一种阻隔型真空镀膜管件的镀膜方法与流程

文档序号:18215505发布日期:2019-07-19 22:36阅读:358来源:国知局
一种阻隔型真空镀膜管件的镀膜方法与流程

本发明涉及真空镀膜领域,尤其涉及一种阻隔型真空镀膜管件的镀膜方法。



背景技术:

目前的塑料管件很多采用pet、pen等材质制成,其质量轻、便于运输且破损概率小,然而塑料管相比玻璃管水汽透过率较高,长期储存容易导致管内的分析样本相关指标变异,以pet管/瓶为例,pet管/瓶是通过注塑加工形成瓶坯,再次经过吹塑加工形成,具有高吸湿性,吸水率为0.6%,pet管/瓶吸收的水分子会阻碍气体阻隔膜的形成,导致膜层的阻隔性能降低。针对上述问题,常规方法是利用双层管加厚管壁的方法隔离水汽和氧气、二氧化碳等各种干扰源,但依然无法实现较为彻底的水氧隔离效果并且影响管件透明度并增加了生产成本。

同时以pet为代表的多数塑料管件,其材质耐高温性能较差,一般耐受温度在60℃以内,若采用真空镀膜方式,一般的pecvd(等离子体增强化学的气相沉积)镀膜均为平板式电极,其气体分子在镀膜腔室内部属于弥散状态,无法有效渗透进入多个管材内壁进行镀膜沉积,并且常规的pecvd需要较高的沉积温度(一般在100℃以上)才能沉积较为均匀优质的薄膜,而这个温度是pet等塑料管件无法耐受的温度。如采用常温的pvd(物理气相沉积)如磁控溅射等方法,由于其基本原理属于高能粒子轰击靶材镀膜,基本适用于平面类型的基材成膜,而对于此类高长径比的pet管材类型,仅仅靠粒子轰击溅射无法在管材内壁镀膜,即使偶有镀上,也很难保障其均匀性,而pet管材对水蒸气和氧气的透过率要求很高,这也间接要求其表面具有阻隔性能的薄膜均匀性也要相对很高,这导致pvd等磁控溅射常规镀膜也无法满足管材内外壁镀阻隔膜的需求。



技术实现要素:

针对现有技术的不足,本发明提供一种阻隔型真空镀膜管件的镀膜方法,本发明采用真空镀膜(pecvd、pvd)方法在pet、pen等塑料管件内壁和外壁进行低速sio和高速sio2薄膜沉积,提高水汽、氧气、二氧化碳的隔离效果。同时在管件外壁sio2薄膜上继续沉积疏水层薄膜sinx,避免外壁可能出现的水渍、脏污等问题,达到进一步保护管内分析样本的目的。

本发明的技术方案如下:一种阻隔型真空镀膜管件的镀膜方法,所述方法包括以下步骤:

步骤(1)预处理:将塑料管件在90~95%的乙醇中浸泡并超声波清洗5~10分钟,之后使用氮气吹干并使用静电枪进行表面除静电,然后立即放入真空镀膜室内;

步骤(2)管内壁镀膜:真空镀膜室内具有顶针状pin结构用于支撑塑料管件内壁,镀膜室内置多个气体入口,保证每个气体入口对应一个塑料管件,镀膜室抽真空至2pa以下,通入40~60sccm的氧气或者氩气5~8分钟,利用氧或氩等离子体对管件内外壁进行表面轰击,轰击完毕之后,通入硅烷气体和氧气气体,在室温20~25℃、50~100w的放电功率条件下,利用ccp放电气体输入法和电感耦合icp放电法结合(icp增强ccp放电方法),在管件内产生高密度等离子体,并利用线圈产生磁场增强放电强度,使得管件内电离气体均匀分布以保证薄膜沉积的均匀性和稳定性,依次沉积低速sio薄膜和高速sio2薄膜;

步骤(3)管外壁镀膜:利用pvd磁控溅射技术依次镀低速sio、高速sio2及sinx三层薄膜。

作为优选,管内壁沉积sio薄膜时:放电功率为50w,气压保持在5~15.7pa,纯度为99.999%硅烷和纯度为99.999%氧气比例为1:5~1:4,气体总流量为60~350sccm,磁感应线圈电流为30~70ma,磁感应强度为0.03~0.09t,沉积时间为15~30秒,沉积厚度为5~10nm。

作为优选,管内壁沉积sio2薄膜时:放电功率为100w,气压保持在10~19.7pa,纯度为99.999%硅烷和纯度为99.999%氧气比例为1:4~1:3,气体总流量为250~560sccm,磁感应线圈电流为30~70ma,磁感应强度为0.03~0.09t,沉积时间为30~105秒,沉积厚度为20~70nm。

作为优选,所述塑料管件为pet、pen、pp或cop塑料管/瓶,塑料管件长度为30~1500mm、管外径为30~1000mm、管壁厚度为1~10mm。作为进一步优选,塑料管件长度为30~500mm、管外径为30~100mm、管壁厚度为1~5mm。

作为优选,所述管内壁和管外壁成膜总体厚度控制在30~105nm。

作为优选,管外壁镀膜具体过程如下:在功率为50w和100w的条件下,通入150~250sccm的纯度为99.999%的ar和800~1200sccm的o2,气压保持在0.1~1.0pa,通过磁场控制ar离子轰击si靶材,分别沉积120~600秒得到厚度1~5nm的低速sio、沉积60~300秒得到厚度5~10nm的高速sio2,之后通过切换气源,将o2替换为纯度99.999%的n2,功率调整为250w,沉积时间控制在60~120秒,通过磁场控制ar离子轰击si靶材继续沉积厚度为5~10nm的sinx膜。

作为优选,所述塑料管件的内部放置ccp等离子体源使得管材内部形成等离子体,在管件外壁设置icp线圈产生磁场来增强管材内部放电强度。

本发明所述镀膜方法获得的管件内表面薄膜由厚度5~10nm的低速sio和厚度20~70nm的高速sio2组成,而其外壁薄膜则由厚度1~5nm的低速sio、厚度5~10nm的高速sio2和厚度为5~10nm的sinx组成。这种多层的薄膜复合结构可以大大提高塑料管件对水蒸气和氧气的阻隔性能,可广泛用于药品包装、食品封装、柔性期间封装等多个领域,而且制造工艺相对简单,成本也更加低廉,对于环境无任何污染。

本发明的特点如下:本发明利用常温的pecvd技术实现高长径比的管件内壁镀膜。常规pecvd使用高温沉积,温度在300℃左右,电极分布为上下对称的平板结构,其上部包括背板电极和showerhead扩散电极两部分,下部为承接沉积原材并负责对原材加热的平板susceptor基板电极,所有的气体均通过上部背板电极中心的入口进入镀膜腔室,通过上部的showerhead多孔电极的扩散之后混合弥散在整个镀膜腔室内部,腔室配有外加的13.56mhz的rf射频功率并通过上部背板电极中心入口通入镀膜腔室内部,使得混合的多种气体分子在辉光放电作用下变为等离子体状态,多种气体的等离子体再通过化学作用沉积为所需的膜层。本发明修改了上述常规pecvd设置,进气方式不采用常规的showerhead通入并弥散在腔室的方式,因为该方式无法在长径比较大的管材内部实现镀膜,本发明采用管件内部通气的结构,比如针对每一个管件,均有单独的一根气体输运管路,该管路直接延伸进入管件内部,气体通入后直接在管件内部均匀扩散;与此同时,在管材的内部放置ccp等离子体源使得管材内部形成高密度等离子体,在管材外壁设置icp线圈产生磁场来增强管材内部放电强度,上述操作最终可以实现室温下管材内壁沉积均匀、致密、附着力强的阻隔性薄膜。

本发明通过设备的重新设计,在设备内采用管材内部通气的结构,比如针对每一个管材,均有单独的一根气体输运管路,该管路直接延伸进入管件内部,气体通入后直接在管件内部均匀扩散;与此同时,在管件的内部放置ccp等离子体源使得管材内部形成高密度等离子体,在管件外壁设置icp线圈产生磁场来增强管材内部放电强度,使得管件内电离气体均匀分布以保证薄膜沉积的均匀性和稳定性,如图1所示。本发明完成上述工艺及设备改进之后,在塑料管/瓶内壁和外壁沉积的低速sio,由于沉积速度慢,薄膜比较致密,表面缺陷较少,易于提升水汽等影响源的阻隔效果;内壁和外壁沉积的高速sio2层可以整体加大阻隔层的厚度,使得水蒸气分子、氧气分子和二氧化碳分子如想渗透到管件内部必须穿越更长的路径、花费更长的时间,这样就间接延长了样本的保存时间。另外,外壁沉积的sinx薄膜具有疏水的作用,而sio和sio2是亲水的薄膜,这样就将暴露在最外面的亲水层改性为了疏水层,使得塑料管/瓶外表面不易沾染水渍、脏污。

与现有技术相比,本发明具有以下有益效果:本发明使得pet、pen等塑料管件表面微观孔隙被填充,水蒸气分子、氧气分子和二氧化碳分子不易渗透到管内壁而影响样本的测试准确性;另外,本发明利用低速sio和高速sio2结合的模式,提升阻隔膜的致密性同时延长了渗透距离,同时利用sinx对外壁表面的sio2进行改性,亲水改为了疏水,避免了水渍、脏污的影响。

附图说明

图1本发明所用设备实验原理图;

图中标记:1-进气管,2-icp线圈,3-ccp等离子体源,4-管材,5-外电极,6-射频,7-排气孔,8-接地。

具体实施方式

下面结合附图和具体实施例对本发明的技术方案作进一步详细介绍,但本发明并不局限于以下技术方案。

实施例1

目前医疗市场用量很大的柠檬酸钠真空采血管,本实施例采用的真空采血管为pet塑料材质,管壁内侧低速沉积10nm的第一sio(一氧化硅)薄膜;第一sio(一氧化硅)薄膜外侧高速沉积70nm的第一sio2(二氧化硅)薄膜;在管壁外侧低速沉积5nm的第二sio(一氧化硅)薄膜,然后再高速沉积10nm的第二sio2(二氧化硅)薄膜,最后再沉积一层10nm的sinx(氮化硅)薄膜用作疏水层结构。

选取长度75mm、管外径10mm、管壁厚度1mm的pet材质柠檬酸钠采血管作为基材,先将管件在95%的乙醇中浸泡并超声波清洗5分钟,之后使用氮气吹干并进行表面静电枪除静电,然后立即放入真空镀膜室内,真空镀膜室内具有顶针状pin结构,用于支撑管件内壁,保证管件平稳固定在镀膜室内部。之后镀膜室抽真空至1.97pa,通入50sccm的氧气或者氩气5分钟,利用氧或氩等离子体对管件内外壁进行表面轰击,以提高管件表面的表面能,有利于提升后续的sio沉积膜层的附着力。氧或氩离子轰击完毕之后,通入硅烷气体和氧气气体,气压保持在5~15.7pa,在室温25℃、50w的放电功率等条件下,利用ccp放电气体输入法和电感耦合icp放电法结合,在管件内产生高密度等离子体,并利用线圈产生磁场增强放电强度,使得管件内电离气体均匀分布以保证薄膜沉积的均匀性和稳定性。按此实验方法沉积厚度10nm左右的低速sio,沉积时间在30秒左右。之后改变放电功率为100w,气压保持在10~19.7pa,同样利用上述方法在管件内部沉积105秒左右,制备厚度为70nm的sio2。至此,管件内壁镀膜完成。

接下来利用pvd磁控溅射技术,在功率为50w和100w的条件下,通入200sccm的纯度为99.999%的ar和1000sccm的o2,气压保持在0.1~1.0pa,通过磁场控制ar离子轰击si靶材,分别沉积厚度1~5nm的低速sio、厚度5~10nm的高速sio2,之后通过切换气源,将o2替换为纯度99.999%、流量为1400sccm的n2,功率调整为250w,沉积时间控制在60秒左右,通过磁场控制ar离子轰击si靶材继续沉积厚度为5nm的sinx。

实施例1获得的镀膜管件对其进行阻隔效果测定,其水蒸气分子、氧气分子和二氧化碳分子等干扰源的渗透率可由0.002g/pkg*24h降低到0.0002g/pkg*24h,阻隔能力提升了10倍左右。可以保证医学样本长期保存之后的测试准确性。

实施例2

针对食品包装行业,例如啤酒、饮料等pet(聚对苯二甲酸乙二醇酯polyethyleneterephthalate)、pen、pp或cop等塑料瓶装液体物质,采用上述设计的内壁和外壁真空镀膜处理后保存,储存时间可由常规的1个月提升到4个月以上。具体步骤如下:

选取常用的容积为2l的pet瓶作为基材,先将该瓶在95%的乙醇中浸泡并超声波清洗5分钟,之后使用氮气吹干并进行表面静电枪除静电,然后立即放入真空镀膜室内,真空镀膜室内具有顶针状pin结构,用于支撑瓶内壁,保证其平稳固定在镀膜室内部。之后镀膜室抽真空至1.97pa,通入50sccm的氧气或者氩气5分钟,利用氧或氩等离子体对瓶内外壁进行表面轰击,以提高管件表面的表面能,有利于提升后续的sio沉积膜层的附着力。氧或氩离子轰击完毕之后,通入硅烷气体和氧气气体,气压保持在5~15.7pa,在室温25℃、50w的放电功率等条件下,利用ccp放电气体输入法和电感耦合icp放电法结合,在瓶内产生高密度等离子体,并利用线圈产生磁场增强放电强度,使得瓶内电离气体均匀分布以保证薄膜沉积的均匀性和稳定性。按此实验方法沉积厚度10nm左右的低速sio,沉积时间在30秒左右。之后改变放电功率为100w,气压保持在10~19.7pa,同样利用上述方法在管件内部沉积105秒左右,制备厚度为70nm的sio2。至此,管件内壁镀膜完成。接下来利用pvd磁控溅射技术,在功率为50w和100w的条件下,通入200sccm的纯度为99.999%的ar和1000sccm的o2,气压保持在0.1~1.0pa,通过磁场控制ar离子轰击si靶材,分别沉积厚度3nm的低速sio、厚度7nm的高速sio2,之后通过切换气源,将o2替换为纯度99.999%、流量为1400sccm的n2,功率调整为250w,沉积时间控制在120秒左右,通过磁场控制ar离子轰击si靶材继续沉积厚度为10nm的sinx。

上述镀膜方法处理,并不影响pet瓶的外观设计和透明度,镀膜总厚度为100nm,可以使pet瓶装啤酒的货架期达到4~12个月。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1