稀土掺杂倍半氧化物亚微米X射线成像用单晶薄膜闪烁屏及其制备方法与流程

文档序号:17926430发布日期:2019-06-15 00:26阅读:230来源:国知局
稀土掺杂倍半氧化物亚微米X射线成像用单晶薄膜闪烁屏及其制备方法与流程

本申请涉及一种亚微米x射线成像用单晶薄膜闪烁屏,特别是涉及一种稀土掺杂倍半氧化物亚微米x成像用单晶薄膜闪烁屏及其制备方法,



背景技术:

显微x射线成像技术主要通过闪烁单晶薄膜闪烁屏与x射线源、微光学透镜(物镜和目镜)、电荷耦合器件(ccd)实现的。这种显微成像技术具有亚微米分辨率、探测效率高、数字化程度高、可以实现在线实时检测等优点,在相衬成像、全息成像以及微层析成像等显微x射线成像领域中发挥重要作用。

而闪烁屏是决定x射线成像系统的空间和时间分辨率的关键因素之一。要达到亚微米级的空间分辨率,必须要有一个透明的、对可见光不散射的、厚度在1-10微米左右、具有高光输出的闪烁屏,采用闪烁单晶薄膜做成的闪烁屏。其中,lu2o3:eu由于密度较高,掺eu时在611nm的窄带发射与ccd响应曲线的匹配的优点,成为人们研究的热点。(journalofsynchrotronradiation.(2006).13,180-194),lu2o3的熔点为2400℃,单晶薄膜的制备困难,目前lu2o3:eu单晶闪烁薄膜的制备主要通过液相外研法获得,存在溶剂杂质污染、发光效率低的问题(博士论文:developmentofnewthinfilmscintillatorsforhigh-resolutionx-rayimaging)。



技术实现要素:

本申请的目的在于克服上述问题或者至少部分地解决或缓减解决上述问题。

根据本申请的一个方面,提供了一种稀土掺杂倍半氧化物亚微米x射线成像用单晶薄膜闪烁屏,其特征在于,它是在合适的单晶衬底上,生长稀土掺杂倍半氧化物单晶薄膜闪烁屏,其结构表述为:

(lu1-x-ymxrey)2o3

其中,0≤x≤1,0<y≤0.3,re代表eu、tb、pr中的一种或多种,m代表sc、y、la、gd、hf中的一种或多种。re表示用作发光中心的稀土,m表示基质的稀土。x,y的取值为摩尔比。

可选地,所述的单晶薄膜闪烁屏中,所述单晶衬底为lu2o3、y2o3、sc2o3或ysz。

根据本申请的另一个方面,提供了一种制备所述的稀土掺杂倍半氧化物亚微米x射线成像用单晶薄膜闪烁屏的方法,包括下列步骤,

步骤100,原材料准备:准备氧化物的金属有机源,根据化学式(lu1-x-ymxrey)2o3,选定x,y,配备原料;

步骤200,称量原料:按所述步骤100中所确定的摩尔百分比,称量各原料;

步骤300,衬底准备:根据晶格匹配的原则,选择合适的单晶衬底;

步骤400,生长闪烁单晶薄膜:在所述步骤300选定的单晶衬底上采用激光增强化学气相沉积进行闪烁单晶薄膜生长。

可选地,所述步骤400中采用激光增强化学气相沉积的装置,包括:

cvd腔体(5),cvd腔体(5)是制备(lu1-x-ymxrey)2o3薄膜的反应室,所述cvd腔体(5)具有两个伸出部;

喷嘴(9),一端伸入所述cvd腔体(5),另一端伸出所述cvd腔体(5),用于向所述cvd腔体(5)中输送气体及原料;

流量计(1),对应于氩气输入管道及氧气输入管道,每一流量计(1)安装在对应的输入管道处,对应的输入管道与所述喷嘴(9)相连,每一流量计(1)用于对于气体的质量流量进行精密测量和控制;

原料罐(2),安装在氩气输入管道中,原料罐(2)用于放置已经配备好的原料;

光学窗口(4),对应安装在所述cvd腔体(5)的两个伸出部处,每一光学窗口(4)用于通过激光;

光学透镜(3),位于任一光学窗口(4)的光照路径出,用于透过激光;

样品台(6),布置在所述cvd腔体(5)内部,样品台(6)用于固定基片(7);

基片(7),基片(7)用于放置衬底;

高温计(8),安装在另一光学窗口(4)处,高温计(8)用于记录所述cvd腔体(5)温度;和

真空泵(10),安装在所述cvd腔体(5)处,真空泵(10)用于使所述cvd腔体(5)内部处于真空状态;

其中,氩气通过所述流量计(1)将原料蒸发气通过喷嘴(9)到达所述cvd腔体(5),氧气通过喷嘴(9)到达cvd腔体(5),激光通过光学透镜(3)和与其对应的光学窗口(4)照射到放置衬底的基片(7)上。

可选地,所述的制备方法中,采用激光增强化学气相沉积进行单晶薄膜生长的步骤如下:

①将衬底晶片放置在所述基片(7)上,再将所述基片(7)置入样品台(6),开激光,激光通过所述光学透镜(3)和所述光学窗口(4)照射到所述基片(7)上,调整所述样品台(6),使得所述基片(7)上的衬底晶片可以完全暴露在激光下;

②使用所述真空泵(9)抽气,使得所述cvd腔体(5)处于真空状态;

③打开冷水机,加热所述基片(7)至第一温度;

④在所述基片(7)的温度超过第二温度的时候,加热所述喷嘴(9)及输入管道,其中,所述喷嘴(9)及输入管道加热的温度高于所述原料罐(2)的温度;

⑤在所述基片(7)的温度超过第三温度的时候,加热所述原料罐(2),所述原料罐(2)的温度设置为第四温度,其中,所述第四温度低于所述第二温度,所述第二温度低于所述第三温度,所述第三温度等于或低于所述第一温度;

⑥在所述基片(7)的第一温度、所述喷嘴(9)的温度、输入管道的温度和所述原料罐(2)的第四温度达到预期温度的时候,通过流量计(1)开始通氧气,与此同时设置所述cvd腔体(5)的压力;

⑦打开激光,激光的功率设定为600~950w,观察打开激光后是否存在电流,在打开激光后的温度稳定下来后,开始通过流量计(1)通入氩气;

⑧满足前述条件都达到后,开始制备所需要的(lu1-x-ymxrey)2o3单晶薄膜,生长的时间为30~50min,生长的时间结束后,停止激光辐照和cvd的所述原料罐(2)、输入管道、所述喷嘴(9)和所述样品台(6)的加热,完成(lu1-x-ymxrey)2o3闪烁单晶薄膜的制备。

可选地,所述第一温度设定为900~1100℃,所述第二温度为400℃,所述第三温度900℃,所述第四温度185℃。

可选地,所述喷嘴(9)及输入管道加热的温度比原料罐(2)的温度高50℃左右。

可选地,所述氧气的流量范围在50~190sccm。

可选地,所述cvd腔体(5)的压力设置为600~1000pa。

可选地,通入氩气的流量范围为50~190sccm。

本申请与现有技术相比,一方面本申请的单晶薄膜闪烁屏(lu1-x-ymxrey)2o3(0≤x≤1,0<y≤0.3)具有重密度(其中lu2o3密度达9.42g/cm3),eu在611nm的窄带发射与ccd响应曲线的匹配;另一方面,本申请的制备方法不存在原料污染的问题,单晶薄膜质量高,光学性质和闪烁性能高。

故本申请的单晶薄膜闪烁屏可以广泛应用于科学研究、医疗、安检、工业等领域中。

根据下文结合附图对本申请的具体实施例的详细描述,本领域技术人员将会更加明了本申请的上述以及其他目的、优点和特征。

附图说明

后文将参照附图以示例性而非限制性的方式详细描述本申请的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:

图1是本申请制备(lu1-x-ymxrey)2o3(0≤x≤1,0<y≤0.3)闪烁屏所用的激光增强化学气相沉积装置示意图;

图2是本申请制备(lu0.9eu0.1)2o3/ysz(100)单晶薄膜样品照片。

具体实施方式

本申请的稀土掺杂倍半氧化物亚微米x成像用单晶薄膜闪烁屏,是采用激光增强化学气相沉积技术在未掺杂(lu1-xmx)2o3(式中0≤x≤1,m代表sc、y、la、gd、hf的一种或多种)的衬底片(厚的约为5毫米~10毫米)上生长一层厚度为3~10微米的掺杂氧化镥单晶薄膜(lu1-x-ymxrey)2o3(其中re代表eu、tb、pr的一种或多种,m代表sc、y、la、gd、hf的一种或多种),从而制备出可用于x射线成像的单晶薄膜闪烁屏(lu1-x-ymxrey)2o3/(lu1-xmx)2o3(0≤x≤1,0<y≤0.3)。本申请的单晶薄膜闪烁屏可以广泛应用于科学研究、医疗、安检、工业等领域中。

图1是本申请制备(lu1-x-ymxrey)2o3(0≤x≤1,0<y≤0.3)闪烁屏所用的激光增强化学气相沉积结构示意图。图2是本申请制备(lu0.9eu0.1)2o3/ysz(100)单晶薄膜样品照片。

实施案例1:(lu0.9eu0.1)2o3/ysz(100)闪烁屏

如图1所示,所选用的激光增强化学气相沉积如图1所示的装置。在原料罐2按照上述制备工艺将有机物按(lu(dpm)3:eu(dpm)3=90at%:10at%)进行称量配料,共1g,混合均匀后倒入罐源并放入原料罐2。将尺寸为10×10×0.5mm的ysz(100)单晶衬底置于基片7。随后把基片7置于样品台6,调整样品台6使其在激光下。用真空泵10使cvd腔体5处于真空。加热基片7到1100℃,基片7的加热速度不能超过10℃/min。在基片7超过400℃时,开始加热喷嘴9及输入管道。基片7超过900℃开始加热原料罐2,原料罐2温度设置为185℃。喷嘴9及输入管道温度比原料罐2温度高50℃左右。当基片7,喷嘴9及输入管道,原料罐2温度达到设置温度的时候,开始通入氧气,氧气流量范围为50~190sccm,cvd腔体5的压力设置为800pa。打开激光,激光温度稳定以后开始通氩气,氩气流量范围为50~190sccm。上述步骤完成后开始制备(lu0.9eu0.1)2o3/lu2o3单晶薄膜,生长时间为30~50min。生长完成关闭lcvd装置等待样品冷却。至此获得高质量的(lu0.9eu0.1)2o3/lu2o3单晶薄膜闪烁屏,样品照片如图2所示。

实施案例2:(y0.9tb0.1)2o3/y2o3(100)闪烁屏

如图1所示,将有机物按照(y(dpm)3:tb(dpm)3=90at%:10at%)进行称量配料,共1.5g,混合均匀后倒入罐源并放入原料罐2。将尺寸为10×10×0.5mm的y2o3(100)单晶衬底置于基片7。随后把基片7置于样品台6,调整样品台6使其在激光下。用真空泵10使cvd腔体5处于真空。加热基片7到1100℃,基片7的加热速度不能超过10℃/min。等基片7超过400℃时开始加热喷嘴9及输入管道。基片7超过900℃开始加热原料罐2,原料罐2温度设置为190℃。喷嘴9及输入管道温度比原料罐2温度高50℃左右。当基片7,喷嘴9及输入管道,原料罐2温度达到设置温度的时候,开始通入氧气,氧气流量范围为50~190sccm,cvd腔体5的压力设置为800pa。打开激光,激光温度稳定以后开始通氩气,氩气流量范围为50~190sccm;上述步骤完成后开始制备(lu0.9tb0.1)2o3/lu2o3单晶薄膜,生长时间为30~50min。生长完成关闭lcvd装置等待样品冷却。至此获得高质量的(y0.9tb0.1)2o3/lu2o3单晶薄膜闪烁屏。

实施案例3:(lu0.95pr0.05)2o3/ysz(100)闪烁屏

如图1所示,将有机物按照(lu(dpm)3:pr(dpm)3=95at%:5at%)进行称量配料,共2g,混合均匀后倒入罐源并放入原料罐2。将尺寸为10×10×0.5mm的ysz(100)单晶衬底置于基片7。随后把基片7置于样品台6,调整样品台6使其在激光下。用真空泵10使cvd腔体5处于真空。加热基片7到1100℃,基片7的加热速度不能超过10℃/min。等基片7超过400℃时开始加热喷嘴9及输入管道。等基片7超过900℃开始加热原料罐2,原料罐2温度设置为200℃。喷嘴9及输入管道温度比原料罐2温度高50℃左右。当基片7,喷嘴9及输入管道,原料罐2温度达到设置温度的时候,开始通入氧气,氧气流量范围为50~190sccm,cvd腔体5的压力设置为800pa。打开激光,激光温度稳定以后开始通氩气,氩气流量范围为50~190sccm。上述步骤完成后开始制备(lu0.95pr0.05)2o3/lu2o3单晶薄膜,生长时间为30~50min。生长完成关闭lcvd装置等待样品冷却。至此获得高质量的(lu0.95pr0.05)2o3/ysz(100)单晶薄膜闪烁屏。

实施案例4:(lu0.85sc0.1eu0.05)2o3/lu2o3(100)闪烁屏

如图1所示,将有机物按(lu(dpm)3:sc(dpm)3:eu(dpm)3=85at%:10at%:5at%)进行称量配料,共2g,混合均匀后倒入罐源并放入原料罐2。将尺寸为10×10×0.5mm的lu2o3(100)单晶衬底置于基片7。随后把基片7置于样品台6,调整样品台6使其在激光下。用真空泵10使cvd腔体5处于真空。加热基片7到1100℃,基片7的加热速度不能超过10℃/min。等基片7超过400℃时开始加热喷嘴9及输入管道。等基片7超过900℃开始加热原料罐2,原料罐2温度设置为200℃。喷嘴9及输入管道温度比原料罐2温度高50℃左右。当基片7,喷嘴及管道,原料罐2温度达到设置温度的时候,开始通入氧气,氧气流量范围为50~190sccm,cvd腔体5的压力设置为800pa。打开激光,激光温度稳定以后开始通氩气,氩气流量范围为50~190sccm。上述步骤完成后开始制备(lu0.85sc0.1eu0.05)2o3/lu2o3单晶薄膜,生长时间为30~50min。生长完成关闭lcvd装置等待样品冷却。至此获得高质量的(lu0.85sc0.1eu0.05)2o3/lu2o3单晶薄膜闪烁屏。

实施案例5:(lu0.75sc0.14y0.1eu0.01)2o3/lu2o3(100)闪烁屏

如图1所示,将有机物按(lu(dpm)3:sc(dpm)3:y(dpm)3:eu(dpm)3=75at%:14at%:10at%:1at%)进行称量配料,共2g,混合均匀后倒入罐源并放入原料罐2。将尺寸为10×10×0.5mm的lu2o3(100)单晶衬底置于基片7。随后把基片7置于样品台6,调整样品台6使其在激光下。用真空泵10使cvd腔体5处于真空。加热基片7到1100℃,基片7的加热速度不能超过10℃/min。等基片7超过400℃时开始加热喷嘴9。等基片7超过900℃开始加热原料罐2,原料罐2温度设置为200℃。喷嘴9温度比原料罐2温度高50℃左右。当基片7,喷嘴9及管道,原料罐2温度达到设置温度的时候,开始通入氧气,氧气流量范围为50~190sccm,cvd腔体5的压力设置为800pa。打开激光,激光温度稳定以后开始通氩气,氩气流量范围为50~190sccm。上述步骤完成后开始制备单晶薄膜,生长时间为30~50min。生长完成关闭lcvd装置等待样品冷却。至此获得高质量的(lu0.75sc0.14y0.1eu0.01)2o3/lu2o3(100)单晶薄膜闪烁屏。

实施案例6:(lu0.9eu0.05tb0.05)2o3/lu2o3(100)闪烁屏

如图1所示,将有机物按(lu(dpm)3:eu(dpm)3:tb(dpm)3=90at%:5at%:5at%)进行称量配料,共2g,混合均匀后倒入罐源并放入原料罐2。将尺寸为10×10×0.5mm的lu2o3(100)单晶衬底置于基片7。随后把基片7置于样品台6,调整样品台6使其在激光下。用真空泵10使cvd腔体5处于真空;加热基片7到1100℃,基片7的加热速度不能超过10℃/min。等基片7超过400℃时开始加热喷嘴9。等基片7超过900℃开始加热原料罐2,原料罐2温度设置为200℃。喷嘴9温度比原料罐2温度高50℃左右。当基片7,喷嘴9,原料罐2温度达到设置温度的时候,开始通入氧气,氧气流量范围为50~190sccm,cvd腔体5的压力设置为800pa。打开激光,激光温度稳定以后开始通氩气,氩气流量范围为50~190sccm。上述步骤完成后开始制备单晶薄膜,生长时间为30~50min。生长完成关闭lcvd装置等待样品冷却。至此获得高质量的单晶闪烁屏(lu0.9eu0.05tb0.05)2o3/lu2o3(100)。

以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1