介孔纳米粉体二氧化钛的仿生合成方法

文档序号:3431443阅读:216来源:国知局
专利名称:介孔纳米粉体二氧化钛的仿生合成方法
技术领域
本发明涉及一种低成本高活性介孔纳米粉体TiO2的仿生合成方法,属于纳米材料技术领域。
背景技术
纳米级介孔TiO2因具有无毒,化学和热稳定性好,电性能好及特殊的光催化性能和吸附性能,而广泛应用于高浓度难降解工业废水处理技术的光催化剂,也可用于太阳能电池材料和催化材料,还可用于高性能电子陶瓷。研究证明,仿生法制备的纳米TiO2,颗粒半径分布窄,无团聚,锐钛矿的颗粒平均尺寸为8-20nm,BET高达280m2/g,活性高,在700℃就可完全相变为粒径为25-100nm范围的金红石颗粒,无论是锐钛矿还是金红石,颗粒上都有结构孔,其介孔平均尺寸为3-15nm,见透射电镜照片图3和图4。具有介孔结构的TiO2活性高,通过纳米组装技术,可扩展其波长响应范围,提高太阳能利用率,研制出具有高量子产率,能被太阳光谱中的可见光甚至红外光激发的高效半导体催化剂。目前的制备方法有溶胶凝胶法、化学沉淀法、水热法、模板法等,但是现有方法制备的TiO2颗粒团聚严重,活性低,制备工艺复杂且成本高,应用效果较差,难于推广应用。因此如何制备低成本高活性的介孔TiO2纳米粉体是本领域的一个新课题。

发明内容
为了解决现有技术存在的上述问题,本发明提供一种介孔纳米粉体TiO2的仿生合成方法,以较低的成本制得高活性的介孔TiO2纳米微粉。
本发明利用天然生物表面活性剂为模板,用含Ti的原料,在温和条件下进行生物矿化沉积,仿生纳米组装,形成无机有机复合材料,最后除去有机模板,制得高活性的介孔TiO2纳米微粉。
本发明的介孔纳米粉体TiO2的仿生合成方法,步骤如下(1)将生物表面活性剂于常温常压下在水溶液中发酵,形成生物表面活性剂的球丝酵母水溶液,加入糖助剂0-0.1g/L,搅拌,室温乳化20-60分钟。形成临界胶束浓度的乳化液A。
生物表面活性剂通过进行自组装模板合成,利用其自身所特有的圆形或椭圆形细胞结构,形成临界胶束浓度的乳化液A。乳化液的圆形或椭圆形细胞结构参见显微镜照片图1。
(2)在磁力搅拌的作用下,将含有Ti4+的无机溶液,按每分钟2-10滴的滴加速度加到上述乳化液液体A中,让Ti4+能够充分吸附到生物活性剂细胞表面的阴离子群上,TiO2含量控制在50-120g/L(TiO2含量为含有Ti4+的无机盐溶液换算而来),常温下磁力搅拌0.5-1个小时后,得溶液B。
在显微镜下观察无机盐阳离子Ti4+吸附在细胞壁上的情况,显微镜照片参见图2。
(3)室温下将氨水按每分钟1-5滴的速度滴加到上述B溶液中,调节PH=7-9,继续搅拌2-3h,让生物表面活性剂的细胞结构充分矿化沉淀,得到乳浊液C。
(4)将乳浊液C静置1-2h,然后将沉淀物水洗2次,醇洗2次,除去NH4+和Cl-以及H2O。
(5)将水洗和醇洗后的沉淀物在60-80℃干燥2-3h,再将干燥后的沉淀物进行热处理,在煅烧炉中以小于10℃/min的速度升温到300-600℃,除去生物表面活性剂模板,保温1-2h后,即得到介孔锐钛矿TiO2纳米粉体(XRD图谱如图5所示),在600-700℃保温1-2h后得到介孔金红石TiO2纳米粉体(XRD图谱如图6所示)。
上述含Ti的原料选自硫酸钛、氯酸钛、硝酸钛、柠檬酸钛、氢氧化钛或氧化钛之一或组合。
生物表面活性剂是糖脂系、酰基缩氨系、磷脂系、脂肪酸系、蛋白质系表面活性剂之一或组合,加入量为其临界胶束浓度的1-10倍。
上述糖脂系生物表面活性剂一般为鼠李糖脂、海藻糖脂、槐糖脂等,槐糖脂是球丝酵母或假丝酵母在葡萄糖和正构烷烃或长链脂肪酸中培养时产生的;酰基缩氨系生物表面活性剂一般为由枯草杆菌等细菌培养的产物;磷脂系生物表面活性剂一般为卵磷脂或由硫磺细菌发酵培养的磷脂等;脂肪酸系生物表面活性剂一般为覆盖霉菌酸或青霉孢子酸等;蛋白质系生物表面活性剂一般为明胶或用胶原蛋白质水解产物与精氨酸反应的缩合物等。
采用本发明方法,关键技术是在除去生物表面活性剂模板时,所形成的介孔结构的塌陷,反应物浓度越高,介孔球壁越厚,反之亦然。除去生物模板的热处理升温速度应控制<10℃/min。另外,生物表面活性剂的种类和用量,对介孔结构的形成和孔的尺寸形状有重要的影响。
与现有技术相比,本发明方法的优良效果就在于使用廉价的天然生物表面活性剂,利用生物的纳米多层泡囊结构和矿化沉积过程,在温和的条件下合成介孔TiO2纳米微粉,颗粒近球形,粒径分布范围窄,分散效果好,活性高,制备工艺简单,成本低,无污染。锐钛矿TiO2的颗粒平均尺寸为8-20nm,其介孔平均尺寸为3-15nm,比表面积(BET)高达280m2/g,光催化降解高浓度难降解造纸废水的难生物降解耗氧量(COD)降低了80.3%,脱色率达99%。介孔锐钛矿在650℃就可相变为纳米级介孔金红石,700℃金红石的结晶度为99.95%,颗粒尺寸为25-100nm,比表面积(BET)高达112m2/g。成本约为其他方法的50%以下。该纳米级介孔TiO2可用于纳米组装材料、高浓度难降解工业废水的光催化剂、太阳能电池、电子陶瓷、复合材料、紫外屏蔽材料等。


图1是实施例2中糖脂系生物表面活性剂槐糖脂乳化液的圆形或椭圆形球丝酵母细胞结构的光学显微镜照片(400倍)。
图2是实施例2中无机盐阳离子Ti4+吸附在槐糖脂球丝酵母细胞壁上的光学显微镜照片(400倍)。
图3是实施例2中500℃煅烧后锐钛矿的透射电镜照片(27万倍)。
图4是实施例2中700℃煅烧后金红石的透射电镜照片(10万倍)。
图5是实施例2中500℃煅烧后锐钛矿的X射线衍射图谱,纵坐标为衍射强度,横坐标为衍射角。
图6是实施例2中700℃煅烧后金红石的X射线衍射图谱,纵坐标为衍射强度,横坐标为衍射角。
具体实施例方式
实施例1.
将150ml的6.7g/L(临界胶束浓度)的糖脂系生物表面活性剂槐糖脂球丝酵母水溶液在室温下加糖0.5g搅拌、乳化20分钟,得到乳化液A,然后,将50ml的0.4mol/L的Ti(SO4)2溶液,以每分钟10滴的速度滴加到乳化液A中,继续磁力搅拌30分钟,让Ti4+能充分的吸附在生物细胞的纳米泡囊结构中。以每分钟5滴速度缓慢滴加1mol/L氨水,直至PH=7,继续磁力搅拌2h,让细胞结构部分矿化沉积,然后静置2h,高速离心分离,水洗、醇洗各两次,除去SO42-和NH4+以及H2O。最后将沉淀物在干燥箱中80℃烘干2h后,以5℃/min的升温速度,分别于400℃和700℃热处理2h,分别的介孔锐钛矿和介孔金红石。其锐钛矿TiO2的颗粒尺寸为10-25nm,其介孔平均尺寸为3-11nm,BET高达220m2/g。金红石的颗粒尺寸为52-120nm,BET高达62m2/g。
实施例2.
将100ml的6.7g/L(临界胶束浓度)的糖脂系生物表面活性剂槐糖脂球丝酵母水溶液在室温下加糖0.5g,搅拌乳化20分钟后的乳化液A.将50ml的0.5mol/L TiCl4溶液,以每分钟10滴的速度滴加到乳化液A中,继续磁力搅拌30分钟,让Ti4+能充分的吸附在生物细胞的纳米泡囊结构中。以每分钟5滴速度缓慢滴加1mol/L氨水,直至PH=7,继续磁力搅拌2h,让细胞结构充分矿化沉积,然后静置2h,高速离心分离,水洗、醇洗各两次,除去Cl-和NH4+以及H2O。最后将沉淀物在干燥箱中80℃烘干2h后,以5℃/min的升温速度,分别于500℃和700℃热处理2h,分别得介孔锐钛矿和介孔金红石。其锐钛矿TiO2的颗粒平均尺寸为8-20nm,其介孔平均尺寸为3-15nm,BET高达280m2/g,金红石的颗粒平均尺寸为25-100nm,BET高达112m2/g。
实施例3.
如实施例1所述,所不同的是热处理的升温速度为10℃/min,热处理温度为450℃和750℃。其锐钛矿TiO2的颗粒尺寸为12-31nm,其介孔平均尺寸为5-13nm,BET高达180m2/g。金红石的颗粒尺寸为62-110nm,BET高达56m2/g。
实施例4.
如实施例2所述,所不同的是热处理的升温速度为10℃/min,热处理温度为450℃和750℃。其锐钛矿TiO2的颗粒平均尺寸为8-25nm,其介孔平均尺寸为4-10nm,BET高达250m2/g,金红石的颗粒平均尺寸29-110nm,BET高达102m2/g。
实施例5.
如实施例2所述,所不同的是生物表面活性剂为磷脂系生物表面活性剂卵磷脂,其浓度为0.0014g/L,但不加糖。其锐钛矿TiO2的颗粒平均尺寸为18-70nm,其介孔平均尺寸为3-10nm,,金红石的颗粒平均尺寸为85-180nm。
实施例6.如实施例1所述,所不同的是生物表面活性剂为青霉孢子酸。
实施例7.如实施例1所述,所不同的是生物表面活性剂为明胶。
权利要求
1.介孔纳米粉体TiO2的仿生合成方法,其特征在于,步骤如下(1)将生物表面活性剂于常温常压下在水溶液中发酵,形成生物表面活性剂的球丝酵母水溶液,加入糖助剂0-0.1g/L,搅拌,室温乳化20-60分钟,形成临界胶束浓度的乳化液A;(2)在磁力搅拌的作用下,将含有Ti4+的无机溶液,按每分钟2-10滴的滴加速度加到上述乳化液液体A中,让Ti4+能够充分吸附到生物活性剂细胞表面的阴离子群上,TiO2含量控制在50~120g/L,常温下磁力搅拌0.5~1小时后,得溶液B;(3)室温下将氨水按每分钟1-5滴的速度滴加到上述B溶液中,调节PH=7-9,继续搅拌2-3h,让生物表面活性剂的细胞结构充分矿化沉淀,得到乳浊液C;(4)将乳浊液C静置1-2h,然后将沉淀物水洗2次,醇洗2次,分别除去NH4+和Cl-或H2O;(5)将水洗和醇洗后的沉淀物在60-80℃干燥2-3h,再将干燥后的沉淀物进行热处理,在煅烧炉中以小于10℃/min的速度升温到300-600℃,除去生物表面活性剂模板,保温1-2h后,即得到介孔锐钛矿TiO2纳米粉体,在600-700℃保温1-2h后得到介孔金红石TiO2纳米粉体。
2.如权利要求1所述的介孔纳米粉体TiO2的仿生合成方法,其特征在于,所述的含Ti的原料选自硫酸钛、氯酸钛、硝酸钛、柠檬酸钛、氢氧化钛或氧化钛之一或组合。
3.如权利要求1所述的介孔纳米粉体TiO2的仿生合成方法,其特征在于,所述的生物表面活性剂是糖脂系、酰基缩氨系、磷脂系、脂肪酸系、蛋白质系表面活性剂之一或组合,加入量为其临界胶束浓度的1-10倍。
4.如权利要求1所述的介孔纳米粉体TiO2的仿生合成方法,其特征在于,所述糖脂系生物表面活性剂为鼠李糖脂、海藻糖脂或槐糖脂,其中槐糖脂是球丝酵母或假丝酵母在葡萄糖和正构烷烃或长链脂肪酸中培养时产生的。
5.如权利要求1所述的介孔纳米粉体TiO2的仿生合成方法,其特征在于,所述磷脂系生物表面活性剂为卵磷脂或由硫磺细菌发酵培养的磷脂。
6.如权利要求1所述的介孔纳米粉体TiO2的仿生合成方法,其特征在于,所述脂肪酸系生物表面活性剂为覆盖霉菌酸或青霉孢子酸。
7.如权利要求1所述的介孔纳米粉体TiO2的仿生合成方法,其特征在于,所述蛋白质系生物表面活性剂为明胶或用胶原蛋白质水解产物与精氨酸反应的缩合物。
全文摘要
介孔纳米粉体TiO
文档编号C01G23/00GK1762828SQ200510044588
公开日2006年4月26日 申请日期2005年9月13日 优先权日2005年9月13日
发明者何文, 张旭东, 陈嘉川, 张川江 申请人:山东轻工业学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1