烧结工程弃土膨胀珍珠岩保温装饰一体化板及其制备方法与流程

文档序号:14646814发布日期:2018-06-08 21:07阅读:279来源:国知局

本发明属于建筑材料领域,具体为一种烧结工程弃土膨胀珍珠岩保温装饰一体化板及其制备方法。



背景技术:

建筑耗能已经超过社会总耗能的1/3。提高建筑围护结构的保温隔热性能是降低建筑能耗的有效手段。建筑中常用的有机保温材料如聚苯板(EPS)、挤塑聚苯板(XPS)、聚氨酯板(PU)等虽然导热系数低,保温性能好,但是由于其较差的防火性和耐久性已经无法满足建筑防火和安全的发展需求。无机保温材料如岩棉、膨胀珍珠岩、膨胀蛭石等具有良好的防火性能、化学稳定性和耐久性,已经成为传统有机保温材料的理想替代品。

膨胀珍珠岩保温板是建筑节能领域常用的一种无机保温板材。传统膨胀珍珠岩保温板采用粘结剂与膨胀珍珠岩混合,然后压制成型。为了提高板材强度,制备膨胀珍珠岩保温板时需要大量粘结剂并提高保温板的压缩比,这无疑会增加了保温板的导热系数,降级了保温板的保温性能。另外,传统采用水玻璃为粘结剂直接压制成型的膨胀珍珠岩保温板还具有耐水性差、固化时间长、易受潮返碱等缺点。由于上述原因导致膨胀珍珠岩保温板在建筑节能领域中的应用和推广受到了限制。

发明专利申请CN 104860703 A公开了一种以工程弃土为原料的泡沫砖的制备方法。但是由于该发明申请制备的泡沫砖导热系数仍然偏高,这将限制其在建筑节能领域的推广应用。

发明专利CN103553397B公开了一种具有高强度的膨胀珍珠岩外墙保温板材及其制备方法。发明专利CN 103570328 B公开了一种结合法制造的建筑外墙保温材料的方法。发明专利CN103553544B公开了一种具有低导热系数的膨胀珍珠岩外墙保温板材及其制备方法。这三个发明专利均涉及到采用烧结方法制备膨胀珍珠岩外墙板。但是他们明显的缺点是:(1)采用压制成型制备膨胀珍珠岩板坯,这导致膨胀珍珠岩破碎而影响板的保温性能;(2)未经发泡的无机粘结剂在烧结过程中进一步增加了板的密实度,导致板的导热系数进一步增加;(3)不具备保温装饰一体效果,板材上墙之后还需要抹面、装饰,导致施工工艺繁琐,成本增加。



技术实现要素:

本发明目的是提供一种烧结膨胀珍珠岩保温板及其制备方法,以解决膨胀珍珠岩保温板现有技术的不足。

本发明是通过如下技术方案实现的:

一种烧结工程弃土膨胀珍珠岩保温装饰一体化板,由保温基层和装饰面层组成。

其中,保温基层按以下原材料的重量份数烧制而成:工程弃土50~80份,膨胀珍珠岩50~80份,粘结剂5~10份,发泡剂0.5~1份,稳泡剂2~6份,增强纤维6~8份,助熔剂0.2~0.3份,水30~50份。

装饰面层按以下原材料的重量份数烧制而成:二氧化硅20~70份,氧化锌30~80份,氧化硼5~8份,氧化铝2~4份,氧化锂0.5~2份,着色剂0.5~3份,分散剂0.2~0.3份,消泡剂0.1~0.4份,水20~40份。

上述烧结工程弃土膨胀珍珠岩保温装饰一体化板制备方法如下:

(1)、将工程弃土采用球磨机湿磨0.5~1h,然后105℃烘干至恒重,过200目筛;

(2)、将步骤(1)获得的工程弃土与粘结剂、发泡剂、稳泡剂、增强纤维、助熔剂、水按比例混合,通过化学发泡方式或物理发泡方式获得发泡浆料;

(3)、将步骤(2)的发泡浆料与膨胀珍珠岩均匀混合、包裹,直接注模成型或入模振动成型,固化2~24h,然后拆模获得发泡保温基层板坯;

(4)、将二氧化硅、氧化锌、氧化硼、氧化铝、氧化锂、着色剂、分散剂、消泡剂及水按比例混合,采用球磨机湿磨3~12h,获得装饰面层釉浆;

(5)采用步骤(4)获得的釉浆在步骤(3)获得的保温基层板坯表面施釉;

(6)将步骤(5)获得的板坯入高温炉烧结,烧结温度750~850℃,烧结时间0.5~1h,然后快速降温至500℃,保温0.5h,最后退火至常温,获得烧结工程弃土膨胀珍珠岩保温装饰一体化板。

工程弃土为城市建设中开挖土方无法回填和利用的工程废弃土,包括砂、黄土、粉土、黏土等中的一种或几种混合土。

膨胀珍珠岩还可以是球形闭孔膨胀珍珠岩,玻化微珠,纳米膨胀珍珠岩中的一种,粒径0.1~15mm。其中,纳米膨胀珍珠岩是指通过在膨胀珍珠岩孔洞填充气凝胶复合而合成的纳米多孔材料。

粘结剂为水泥、水玻璃、磷酸、聚乙烯醇中的一种。

物理发泡方式采用的发泡剂是植物发泡剂、动物发泡剂中的一种或两种复合;化学发泡方式采用的发泡剂为双氧水。

稳泡剂可以是明胶、聚丙烯酸钠或者蛋白质稳泡剂。

增强纤维可以是玻璃纤维、莫来石纤维和玄武岩纤维中的一种。

助熔剂可以是玻璃粉,氧化钠,菱镁矿,赤泥中的一种。

着色剂为根据不同的呈色选择金属氧化物和颜料复配。

在实验中发现,本发明具有如下有益效果:传统工艺通过粘结剂粘结、压制并烘干制备的膨胀珍珠岩保温板抗压强度一般在0.3~0.5MPa,导热系数一般在0.045~0.07W/(m·K)。而本发明制备的烧结工程弃土膨胀珍珠岩保温装饰一体化板导热系数≤0.042W/(m·K),抗压强度≥0.60MPa,吸水率≤5%。此外,与现有烧结的膨胀珍珠岩保温外墙板相比,本发明制备的烧结工程弃土膨胀珍珠岩保温装饰一体化板大量利用固体废弃物,并且兼具保温装饰功能,应用于外墙保温可以一次安装完成,省去二次抹灰和装饰施工,经济效益和社会效益显著。产生上述有益效果的原因主要包括以下五个方面:

第一、烧结工程弃土膨胀珍珠岩保温装饰一体化板中工程弃土等固体废弃物占比达50~80%,固废利用率高,充分利用城市建设中开挖而无法回填的工程弃土。

第二、通过发泡注浆成型或入模振动成型技术,避免传统膨胀珍珠岩板由于压制成型带来的大量膨胀珍珠岩破损问题,这会显著减低膨胀珍珠岩保温板的密度和导热系数。

第三、通过预发泡技术获得发泡的保温基层板坯,然后进行烧结,使得膨胀珍珠岩粒间间隙充满高温烧结而成的高强度闭孔陶瓷气泡,这不仅提高了保温板的强度,而且闭孔气泡有效地限制了空气的对流,显著降低基层膨胀珍珠保温板的导热系数。

第四、采用高温烧结技术,使得膨胀珍珠岩颗粒表面玻化,粒间形成闭孔气泡,装饰面层形成釉面,这都会显著降低保温板的吸水率,提高保温板的耐久性。

第五、通过复合玻璃纤维、莫来石纤维和玄武岩纤维,有效提高板材的抗压强度、抗折强度和抗冲击性能。

第六、采用低温釉烧结技术,在烧结前施釉,保温基层和装饰面层一次烧结完成,提高制备效率,降低生产成本。

本发明设计合理,高效利固体废弃物的同时,制备的烧结工程弃土膨胀珍珠岩保温板还兼具防火、保温、装饰一体化功能,具有很好的市场应用及推广价值。

具体实施方式

下面对本发明的具体实施例进行详细说明。

一种烧结工程弃土膨胀珍珠岩保温装饰一体化板,具体实施例见表1、表2、表3和表4所示。

表1所示为各实施例对应的保温基层原材料。表2所示为各实施例对应的保温基层原材料的重量份数。表3所示为各实施例对应的装饰面层原材料的重量份数。表4所示为各实施例对应的烧结温度、烧结时间,以及试验测得的烧结工程弃土膨胀珍珠岩保温装饰一体化板抗压强度和导热系数。

各实施例中烧结工程弃土膨胀珍珠岩保温装饰一体化板的制备方法具体步骤如下:

(1)、将工程弃土采用球磨机湿磨0.5~1h,然后105℃烘干至恒重,过200目方孔筛;

(2)、将步骤(1)获得的工程弃土与粘结剂、发泡剂、稳泡剂、增强纤维、助熔剂、水按比例混合,通过物理发泡方式,高速搅拌获得发泡浆料;

(3)、将步骤(2)的发泡浆料与膨胀珍珠岩均匀混合、包裹,直接注模成型,固化2~24h,然后拆模获得发泡保温基层板坯;

(4)、将二氧化硅、氧化锌、氧化硼、氧化铝、氧化锂、着色剂、分散剂、消泡剂和水按比例混合,采用球磨机湿磨3~12h,获得装饰面层釉浆;

(5)采用步骤(4)获得的釉浆在步骤(3)获得的保温基层板坯表面施釉;

(6)将步骤(5)获得的板坯入高温炉烧结,烧结温度750~850℃,烧结时间0.5~1h,然后以10℃/min快速降温至500℃,保温0.5h,最后退火至常温,获得烧结工程弃土膨胀珍珠岩保温装饰一体化板。

表1各实施例对应的保温基层原材料

注:*膨胀珍珠岩也可以为球形闭孔膨胀珍珠岩、玻化微珠、纳米膨胀珍珠岩中的一种。

表2 实施例对应的保温基层原材料重量份数

表3 施例对应的装饰面层原材料重量份数

表4 烧结膨胀珍珠岩保温板烧结温度、烧结时间及物理力学性能

由表4可知,本实施例制备的烧结煤废膨胀珍珠岩保温装饰一体化板导热系数≤0.042W/(m·K),抗压强度≥0.60MPa,吸水率≤5%。其中,实施例1、实施例4、实施例5制备的保温装饰一体化板性能相对更好;而且,实施例5制备的保温装饰一体化板的导热系数为0.034W/(m·K),抗压强度达到0.9MPa,吸水率低至0.9%,综合性能最优。

本发明实施例制备的烧结工程弃土膨胀珍珠岩保温装饰一体化板采用物理发泡注浆和直接注模成型,结合高温烧结相结合的工艺,显著提高了自身保温性能、力学性能和耐久性,高效利用固体废弃物的同时,还兼具防火、保温、装饰一体化的功能特点。

最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照本发明实施例进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明的技术方案的精神和范围,其均应涵盖权利要求保护范围中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1