一种无硬团聚的纳米氧化铝的制备方法

文档序号:3445235阅读:196来源:国知局
专利名称:一种无硬团聚的纳米氧化铝的制备方法
技术领域
本发明涉及纳米氧化铝的制备,属精细化工领域,更具体涉及一种无硬团聚的纳米氧化铝的制备方法,使用此法可制备平均粒径在10-70nm范围内局部可控的基本无硬团聚的纳米氧化铝粉体。
背景技术
纳米氧化铝(Al2O3)是指颗粒尺寸小于100纳米的氧化铝产品,由于其颗粒小,比表面积大,因而有较高的化学活性,广泛用于人造宝石、试剂以及催化剂和载体、发光材料、电子陶瓷基片、以及航空航天领域。纳米氧化铝对陶瓷和橡胶增韧、增强要比普通氧化铝高出数倍。特别是提高陶瓷的致密、光洁度、冷热疲劳等用于YGA激光器的主要配件和集成电路基板等。目前,工业制备氧化铝粉末主要采用贝尔法以及铝铵矾热分解等方法,此法要求在1300-1500℃的高温条件下进行,需要特殊的加热设备,增大了合成难度。而传统的湿化学方法很难有效地控制粒子的大小与形状,尤为重要的是,在氧化铝转型所需要的高温下,通常很难阻止粒子的粗化和硬团聚体的形成。因此,传统的湿化学方法很难制备真正意义上的纳米氧化铝粉体。而一旦硬团聚体形成,就会影响粉体的压制与烧结性能,从而极大地影响由此制备的陶瓷材料性能的可靠性和重复性,使之与高新技术的要求形成尖锐的矛盾。而在湿化学方法的后处理阶段,采用超临界干燥、冷冻干燥技术,虽然可较好地解决纳米粒子的硬团聚问题,但这类方法存在设备复杂、生产过程不连续等问题。以铝的烷氧化物为原料采用溶胶-凝胶法制备纳米氧化铝的粒子性能较好但成本太高,只适于实验室制备和使用。

发明内容
本发明所要解决的问题是提供一种工艺条件较温和、简便、成本较低的纳米氧化铝粉体的制备方法,粒径在10-70nm范围内局部可控,没有硬团聚现象。
本发明提供的技术方案是一种成本较低的无硬团聚的纳米氧化铝的制备方法,包括下列步骤(1)称取750.26g硝酸铝[Al(NO3)3·9H2O]和480g碳酸铵[(NH4)2CO3],分别溶于二次蒸馏水中,配成1L浓度分别为2mol/L和5mol/L的储备溶液,以微孔膜(0.25μm)滤去杂质;(2)取50mL的上述硝酸铝[Al(NO3)3·9H2O]储备溶液,加入聚乙二醇(PEG)400,配制成含2-10wt%PEG400浓度为0.1-0.4mol/L的Al(NO3)3溶液(A);同样方法配制含2-10wt%聚乙二醇(PEG)1540浓度为0.3-1.2mol/L的碳酸铵[(NH4)2CO3]溶液,以氨水调节其pH至9-11(B);(3)在1200-1500r/min的磁力搅拌下,向上述(B)溶液中以40-60滴/min的速度加入等体积的(A)溶液,滴定完成后,继续搅拌1-2h,陈化1-2天;离心分离,以二次水洗涤3-5次、无水乙醇洗涤2-3次,60-80℃干燥10-15h,获得干粉末;(4)将获得的干粉末加入到正丁醇中,至正丁醇完全浸没样品,超声波分散后,回流1-2h,蒸馏脱除93-95℃的正丁醇-水的共沸物,当馏分温度升至正丁醇沸点115-120℃时,停止蒸馏,继续回流1-2h后,减压蒸馏回收正丁醇,获得疏松的粉体;(5)700-800℃煅烧获得γ-Al2O3纳米粉体,1100-1200℃煅烧获得α-Al2O3纳米粉体,热处理时间为1-2h;按上述步骤即可得到单分散性较好,无硬团聚的10-70nm范围内粒径局部可调的γ-或α-Al2O3纳米粉末。
本发明的突出特点1.通过调节反应物和添加剂的浓度实现纳米氧化铝粉体的粒径及其分布局部可控性。
2.利用共沸蒸馏技术,有效地脱除水分,基本消除了纳米粒子的硬团聚现象,制备具有良好粒子性能的氧化铝纳米粉体,压制和烧结性能良好。
3.通过制备工艺的优化,可获得纯度为99.99%的高纯氧化铝纳米粉体。
4.工艺流程简便、较大地降低γ-和α-Al2O3的转型温度和转型时间,从而极大的降低能耗。
5.原材料来源广、生产条件温和、简便、能耗和成本低等特点,适合工业化生产。


图1为本发明在750℃下煅烧所得产品的TEM照片,放大倍数90000;图2为本发明在1150℃下煅烧所得产品的TEM照片,放大倍数180000;图3为本发明在750℃下煅烧所得产品的TEM照片,放大倍数30000;图4为本发明在1150℃下煅烧所得产品的TEM照片,放大倍数97000。
具体实施例方式
本发明的制备流程如下 1.硝酸铝、碳酸铵和正丁醇为市售产品,同时为控制纯度,可直接购买氨气和二氧化碳制备碳酸铵和氨水。
2. 1400r/min的磁力搅拌下,向上述(B)溶液中以40-60滴/min的速度加入等体积的(A)溶液,滴定完成后,继续搅拌1h,陈化36h;离心分离,以二次水洗涤4次、无水乙醇洗涤3次,80℃干燥10h,除去表面水,获得干粉末。
3.将获得的干粉末加入到正丁醇中,至正丁醇完全浸没样品,超声波分散后,回流2h,蒸馏脱除93℃的正丁醇-水的共沸物,脱去残余、吸附及表面结合水,当馏分温度升至正丁醇沸点117℃时,停止蒸馏,继续回流2h后,减压蒸馏回收正丁醇,获得疏松的粉体;4. 750℃煅烧获得γ-Al2O3纳米粉体,1150℃煅烧获得α-Al2O3纳米粉体。热处理时间为1h;如将含有8wt%PEG400浓度为0.2mol/L的Al(NO3)3溶液以40-60滴/分钟的速度加入等体积的含8wt%PEG1540浓度为0.6mol/L的(NH4)2CO3溶液(pH为9.5)中,按上述方案可制备粒径范围为8-14nm的纳米氧化铝粉体,图1和图2分别为其在750℃和1150℃煅烧后获得γ-和α-Al2O3的TEM照片。而将含6wt%PEG400浓度为0.4mol/L的Al(NO3)3溶液以40-60滴/分钟的速度加入等体积的含6wt%PEG1540的浓度为1.2mol/L的(NH4)2CO3溶液(pH为10)中,按上述方案可制备粒径范围为35-60nm的氧化铝纳米粉体,图3和4分别为其在750℃和1150℃煅烧后获得的γ-和α-Al2O3的TEM照片。
5. 750℃煅烧获得γ-Al2O3纳米粉体的X-射线粉末衍射图主要衍射峰为46.0°(100),67.1°(90),37.0°(60),49.0°(58),39.7°(53)是γ-Al2O3的特征峰,且未发现任何其他型体的特征衍射峰。1150℃煅烧获得α-Al2O3纳米粉体的X-射线粉末衍射图主要衍射峰为44.0°(100),59.1°(95),26.1°(83),35.5°(75),67.0°(78)是α-Al2O3的特征峰,且未发现任何其它型体的特征衍射峰,晶相纯度较高。
实施例11400r/min的磁力搅拌下将含8wt%PEG 400的浓度为0.2mol/L的Al(NO3)3溶液以40-60滴/min的速度加入等体积的含8wt%PEG 1540的浓度为0.6mol/L的(NH4)2CO3溶液(pH为9.5)中,滴定完成后,继续搅拌1h,陈化36h;离心分离,以二次水洗涤4次、无水乙醇洗涤3次,60-80℃干燥10h,除去表面水,获得干粉末。将获得的干粉末加入到正丁醇中,超声波分散后,回流2h,蒸馏脱除93℃的正丁醇-水的共沸物,当馏分温度升至正丁醇沸点117℃时,停止蒸馏,继续回流2h后,减压蒸馏回收正丁醇,获得疏松的粉体。750℃煅烧获得的产品,其粒子形貌见图1,粒子大小与形状均一性较好,单分散性好,无硬团聚现象,粒径范围为8-14nm,平均粒径为10nm。图2为其在1150℃下获得α-Al2O3纳米粉的TEM照片,粒径略有增大,粒子大小与形状均一性较好,单分散性好,基本无硬团聚现象,粒径范围为8-20nm,平均粒径为13nm。
实施例21400r/min的磁力搅拌下将含6wt%PEG 400浓度为0.3mol/L的Al(NO3)3溶液以40-60滴/min的速度加入等体积的含6wt%PEG 1540浓度为0.9mol/L的(NH4)2CO3溶液(pH为9.8)中,滴定完成后,继续搅拌1h,陈化36h;离心分离,以二次水洗涤4次、无水乙醇洗涤3次,60-80℃干燥10h,除去表面水,获得干粉末。将获得的干粉末加入到正丁醇中,超声波分散后,回流2h,蒸馏脱除93℃的正丁醇-水的共沸物,当馏分温度升至正丁醇沸点117℃时,停止蒸馏,继续回流2h后,减压蒸馏回收正丁醇,获得疏松的粉体。750℃煅烧获得的产品的粒子大小与形状均一性较好,单分散性好,无硬团聚现象,粒径范围为25-35nm,平均粒径为30nm。在1150℃下获得α-Al2O3纳米粉的的粒径略有增大,粒子大小与形状均一性较好,单分散性好,基本无硬团聚现象,粒径范围为25-40nm,平均粒径为35nm。
实施例31400r/min的磁力搅拌下将含10wt%PEG 400浓度为0.4mol/L的Al(NO3)3溶液以40-60滴/min的速度加入等体积含10wt%PEG1540浓度为1.2mol/L的(NH4)2CO3溶液(pH为10)中,滴定完成后,继续搅拌1h,陈化36h;离心分离,以二次水洗涤4次、无水乙醇洗涤3次,60-80℃干燥10h,除去表面水,获得干粉末。将获得的干粉末加入到正丁醇中,超声波分散后,回流2h,蒸馏脱除93℃的正丁醇-水的共沸物,当馏分温度升至正丁醇沸点117℃时,停止蒸馏,继续回流2h后,减压蒸馏回收正丁醇,获得疏松的粉体。750℃煅烧获得的产品,其粒子形貌见图3,粒子大小与形状均一性较好,单分散性好,无硬团聚现象,粒径范围为35-60nm,平均粒径为50nm。图4为其在1150℃下获得α-Al2O3纳米粉的TEM照片,粒径略有增大,粒子大小与形状均一性较好,单分散性好,基本无硬团聚现象,粒径范围为35-65nm,平均粒径为55nm。
权利要求
1.一种无硬团聚的纳米氧化铝的制备方法,其特征在于(1)称取750.26g硝酸铝和480g碳酸铵,溶于二次蒸馏水中,配成1L浓度分别为2mol/L和5mol/L的储备溶液,以微孔膜滤去杂质;(2)取50mL的上述硝酸铝储备溶液,加入聚乙二醇400,配制成含2-10wt%聚乙二醇400浓度为0.1-0.4mol/L的硝酸铝溶液(A);同样方法配制含2-10wt%聚乙二醇1540浓度为0.3-1.2mol/L的碳酸铵溶液,以氨水调节其pH至9-11(B);(3)在1200-1500r/min的磁力搅拌下,向上述(B)溶液中以40-60滴/min的速度加入等体积的(A)溶液,滴定完成后,继续搅拌1-2h,陈化1-2天;离心分离,以二次水洗涤3-5次、无水乙醇洗涤2-3次,60-80℃干燥10-15h,获得干粉末;(4)将获得的干粉末加入到正丁醇中,至正丁醇完全浸没样品,超声波分散后,回流1-2h,蒸馏脱除93-95℃的正丁醇-水的共沸物,当馏分温度升至正丁醇沸点115-120℃时,停止蒸馏,继续回流1-2h后,减压蒸馏回收正丁醇,获得疏松的粉体;(5)700-800℃煅烧获得γ-Al2O3纳米粉体,1100-1200℃煅烧获得α-Al2O3纳米粉体,热处理时间为1-2h。
全文摘要
本发明公开了一种无硬团聚的纳米氧化铝的制备方法,其步骤是首先是称取硝酸铝和碳酸铵溶于二次蒸馏水中,配成储备溶液;其次是取上述的储备溶液加入聚乙二醇,配制成聚乙二醇-硝酸铝的混合溶液和聚乙二醇-碳酸铵的混合溶液;第三是向聚乙二醇-碳酸铵的混合溶液中加入聚乙二醇-硝酸铝的混合溶液,搅拌、离心、干燥;第四是共沸蒸馏脱水;第五是高温锻烧。本发明工艺简便,成本低廉,粒径局部可控,没有硬团聚现象。
文档编号C01F7/00GK1583567SQ20041001325
公开日2005年2月23日 申请日期2004年6月2日 优先权日2004年6月2日
发明者彭天右 申请人:武汉大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1