一种复合氧化物载氧体在化学链循环制氢中的应用和制备的制作方法

文档序号:3441006阅读:263来源:国知局
专利名称:一种复合氧化物载氧体在化学链循环制氢中的应用和制备的制作方法
技术领域
本发明涉及一种复合金属氧化物载氧体在化学链循环制氢中的应用和制备,属于化学链制氢领域的催化剂技术。
背景技术
化学链燃烧(chemical looping combustion, CLC)是一种新颖的燃烧方式,燃料不直接与空气接触,以金属氧化物为载氧体,在一定的温度下载氧体在空气中进行氧化反应,结合氧;然后与燃料气进行还原反应,释放氧。气相反应产物只有(X)2和H2O(气),凝结出水,得到高纯C02。化学链燃烧过程中CO2不会被空气中的氮气稀释,故可在没有能量损失的前提条件下实现(X)2分离。有关化学循环燃烧法的完整描述可见于法国专利申请 02-14,071 和 04-08,549。载氧体作为媒介,在两个反应器之间进行循环,不停地把空气反应器中的氧和反应生成的热量传递到燃料反应器进行还原反应,因此载氧体的性质直接影响了整个化学链燃烧的运行。目前,主要研究的载氧体是金属载氧体,包括i^eALCcKCiuMruCd等,载体主要有A1203、TiO2, MgO、SiO2, YSZ等,还有少量的非金属氧化物如CaSO4等。在化学链燃烧过程中,载氧体处于不断的失氧-得氧状态中,所以载氧体中氧的活泼性是非常重要的。相对而言,载氧体 Ni0/NiAl204 (CH0 P etc. Fuel, 2004,83 (9)), Fe2O3Al2O3 (MATTISSONT etc. Fuel,2001,80(13))和 Co0-Ni0/YSZ(JIN H G etc. Energy Fuels,1998,12 (6))等综合性能较好,但存在反应床层压降大、载氧体孔径小、载氧率有限、循环反应性较低、无法承受较高的反应温度、金属氧化物在载氧体中分散度不高等不足。氢气作为无污染、环境友好的经济性能源受到了密切的关注,有着广泛的用途。鉴于化学链燃烧法的(X)2内分离特点,应用化学链燃烧法制氢也成为了当前的一个研究热点。 与CLC过程类似,以水蒸气代替空气作为氧化剂引入空气反应器来完成载氧体的再生,同时水蒸气也被还原产生氢气。当前,世界上很多研究组包括日本的Hatano对以聚乙烯等固体废弃物为燃料NiO和F^O3等为载氧体、韩国Son等人对以CH4为燃料NiO和狗203为载氧体、美国的Fan L-S教授研究组对以煤为燃料的!^e2O3为载氧体等的CLC制氢过程进行了研究。

发明内容
针对现有技术的不足,本发明提供了一种载氧率高、活性高、稳定性好的用于化学链制氢技术的载氧体及其制备方法和应用。本发明复合氧化物载氧体在化学链循环制氢中的应用,所述的复合氧化物载氧体是具有钙钛矿结构的复合金属氧化物AB’ xBh03,其中A为稀土金属镧,B’为掺杂金属镍,B 为过渡金属铁,0 < χ < 1。本发明应用中,具有钙钛矿结构的复合金属氧化物载氧体在燃料反应器中的反应温度为600 1200°C,在氧化反应器中的反应温度为600 1200°C,可以使用的燃料可以固态燃料也可以是气态燃料,优选后者。上述的复合金属氧化物载氧体可以是球形、条形、微球等适宜形状,颗粒尺寸一般为10μπι-2000μπι,优选的颗粒尺寸为50μπι-500μπι。使用时可以添加适宜的其它无机耐熔组分,如氧化铝、氧化钛、氧化镁、氧化硅等一种或几种。本发明钙钛矿结构的复合金属氧化物采用采用柠檬酸络合法制备。具体过程如下以硝酸铁、硝酸镧、硝酸镍为前驱体,柠檬酸或乙二醇为络合剂,配成溶液并混合搅拌均勻。然后进行水分蒸发,溶液由透明的溶胶转变成粘稠的凝胶,然后干燥、焙烧,焙烧后的样品为具有钙钛矿结构复合金属氧化物。本发明催化剂制备方法中,络合剂可以是柠檬酸或者乙二醇,络合剂与金属离子摩尔比为1 1 5 1,优选为1 1 3 1。配制和搅拌溶液在30 90°C,优选为 50 80°C下进行。搅拌速率为100 500rpm,优选为300 400rpm。搅拌时间为3 8 小时,优选为4 6小时。干燥温度为60 200°C,优选为80 150°C。干燥时间为1 36小时,优选为8 M小时。焙烧温度为400 1000°C,焙烧时间为2_15小时,优选为在 700 900°C下焙烧3 8小时。本发明化学链循环制氢技术的载氧体为具有钙钛矿结构的复合金属氧化物,其通式为AB’ A_x03,A为稀土金属镧,B’为掺杂金属镍,B为过渡金属铁,与现有技术相比本发明具有如下优点1、本发明B位掺杂金属Ni后,B位金属离子电荷、半径发生改变,晶格参数发生变化,形成更多的氧空位,氧空位上的吸附氧也更加活泼,这样不仅提高了载氧体的载氧率, 而且促进了载氧体进行高效的氧化-还原过程,加快载氧体在水蒸气和燃料气中的循环效
率,提高产氢效率。2、本发明载氧体中含有大量的晶格氧,在燃料反应器内,晶格氧可以补充不断消耗的吸附氧;进入氧化反应器后,水蒸气再提供氧给载氧体,因此本发明具有该钛矿结构的 AB ’ xBh03是种优良的化学链循环制氢技术载氧体。3、本发明的载氧体适于在高温下进行反应,热稳定性好、原料价廉易得,制备方法简单,适于工业应用。


图1为本发明实施例1、例2、例3、例4所制得的具有钙钛矿结构的LaNi/ei_x03的 X射线衍射图。图2为本发明实施例1、例2、例3、例4及比较例所制得的具有钙钛矿结构的 LaNixFe1-A 的 TPR 图。
具体实施例方式下面结合实施例进一步说明本发明方法的过程和效果。实施例1取28. 8g Fe (NO3) 3 · 9H20, 2. 3gNi (NO3) 2 · 6H20 放入 500mL 的烧杯中,其中 Fe 与 Ni的摩尔比为0. 9/0. 1,加入IOOmL的蒸馏水,然后把烧杯置于80°C的水浴中,搅拌速度为 400rpm,搅拌至全部溶解。取34. 3g La (NO3) 3 ·6Η20,放入有IOOmL蒸馏水的烧杯中,搅拌至全部溶解。然后把硝酸镧溶液滴加到硝酸铁和硝酸镍的混合溶液中,边滴加边搅拌。取40g 柠檬酸,柠檬酸与金属离子总量摩尔比为1.2 1,放入有IOOmL的烧杯中搅拌至全部溶解, 待上述混合溶液搅拌30分钟后,缓慢的加入柠檬酸溶液,边滴加边搅拌。搅拌5个小时后, 棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110°C的干燥箱中,干燥过夜。然后取出干燥后的钙钛矿前驱物,置于马弗炉中,以3°C /min的升温速率从室温升至400°C, 恒温焙烧2个小时,再以10°C /min的升温速率升至800°C,恒温焙烧3个小时,得到复合金属氧化物载氧体。
实施例2取 22. 4g Fe (NO3) 3 · 9H20,6. 9gNi (NO3) 2 · 6H20 放入 500mL 的烧杯中,其中 Fe 与 Ni 的摩尔比为0. 7/0. 3,搅拌至全部溶解。加入IOOmL的蒸馏水,然后把烧杯置于80°C的水浴中,搅拌速度为400rpm。取34. 3g La(NO3)3 · 6H20,放入有IOOmL蒸馏水的烧杯中,搅拌至全部溶解。然后把硝酸镧溶液滴加到硝酸铁溶液中,边滴加边搅拌。取67g柠檬酸,柠檬酸与金属离子总量摩尔比为1.2 1,放入有IOOmL的烧杯中搅拌至全部溶解,待上述混合溶液搅拌30分钟后,缓慢的加入柠檬酸溶液,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110°C的干燥箱中,干燥过夜。然后取出干燥后的钙钛矿前驱物,置于马弗炉中,以3°C /min的升温速率从室温升至400°C,恒温焙烧2个小时,再以10°C/min的升温速率升至800°C,恒温焙烧3个小时,得到复合金属氧化物载氧体。实施例3取16g Fe(NO3)3 · 9H20,11. 5gNi (NO3)2 · 6H20 放入 500mL 的烧杯中,其中 Fe 与 Ni 的摩尔比为0. 5/0. 5,加入IOOmL的蒸馏水,然后把烧杯置于80°C的水浴中,搅拌速度为 400rpm,搅拌至全部溶解。取;34. 3g La (NO3) 3 ·6Η20,放入有IOOmL蒸馏水的烧杯中,搅拌至全部溶解。然后把硝酸镧溶液滴加到硝酸铁和硝酸镍的混合溶液中,边滴加边搅拌。取40g 柠檬酸,柠檬酸与金属离子总量摩尔比为1.2 1,放入有IOOmL的烧杯中搅拌至全部溶解, 待上述混合溶液搅拌30分钟后,缓慢的加入柠檬酸溶液,边滴加边搅拌。搅拌5个小时后, 棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110°C的干燥箱中,干燥过夜。然后取出干燥后的钙钛矿前驱物,置于马弗炉中,以3°C /min的升温速率从室温升至400°C, 恒温焙烧2个小时,再以10°C /min的升温速率升至800°C,恒温焙烧3个小时,得到复合金属氧化物载氧体。实施例4取6. 4g Fe (NO3) 3 · 9H20,18. 4gNi (NO3) 2 · 6H20 放入 500mL 的烧杯中,其中 Fe 与 Ni的摩尔比为0. 2/0. 8,加入IOOmL的蒸馏水,然后把烧杯置于80°C的水浴中,搅拌速度为 400rpm,搅拌至全部溶解。取34. 3g La (NO3) 3 ·6Η20,放入有IOOmL蒸馏水的烧杯中,搅拌至全部溶解。然后把硝酸镧溶液滴加到硝酸铁和硝酸镍的混合溶液中,边滴加边搅拌。取40g 柠檬酸,柠檬酸与金属离子总量摩尔比为1.2 1,放入有IOOmL的烧杯中搅拌至全部溶解, 待上述混合溶液搅拌30分钟后,缓慢的加入柠檬酸溶液,边滴加边搅拌。搅拌5个小时后, 棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110°C的干燥箱中,干燥过夜。然后取出干燥后的钙钛矿前驱物,置于马弗炉中,以3°C /min的升温速率从室温升至400°C, 恒温焙烧2个小时,再以10°C /min的升温速率升至800°C,恒温焙烧3个小时,得到复合金属氧化物载氧体。。实施例5取28. 8g Fe (NO3) 3 · 9H20, 2. 3gNi (NO3) 2 · 6H20 放入 500mL 的烧杯中,其中!^ 与 Ni的摩尔比为0. 9/0. 1,加入IOOmL的蒸馏水,然后把烧杯置于80°C的水浴中,搅拌速度为 400rpm,搅拌至全部溶解。取34. 3g La (NO3) 3 ·6Η20,放入有IOOmL蒸馏水的烧杯中,搅拌至全部溶解。然后把硝酸镧溶液滴加到硝酸铁和硝酸镍的混合溶液中,边滴加边搅拌。取67g 柠檬酸,柠檬酸与金属离子总量摩尔比为2 1,放入有IOOmL的烧杯中搅拌至全部溶解,待上述混合溶液搅拌30分钟后,缓慢的加入柠檬酸溶液,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110°C的干燥箱中,干燥过夜。然后取出干燥后的钙钛矿前驱物,置于马弗炉中,以3°C /min的升温速率从室温升至400°C,恒温焙烧2个小时,再以10°C /min的升温速率升至800°C,恒温焙烧3个小时,得到复合金属氧化物载氧体。实施例6取28. 8g Fe (NO3) 3 · 9H20, 2. 3gNi (NO3) 2 · 6H20 放入 500mL 的烧杯中,其中 Fe 与 Ni的摩尔比为0. 9/0. 1,加入IOOmL的蒸馏水,然后把烧杯置于80°C的水浴中,搅拌速度为 400rpm,搅拌至全部溶解。取34. 3g La (NO3) 3 ·6Η20,放入有IOOmL蒸馏水的烧杯中,搅拌至全部溶解。然后把硝酸镧溶液滴加到硝酸铁和硝酸镍的混合溶液中,边滴加边搅拌。取IOOg 柠檬酸,柠檬酸与金属离子总量摩尔比为3 1,放入有IOOmL的烧杯中搅拌至全部溶解,待上述混合溶液搅拌30分钟后,缓慢的加入柠檬酸溶液,边滴加边搅拌。搅拌5个小时后,棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110°C的干燥箱中,干燥过夜。然后取出干燥后的钙钛矿前驱物,置于马弗炉中,以3°C /min的升温速率从室温升至400°C,恒温焙烧2个小时,再以10°C /min的升温速率升至800°C,恒温焙烧3个小时,得到复合金属氧化物载氧体。实施例7取 28. 8g Fe (NO3) 3 · 9H20, 2. 3gNi (NO3) 2 · 6H20 放入 500mL 的烧杯中,其中!^ 与 Ni的摩尔比为0. 9/0. 1,加入IOOmL的蒸馏水,然后把烧杯置于80°C的水浴中,搅拌速度为 400rpm,搅拌至全部溶解。取34. 3g La (NO3) 3 ·6Η20,放入有IOOmL蒸馏水的烧杯中,搅拌至全部溶解。然后把硝酸镧溶液滴加到硝酸铁和硝酸镍的混合溶液中,边滴加边搅拌。取40g 柠檬酸,柠檬酸与金属离子总量摩尔比为1.2 1,放入有IOOmL的烧杯中搅拌至全部溶解, 待上述混合溶液搅拌30分钟后,缓慢的加入柠檬酸溶液,边滴加边搅拌。搅拌5个小时后, 棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110°C的干燥箱中,干燥过夜。然后取出干燥后的钙钛矿前驱物,置于马弗炉中,以3°C /min的升温速率从室温升至400°C, 恒温焙烧2个小时,再以10°C /min的升温速率升至900°C,恒温焙烧3个小时,得到复合金属氧化物载氧体。实施例8取28. 8g Fe (NO3) 3 · 9H20, 2. 3gNi (NO3) 2 · 6H20 放入 500mL 的烧杯中,其中!^ 与 Ni的摩尔比为0. 9/0. 1,加入IOOmL的蒸馏水,然后把烧杯置于80°C的水浴中,搅拌速度为 400rpm,搅拌至全部溶解。取34. 3g La (NO3) 3 ·6Η20,放入有IOOmL蒸馏水的烧杯中,搅拌至全部溶解。然后把硝酸镧溶液滴加到硝酸铁和硝酸镍的混合溶液中,边滴加边搅拌。取40g柠檬酸,柠檬酸与金属离子总量摩尔比为1.2 1,放入有IOOmL的烧杯中搅拌至全部溶解, 待上述混合溶液搅拌30分钟后,缓慢的加入柠檬酸溶液,边滴加边搅拌。搅拌5个小时后, 棕色溶液已经脱水变成粘稠状的凝胶,将凝胶取出放入到110°C的干燥箱中,干燥过夜。然后取出干燥后的钙钛矿前驱物,置于马弗炉中,以3°C /min的升温速率从室温升至400°C, 恒温焙烧2个小时,再以10°C /min的升温速率升至1000°C,恒温焙烧3个小时,得到复合金属氧化物载氧体。比较例采用相同方法制备LaFeO3,焙烧条件、性能测试条件同实施例1。实施例9上述实施例及比较例中所制备的催化剂性能评价按如下方法进行。催化剂评价试验在连续流动固定床反应器中进行,取催化剂5ml,与同目数石英砂按体积比1 1混合。燃料气为合成气(30vol% H2,60vo 1% CO, IOvol % N2),流量为120ml/min,反应温度为 750°C,反应压力为常压。还原结束后,切换成氮气,同时温度降至600°C,保持20分钟。然后用注射泵注入水,流量为0. 7ml/min,水先被气化,然后进入预热器,预热器的温度保持在 500°C,再进入反应器。反应10分钟后,再切换成氮气,同时温度升至700°C。再通入燃料气,反应条件同上述还原反应条件一致。采用SP-3820型气相色谱在线分析,5A分子筛柱和 Porapak Q柱,TCD检测。性能评价结果见表1。表1催化剂的反应性能
权利要求
1.一种复合氧化物载氧体在化学链循环制氢中的应用,所述的复合氧化物载氧体是具有钙钛矿结构的复合金属氧化物ΑΒ’ Λ_χ03,其中A为稀土金属镧,B’为掺杂金属镍,B为过渡金属铁,0 < χ < 1。
2.按照权利要求1所述的应用,其特征在于钙钛矿结构复合金属氧化物载氧体是球形、条形、微球,颗粒尺寸为10μπι-2000μπι。
3.按照权利要求1所述的应用,其特征在于钙钛矿结构复合金属氧化物载氧体在燃料反应器中的反应温度为600 1200°C,在氧化反应器中的反应温度为600 1200°C。
4.一种权利要求1至3所述应用中的具有钙钛矿结构复合金属氧化物载氧体的制备方法,制备过程为以硝酸铁、硝酸镍、硝酸镧为前驱体,以柠檬酸为络合剂,配成溶液并混合搅拌均勻;然后进行水分蒸发,溶液由透明的溶胶转变成粘稠的凝胶,然后干燥、焙烧,焙烧后的样品为钙钛矿结构复合金属氧化物。
5.按照权利要求4所述的方法,其特征在于络合剂与金属离子摩尔比为1 1 5 1,配制和搅拌溶液的温度为30 90°C,搅拌时间为3 8小时,干燥温度为60 200°C,干燥时间为1 36小时,焙烧温度为400 1000°C,焙烧时间为2_15小时。
6.按照权利要求4所述的方法,其特征在于络合剂与金属离子摩尔比为1 1 3 1,配制和搅拌溶液的温度为50 80°C,搅拌时间为4 6小时,干燥温度为80 150°C,干燥时间为8 M小时,焙烧温度为600 900°C下,焙烧时间为3 8小时。
全文摘要
本发明公开了一种复合金属氧化物载氧体在化学链循环制氢中的应用和制备,所述的载氧体是具有钙钛矿结构的复合金属氧化物,通式为AB’xB1-xO3,其中A为稀土金属镧,B’为掺杂金属镍,B为过渡金属铁,0<x<1。载氧体在燃料反应器中的反应温度为600~1200℃,在氧化反应器中的反应温度为600~1200℃。制备过程为以硝酸铁、硝酸镍、硝酸镧为前驱体,以柠檬酸为络合剂,配成溶液并混合搅拌均匀;然后进行水分蒸发,溶液由透明的溶胶转变成粘稠的凝胶,然后干燥、焙烧,焙烧后的样品为钙钛矿结构复合金属氧化物。本发明载氧体的载氧率高、活性高、稳定性好。
文档编号C01B3/02GK102442640SQ201010510890
公开日2012年5月9日 申请日期2010年10月12日 优先权日2010年10月12日
发明者倪向前, 张舒冬, 梁皓 申请人:中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1