一种镁铝碳耐火砖及其制备方法与流程

文档序号:11244532

本发明属于耐火材料领域,具体涉及一种镁铝碳耐火砖及其制备方法。



背景技术:

传统铝镁碳质耐火材料中的碳(石墨)含量一般为10~20%。由于石墨具有较高的导热率以及不被熔渣浸润等特点,耐火材料的抗渣蚀性能及抗剥落性能得到大幅度提高。三十多年来,铝铝镁碳质耐火材料被广泛应用于炼钢转炉、电炉、精炼炉炉衬、钢包渣线等部位。

各种随着现代钢铁工业的不断发展,对钢质量的要求越来越高,炉外精炼作为最重要的技术之一被广泛采用,而钢包作为炉外精炼的一个主要设备,其内衬耐火材料所经受的精炼条件也越来越苛刻。目前炼钢厂冶炼炉精炼钢包的包底和包壁(非渣线区域)的工作衬都是采用的复合砖,对复合砖最首要的要求是寿命长,否则经常更换工作内衬,不但影响工作的连续性,而且由于检修停产会造成很大的经济损失。现国内的同类钢包用产品普遍存在寿命低的不足,平均在60~80炉的水平,最主要的原因在于钢包内衬耐火砖会受到熔渣侵蚀,热冲击和机械冲刷,具体损毁方式为渗透和侵蚀造成的结构性剥落和平行于热面的裂纹扩展造成的热剥落。此前使用的铝镁材质耐火砖,对去除钢中夹杂物起不到作用且抗侵蚀性差,容易对钢水造成污染。

洁净钢生产工艺要求耐火材料尽可能减少对钢水的二次污染,因此目前通常采用尽可能降低铝镁碳质耐火材料中的含碳量,使用低碳铝镁碳质耐火材料的方案。但是这个方案具有不足之处,降低铝镁碳质耐火材料的碳含量,势必造成材料的某些性能的下降:如,材料的热导率下降,弹性模量增大,会导致材料的抗热震性能变差;此外,碳含量降低后,熔渣与材料的润湿性增强,材料抵抗熔渣渗透的性能及抗熔渣侵蚀性能也会变差。

因此目前需要一种具有基质结构均匀、抗氧化效果好、抗热震性能强、抗熔渣渗透性优良、抗剥落性能高和抗渣蚀性强的特点的镁铝碳耐火砖。



技术实现要素:

为了解决上述存在的铝镁碳质耐火材料材料抗侵蚀性差,抗热震性能差等问题,提供一种具有基质结构均匀、抗氧化效果好、抗热震性能强、抗熔渣渗透性优良、抗剥落性能高和抗渣蚀性强的特点的镁铝碳耐火砖。

一种镁铝碳耐火砖,其特征在于,包括以下重量份的原料:

镁铝尖晶石60~75份、铝粉10~13份、氮化硼粉4~8份、电熔镁砂粉5~10份、硅粉2~4份、酚醛树脂13~18份、四氯化锆2~6份、直径在20~50微米之间的氧化铝粉4~7份、碳化钛粉2~5份、三氯甲基硅烷10~15份、碳化硅粉5~10份、直径在100~120微米之间的α-氧化铝粉4~6份,鳞片石墨5~10份、莫来石3~4份。

首先本发明采用了不同直径的氧化铝微粉和α-氧化铝粉共同使用的方案,首先使用α-氧化铝是由于其结构稳定,晶体强度大,而氧化铝微粉可以填充在镁铝尖晶石晶体与之间的空隙中,晶体更加细密可以填充进α-氧化铝无法填充的缝隙,便于原料的混合,提高耐火砖内的铝含量,增强晶体之间的结合强度,进而提高耐火砖的抗高温蠕变性、抗高温蠕变性、抗熔渣渗透性、抗剥落性能高和抗渣蚀性。

其次莫来石可以在耐火砖内形成莫来石纤维,莫来石纤维可以与产生的含锆的碳化硅纤维相互连结,同时与耐火砖内部各材料相互连结,因为加入了由莫来石纤维耐火砖可以较高的具有高孔隙率、同时降低了质量和热导率。使用莫来石降低热导率可以缓解本发明为了增强耐火砖抗渣蚀性而加入较多碳材料后所引起的导热性变强而导致使用时能耗增加的问题。同时多孔的结构可以提高耐热性,虽然多孔结构有可能会引起耐火砖在使用时开裂,但在本发明中通过使用莫来石本身所产生的纤维结构和本发明烧制过程中产生的含锆碳化硅纤维结构及酚醛树脂的粘合作用相互连结,相互配合提高了耐火砖的强度和韧性,从而降低了耐火砖开裂的可能性。

另外本发明使用了铝粉和氧化铝及电熔镁砂粉配合使用的方案,便于控制耐火砖内铝和镁的含量,从而提高了产品的合格率。

此外本发明还使用了碳化硅、氮化硼、铝粉、氧化铝粉配合使用的方案,在烧结过程中会在碳化硅中生成碳化硼-铝的复合物,该复合物与含锆碳化硅纤维和莫来石纤维共同形成网状结构,可以加强材料的韧性,耐磨性,导热性和抗冲击强度,同时与二氧化钛共同作用起到改善材料的表面润湿性的作用,可以使得碳化硅和其他原料易于熔渗,从而可以降低反应温度和烧结时间,节约成本。同时反应也会有少量的氮化硅产生,少量的氮化硅可以起到粘结碳化硅晶体从而增强材料的抗热震性的作用。

作为优选,所述的电熔镁砂粉经过雾化处理。

雾化处理是指将电熔镁砂粉高温熔化以后,在惰性气体保护下离心雾化,然后在低温速冷,使镁液滴凝结成球形。首先采用快速冷却工艺,电熔镁砂粉晶粒细小,此外采用雾化工艺,镁粉是球形,具有流动性好的特点。通过雾化处理可以使电熔镁砂粉更均匀地混合在耐火砖内,防止局部镁含量过高或过低影响耐火砖的结构强度及抗热震性及抗高温蠕变性。

作为优选,所述的碳化硅粉经过以下处理:

a将碳化硅在500~600℃下进行煅烧,保温1~2h;

b将煅烧好的碳化硅放入质量分数为5%的稀盐酸中,超声洗涤15~20min,再搅拌2~3h,转速100~200r/min,洗涤完毕后水洗,然后干燥;

c将干燥过后的碳化硅放入质量分数为5%的氨水中,超声洗涤15~20min,再搅拌2~3h,转速100~200r/min,洗涤完毕后水洗,然后干燥。

通过较高温度的煅烧可以去除碳化硅表面上的碳杂质,降低耐火砖的含碳量,这有助于减少杂质,同时降低含碳量可以降低耐火砖的热传导性,减少使用耐火砖时的能耗。同时通过酸洗和碱洗的过程可以碳化硅表面所存在的其他金属杂质,防止由于杂质的加入对耐火砖的性能产生不良影响。

作为优选,所述的酚醛树脂经过以下处理:将酚醛树脂进行真空脱水,然后加入甘油聚醚,搅拌均匀。

甘油聚醚具有优良的稳泡、润湿、渗透、增溶能力。该添加剂能使其他材料均匀地分布在颗粒及石墨的表面,尽可能形成连续网络,从而更好的促进树脂对坯料的包裹作用,使得混合坯料具备高润湿性和高保湿性,可提高耐火砖坯料的混炼质量,可有效防止产生裂纹,有利于成型。

一种镁铝碳耐火砖的制备方法,其特征在于,包括以下步骤:

(1)前处理:将三氯甲基硅烷和四氯化锆混合后加热,冷却后加入甲苯,过滤后在300~350℃下减压蒸馏;

(2)混料:将步骤(1)得到产物与其他原料混合,混合搅拌40~50min,然后困料4~6h,得到混合料;

(3)将混合料压制成型,得到生坯;

(4)热处理:将压制成型的生坯在炉内加热得到成品。

作为优选,在步骤(1)中所述的加热过程中加热温度500~550℃,保温时间6~8h。

在步骤(1)前处理过程中形成了含锆聚硅烷,在步骤(4)过程中含锆聚硅烷在加热过程中发生热转位反应,使侧链上的甲基以亚甲基的形式,导入主链的硅原子之间,形成含锆聚碳硅烷,而且含锆聚碳硅烷会进一步裂解为含锆碳化硅纤维。高温裂解形成的含锆碳化硅纤维在烧结处理时,由于温度的影响,会在表面生成一层致密的二氧化硅,随着高温氧化时间的延长,这层致密二氧化硅逐渐增厚将内部包裹起来,防止进一步氧化,从而增强了耐火砖的抗氧化性,而且含锆碳化硅纤维可以将其他材料粘结起来,增强了本发明的强度和韧性及抗热震性,从而使耐火砖具有优良的抗熔渣渗透性、抗剥落性能高和抗渣蚀性。

作为优选,在步骤(2)中所述的混料的混合过程为先将α-氧化铝、硅粉、铝镁尖晶石放入混料机中混合4~7分钟,然后加入酚醛树脂,进一步混合5~8分钟;再加入鳞片石墨,混合12~18分钟,再加入步骤(1)得到的产物、氮化硼、氧化铝微粉、碳化硅粉、电熔镁砂粉、铝粉、莫来石,并混合20~30分钟。

本发明采用了分步混合的方式进行混料,先将α-氧化铝、硅粉、铝镁尖晶石充分混合然后加入酚醛树脂,可以使材料充分与酚醛树脂混匀使酚醛树脂充分进入材料之间的间隙中,加入石墨后,由于石墨的颗粒较大,所以使用搅拌的时间较长,再加入其余原料在进行搅拌混合,分步混合可以使本发明的基质结构均匀,从而提高本发明的产品合格率,也提高了产品的强度、抗熔渣渗透性、抗剥落性能高和抗渣蚀性。

作为优选,在步骤(4)中所述的加热过程为在600~700℃预热1~2小时后,升温至1200~1300℃加热4~5小时。

在600~700℃的预热过程可以保证含锆聚硅烷在加热过程热转位反应充分进行,充分生成含锆聚碳硅烷,保证了含锆碳化硅纤维的形成。

作为优选,在步骤(4)中所述的加热过程在氮气保护下进行,炉内进行加压使得加热时气压为80~100mpa。

将氮气作为保护气氛可以防止空气对烧结的影响,防止耐火砖在烧制过程中被氧化引起开裂的情况发生。

本发明的有益效果在于:(1)本发明的镁铝碳耐火砖具有基质结构均匀、抗氧化效果好、抗热震性能强、抗熔渣渗透性优良、抗剥落性能高和抗渣蚀性强的特点。(2)本发明提供的制备方法所需的加热时间短,节约成本。

具体实施方式

下面结合具体实施例对本发明作进一步解释:

实施例1

一种镁铝碳耐火砖,包括以下重量份的原料:

镁铝尖晶石60份、铝粉10份、氮化硼粉4份、电熔镁砂粉5份、硅粉2份、酚醛树脂13份、四氯化锆2份、直径在20~50微米之间的氧化铝粉4份、碳化钛粉2份、三氯甲基硅烷10份、碳化硅粉5份、直径在100~120微米之间的α-氧化铝粉4份,鳞片石墨5份、莫来石3份。

首先将电熔镁砂粉高温熔化以后,在惰性气体保护下离心雾化,然后在低温速冷,使镁液滴凝结成球形。

然后对碳化硅粉进行以下处理:

a将碳化硅在600℃下进行煅烧,保温2h;

b将煅烧好的碳化硅放入质量分数为5%的稀盐酸中,超声洗涤20min,再搅拌3h,转速200r/min,洗涤完毕后水洗,然后干燥;

c将干燥过后的碳化硅放入质量分数为5%的氨水中,超声洗涤20min,再搅拌3h,转速200r/min,洗涤完毕后水洗,然后干燥。

然后对所述的酚醛树脂进行以下处理:将酚醛树脂进行真空脱水,然后加入甘油聚醚,搅拌均匀。

然后进行一种镁铝碳耐火砖的制备,制备方法包括以下步骤:

(1)前处理:将三氯甲基硅烷和四氯化锆混合后加热,加热温度500℃,保温时间6h,冷却后加入甲苯,过滤后在350℃下减压蒸馏;

(2)混料:先将α-氧化铝、硅粉、铝镁尖晶石放入混料机中混合7分钟,然后加入酚醛树脂,进一步混合5分钟;再加入鳞片石墨,混合12分钟,再加入步骤(1)得到的产物、氮化硼、氧化铝微粉、碳化硅粉、电熔镁砂粉、铝粉、莫来石,并混合20分钟,然后困料4h,得到混合料;

(3)将混合料压制成型,得到生坯;

(4)热处理:将压制成型的生坯在炉内加热,在600℃预热1小时后,升温至1200℃加热4小时,得到成品且加热过程在氮气保护下进行,炉内进行加压使得加热时气压为80mpa。

实施例2

一种镁铝碳耐火砖,包括以下重量份的原料:

镁铝尖晶石75份、铝粉13份、氮化硼粉8份、电熔镁砂粉10份、硅粉4份、酚醛树脂18份、四氯化锆6份、直径在20~50微米之间的氧化铝粉7份、碳化钛粉5份、三氯甲基硅烷15份、碳化硅粉10份、直径在100~120微米之间的α-氧化铝粉6份,鳞片石墨10份、莫来石4份。

首先将电熔镁砂粉高温熔化以后,在惰性气体保护下离心雾化,然后在低温速冷,使镁液滴凝结成球形。

然后对碳化硅粉进行以下处理:

a将碳化硅在600℃下进行煅烧,保温2h;

b将煅烧好的碳化硅放入质量分数为5%的稀盐酸中,超声洗涤20min,再搅拌3h,转速200r/min,洗涤完毕后水洗,然后干燥;

c将干燥过后的碳化硅放入质量分数为5%的氨水中,超声洗涤20min,再搅拌3h,转速200r/min,洗涤完毕后水洗,然后干燥。

然后对所述的酚醛树脂进行以下处理:将酚醛树脂进行真空脱水,然后加入甘油聚醚,搅拌均匀。

然后进行一种镁铝碳耐火砖的制备,制备方法包括以下步骤:

(1)前处理:将三氯甲基硅烷和四氯化锆混合后加热,加热温度500℃,保温时间6h,冷却后加入甲苯,过滤后在350℃下减压蒸馏;

(2)混料:先将α-氧化铝、硅粉、铝镁尖晶石放入混料机中混合7分钟,然后加入酚醛树脂,进一步混合5分钟;再加入鳞片石墨,混合12分钟,再加入步骤(1)得到的产物、氮化硼、氧化铝微粉、碳化硅粉、电熔镁砂粉、铝粉、莫来石,并混合20分钟,然后困料4h,得到混合料;

(3)将混合料压制成型,得到生坯;

(4)热处理:将压制成型的生坯在炉内加热,在600℃预热1小时后,升温至1200℃加热4小时,得到成品且加热过程在氮气保护下进行,炉内进行加压使得加热时气压为80mpa。

实施例3

一种镁铝碳耐火砖,包括以下重量份的原料:

镁铝尖晶石70份、铝粉11份、氮化硼粉6份、电熔镁砂粉7份、硅粉3份、酚醛树脂15份、四氯化锆4份、直径在20~50微米之间的氧化铝粉5份、碳化钛粉4份、三氯甲基硅烷13份、碳化硅粉8份、直径在100~120微米之间的α-氧化铝粉5份,鳞片石墨8份、莫来石3份。

首先将电熔镁砂粉高温熔化以后,在惰性气体保护下离心雾化,然后在低温速冷,使镁液滴凝结成球形。

然后对碳化硅粉进行以下处理:

a将碳化硅在600℃下进行煅烧,保温2h;

b将煅烧好的碳化硅放入质量分数为5%的稀盐酸中,超声洗涤20min,再搅拌3h,转速200r/min,洗涤完毕后水洗,然后干燥;

c将干燥过后的碳化硅放入质量分数为5%的氨水中,超声洗涤20min,再搅拌3h,转速200r/min,洗涤完毕后水洗,然后干燥。

然后对所述的酚醛树脂进行以下处理:将酚醛树脂进行真空脱水,然后加入甘油聚醚,搅拌均匀。

然后进行一种镁铝碳耐火砖的制备,制备方法包括以下步骤:

(1)前处理:将三氯甲基硅烷和四氯化锆混合后加热,加热温度500℃,保温时间6h,冷却后加入甲苯,过滤后在350℃下减压蒸馏;

(2)混料:先将α-氧化铝、硅粉、铝镁尖晶石放入混料机中混合7分钟,然后加入酚醛树脂,进一步混合5分钟;再加入鳞片石墨,混合12分钟,再加入步骤(1)得到的产物、氮化硼、氧化铝微粉、碳化硅粉、电熔镁砂粉、铝粉、莫来石,并混合20分钟,然后困料4h,得到混合料;

(3)将混合料压制成型,得到生坯;

(4)热处理:将压制成型的生坯在炉内加热,在600℃预热1小时后,升温至1200℃加热4小时,得到成品且加热过程在氮气保护下进行,炉内进行加压使得加热时气压为80mpa。

选用本发明优选实施3作为钢包砖,使用本发明后寿命达到85炉,lf炉处理次数73次,钢包盛钢时间达13500min,残砖厚度为62mm,侵蚀速率为每炉1.05m,钢包寿命较原铝镁碳材质提高44.38%。

然后对实施例3进行检测显气孔率8%,荷重软化温度1780℃,常温耐压强度41mpa,在taber磨耗试验机上以磨轮旋转1000次得到磨耗量为45.3g加热永久线变化(1450℃×2h)/%为0.2。

对于抗热震性的检测,本发明将优选实施例3的材料经过1450摄氏度3小时处理测其抗折强度,抗折强度为17.3mpa然后在1100摄氏度保温20min后再20摄氏度冷水中急冷,反复进行10次,抗折强度为8.4mpa。

所以本发明具有抗热震性能强、抗熔渣渗透性优良、抗剥落性能高和抗渣蚀性强的特点。

再多了解一些
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1