-1200b)进行干燥,干燥温度为60℃,干燥的时间为2h,将干燥后的粉末采用300目的筛子过筛,得到粉末a。

步骤(2):

将步骤(1)中得到的粉末a采用高温固相反应法制得成分为zro2掺杂retao4的粉末b,反应温度为1700℃,反应时间为10h;并采用300目的筛子对粉末b进行过筛。

步骤(3):

将步骤(2)中过筛后的粉末b与去离子水溶剂、有机粘接剂混合得到浆料c,其中浆料c中粉末b的质量百分比为25%,有机粘接剂的质量百分比为2%,其余为溶剂,有机粘接剂采用聚乙烯醇或者阿拉伯树胶;再利用离心雾化法对浆料c进行干燥,干燥时的温度为600℃,离心速度为8500r/min,得到干燥的料粒d;

步骤(4):

将步骤(3)得到的料粒d在1200℃的温度下烧结8h,再采用300目的筛子对烧结后的料粒d过筛,得到粒径为10~70nm并且形貌呈球形的zro2-retao4陶瓷粉体。

发明人通过大量的实验得出了在本发明的参数范围内,制备的超极限镁合金的使用温度提升最大,且镁合金的重量增加量小,各参数范围最佳的超极限镁合金,而本发明中列举了其中的30组进行了说明。

本发明一种超极限镁合金及其制备方法的实施例1-30的各参数如表1、表2、表3所示:(厚度单位:μm)

表1

表2

表3

现以实施例1为例,对本发明的另一技术方案,一种超极限镁合金的制备方法进行说明。

一种超极限镁合金的制备方法,包括以下步骤:

步骤一:

本实施例中选用am50a镁合金作为镁合金基体,利用浸泡法除去镁合金基体表面的油污和杂质,首先将镁合金基体浸泡在乳化洗净液或碱溶液内,其中乳化洗净液的主要成分为乙醇和表面活性剂,碱溶液主要成分是氢氧化钠、磷酸三钠、碳酸钠硅酸钠,本实施例使用碱溶液浸泡镁合金基体。将碱溶液的ph值调节至10~11之间,再将镁合金基体浸泡在碱溶液内,浸泡0.5-1.5h后取出,本实施例中浸泡时间为1h,再利用清水冲洗干净并烘干。再利用喷丸机对镁合金基体表面进行喷丸处理,使用的喷丸机为jck-ss500-6a自动传输式喷丸机,喷丸时采用的喷丸材料为铁砂、玻璃丸和陶瓷丸中的任意一种,本实施例使用铁砂,且铁砂的粒径可以为0.3-0.8mm,本实施例中铁砂的粒径为0.5mm;喷丸后镁合金基体的表面粗糙度为60-100μm,本实施例中镁合金基体的表面粗糙度为80μm,便于涂层与镁合金基体的粘结。

步骤二:

在喷丸后的am50a镁合金的表面沉积抗氧化复合粘结层,首先利用hvof或者超音速电弧喷涂法在镁合金基体的表面喷涂一层nicrcoaly作为粘结层,本实施例使用hvof法,喷涂时的粉末粒径为25-65μm、氧气流量为2000scfh、煤油流量为18.17lph、载气为12.2scfh、送粉量为5rpm、枪管长度为5in、喷涂距离254mm。

再利用eb-pvd法在nicrcoaly上沉积一层au作为贵金属层,从而形成抗氧化复合粘结层。沉积au时的气体压强小于0.01pa,本实施例中使用的压强为0.008pa,且镁合金基体的温度与镁合金基体的熔点比值小于0.3。沉积的粘结层的厚度为50μm,贵金属层的厚度为50μm。

步骤三:

利用aps、hvof、ps-pvd或eb-pvd法在粘结层的表面喷涂一层ysz作为陶瓷a层,本实施例使用aps法,再利用aps法在陶瓷a上喷涂一层ytao4作为陶瓷b层,形成复合陶瓷层;其中陶瓷a层的厚度为70μm,陶瓷b层的厚度为80μm。

步骤四:

利用hvof、ps-pvd或eb-pvd法在陶瓷b层表面喷涂一层y2o3透明陶瓷材料作为反射层,本实施例使用hvof法,喷涂的反射层的厚度为10μm。

步骤五:

将石墨烯与微米级的碳粉材料相互均匀混合,然后将混合粉末导入溶液中进行超声波振动混合,本实施例中溶液为加入有1%分散剂的乙醇溶液,将混合均匀以后的溶液利用滤纸将微米级的碳粉分离出来。再将混合有石墨烯的溶液涂刷于反射层的表面作为抗折射层,再将涂有石墨烯抗折射层的镁合金放入干燥箱内,在60℃温度下干燥2h,涂刷的抗折射层的厚度为10μm。

步骤六:

在抗折射层表面涂刷一层环氧树脂作为绝缘层,绝缘层厚度为10μm。

步骤七:

在绝缘层上涂刷一层泡沫碳层,泡沫碳层的厚度为20μm,得到超极限镁合金。

实施例2-29与实施例1的区别仅在于如表1所示的参数不同;实施例30与实施例1的区别在于步骤三中陶瓷a层和陶瓷b层的喷涂顺序不同。

实验:

设置13组对比例与实施例1-30进行对比实验,对比例1-12的各参数如表4所示:

表4

对比例1-12与实施例1的区别仅在于如表3所示的各参数不同,对比例13为am50a镁合金。

利用实施例1-30、对比例1-13提供的镁合金进行以下实验:

高温蠕变实验:

将利用实施例1-30和对比例1-13提供的镁合金加工为长187mm、直径16mm的柱状的试件,利用型号为rmt-d5的电子式高温蠕变持久强度试验机进行高温蠕变实验。

将实施例1-30、对比例1-13的试件放入电子式高温蠕变持久强度试验机内,并启动试验机,使得试验机升温,在升温过程中,试件处于无应力状态(在无应力状态下,试件可自由膨胀,而高温蠕变是在温度和应力共同作用下变形随时间增加,因此升温速率对蠕变没有影响)。当试验机的温度达到900℃时,将试验机调节至应力为50mpa,进行高温蠕变实验,以实施例1和对比例13为例,实验结果如图2所示(图2中(a)表示对比例13,(b)表示实施例1),实施例1-30和对比例1-13的具体实验结果如表5所示。

从图2可以得出,(a)、(b)试件蠕变均存在3个阶段,但是在超过am50a镁合金熔点之后的温度下,(a)试件在极短的时间内就发生了蠕变断裂,因此可以得出,在高于am50a镁合金熔点的温度下,am50a镁合金几乎不能载荷。而(b)试件相比于(a)试件抗蠕变性能得到了明显的提高,(b)试件的稳态蠕变时间较长,可以观察到蠕变曲线经过较长的稳态蠕变阶段之后就进入了加速蠕变阶段并发生蠕变断裂。因此可以得出,在超过am50a镁合金熔点温度下,本发明提供的超极限镁合金相较于原有的am50a镁合金,超极限镁合金保持了较好力学性能而不断裂,具有优良的耐高温性能。

盐雾腐蚀实验:

将实施例1-30、对比例1-13提供的镁合金加工成50mm×25mm×2mm的试件,再进行除油、除锈处理,并清洗、干燥。使用ywx/q-250b盐雾腐蚀箱作为实验设备,并模拟gb/t2967.3-2008的大气腐蚀环境。

将实施例1-30、对比例1-13提供的试件悬挂在实验设备内,并将实验设备调节至温度为50±1℃、ph为3.0-3.1,再利用浓度为5±0.5%nacl溶液连续向试件喷洒。以实施例1和对比例13为例,连续向试件喷洒浓度为5±0.5%nacl溶液8h、24h、48h、72h后,试件的失重率如图3所示(图3中(a)表示对比例13,(b)表示实施例1),实施例1-30和对比例1-13的具体实验结果如表5所示。

结合图3可以得出,(a)、(b)试件具有明显不同的腐蚀规律,对于(a)试件,随着腐蚀时间的延长,腐蚀失重数值呈增大的趋势。其中,腐蚀初期(8-24h),试样表面存在氧化膜,阻碍镁合金基体与溶液接触,腐蚀速率较小。腐蚀中期(24-48h),溶液中的cl-已经穿透氧化膜,大量cl-吸附到基体上,使点蚀坑增加,原有的点蚀坑加深,明显加快了腐蚀速率。连续喷雾48h之后,腐蚀产物分布均匀,厚度增加,几乎覆盖试样整个表面,cl-需要穿过腐蚀产物才能与镁合金基体接触,降低了基体表面吸附cl-的数量,使腐蚀速率降低。总体看,(a)试件腐蚀失重量远高于(b)试件,(b)试件由于涂层的存在基本上没有发生腐蚀,其质量几乎没有发生变化,因此本申请提供的超极限镁合金具有较好的耐腐蚀性。

实验结果如表5所示:(a、50mpa、900℃下各试件的稳定蠕变时间(min);b、50mpa、900℃下各试件发生蠕变断裂的时间(min);b、连续向试件喷洒nacl溶液8h后试件的失重率(v/mg.cm2);b、连续向试件喷洒nacl溶液24h后试件的失重率(v/mg.cm2);e、连续向试件喷洒nacl溶液48h后试件的失重率(v/mg.cm2);f、连续向试件喷洒nacl溶液72h后试件的失重率(v/mg.cm2))

表5

由此可见,通过在镁合金上沉积抗氧化复合粘结层、复合陶瓷层、反射层、抗折射层、绝缘层和泡沫碳层,能够将镁合金的使用温度提升至高于原熔点100-500℃,并且耐腐蚀性也大大的提高。并且通过将各涂层的厚度控制在本发明提供的范围内,能够使得制备的超极限镁合金的各效果最佳。而超出本实施例提供的参数范围的镁合金的最高使用温度相比本发明提供的超极限镁合金低很多,而且其耐腐蚀性能也较差。

对于本领域的技术人员来说,在不脱离本发明技术方案构思的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本专利实施的效果和专利的实用性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1