炔加氢方法

文档序号:3552354阅读:1050来源:国知局
专利名称:炔加氢方法
背景技术
人们正在寻找在丁二烯的存在下具有持久催化剂稳定性的附加优点的C4-炔的选择性加氢的方法。
丁二烯是用于生产高分子量聚合物的重要原材料,并且广泛用于制备合成橡胶,包括丁苯橡胶、丁腈橡胶、布纳S橡胶和反式聚丁二烯橡胶,和涂料中的己二腈和苯乙烯丁二烯胶乳。丁二烯通常为来源于蒸汽裂化石脑油的副产物。但是,产品丁二烯经常包含杂质,所述杂质在将丁二烯用作原材料之前必须除去。主要的杂质为炔,包括乙基乙炔、甲基乙炔和乙烯基乙炔。过去已使用两种方法用以除去炔使用溶剂提取蒸馏以选择性吸收炔,或炔选择性加氢。
在使用选择性加氢的过程中,含铜催化剂复合物已获得了成功。US-A-4,493,906公开了1600μm(1/16英寸)挤出物形式的炔选择性加氢用含铜催化剂复合物。US-A-4,440,956公开了作为1/8英寸(3mm)球粒的催化剂。US-A-3,912,789和US-A-3,218,268公开了作为3/16英寸片剂的催化剂。US-A-3,751,508公开了作为3mm片剂(1/8英寸片剂)的催化剂。与具有1/16英寸(1600μm)直径的颗粒的相似催化剂相比,已发现微球体催化剂具有改善的稳定性和选择性。也已发现含铜催化剂复合物具有改善的催化剂性能,其中至少70重量%的铜和可选的一种或多种活化剂金属分散于催化剂载体的外部200μm上。最优选催化剂复合物颗粒的平均直径也为800μm(1/32英寸)或更小。
发明概述本发明为一种具有提高的催化剂稳定性的优点的,在含有大量丁二烯的液态烃料流中对C4-炔进行选择性加氢的改善方法。使氢气和烃料流接触催化剂复合物,所述催化剂复合物包括在其上分散有精细分割的铜金属和可选的活化剂金属的无机氧化物载体,所述活化剂金属选自镍、钴、铂、钯、锰及其组合。至少70重量%的铜金属和活化剂金属分散在载体的外部200μm层上。在本发明的具体实施方案中,至少80重量%的铜金属分散在载体的外部200μm层上。在本发明的另一个具体的实施方案中,使氢气和烃料流接触平均直径为800μm(1/32英寸)的球形催化剂复合物。催化剂复合物包括在其上分散有精细分割的铜金属和可选的活化剂金属的无机氧化物载体,所述活化剂金属选自镍、钴、铂、钯、锰。
附图简述通过比较本发明的催化剂与三个参比催化剂随时间的变化,附图描述了在实施例3中进行的提高稳定性试验的结果。

图1和图2分别表示乙烯基乙炔和总的炔的重量%转化率。图3表示随时间变化的1,3-丁二烯保留率。图4表示氢气的重量%转化率。图5表示氢气炔的用量比(消耗的氢气摩尔数除以消耗的炔摩尔数)。图6表示对聚合副产物的选择性。
发明详述本发明是一种在大量丁二烯的存在下通过将烃与负载的催化剂复合物接触对C4-炔进行选择性加氢的方法。在一个实施方案中,至少50重量%优选至少70重量%、更优选至少80重量%、最优选88重量%的活化催化剂位于载体的外部200μm层上。在本发明的另一个实施方案中,载体为球形的且平均直径少于800μm(1/32英寸)。本发明还减少了不希望的高分子量聚合副产物的产生,从而延长了催化剂的稳定性并提高了催化剂的选择性。本文所用的术语“C4-炔”的意思是包括乙烯基乙炔、乙基乙炔和甲基乙炔。乙烯基乙炔加氢生成1,3-丁二烯,乙基乙炔加氢生成1-丁烯,甲基乙炔加氢生成丙烯。
通常,C4-炔在丁二烯生产过程中作为副产物形成,并且必须在对丁二烯进一步进行加工之前将其除去。此类炔的浓度可为来源于丁二烯生产反应器的产物液态烃料流的0.5至3重量%或更高。液态烃料流通常包含丁二烯(40至50重量%)、丁烯(40至50重量%)、丁烷(5至10重量%)和C4-炔。丙烷和C3-炔也以少量存在。在典型的处理过程中,氢气和烃料流进入固定床反应器。将氢气加入反应器的多种方法是已知的,且任何所述方法均适合用在本发明中。优选的方法是将烃料流与化学计量的氢气混合,然后将混合物加入固定床反应器中。
固定床反应器包含对此类炔选择性加氢的催化有效的催化剂复合物。催化剂复合物必须对此类炔具有“选择性”,从而使所要求的丁二烯的加氢最小化。催化剂复合物包含结合到载体上的精细分割的铜金属和一种或多种活化剂金属。活化剂金属为那些通常以盐的形式加入且其氧化物可由氢气还原的金属。适合的活化剂金属包括镍、钴、锰、铂、钯或其组合。最优选的活化剂金属为镍。铜以氧化形式存在,其量为整个最终催化剂复合物的5至15重量%,活化剂金属以氧化形式存在,其量为整个最终催化剂复合物的0.1至1重量%。
载体可以是难熔无机氧化物材料,如二氧化硅、氧化铝、碳、二氧化钛、氧化镁、氧化锆、粘土、沸石及其组合。载体用氧化铝包括γ-、θ-、δ-和α-氧化铝,优选γ-和θ-氧化铝。适合的沸石包括八面沸石、β-沸石、L-沸石、ZSM-5、ZSM-8、ZSM-11、ZSM-12和ZSM-35。
载体可以具有任意适合的尺寸和形状,包括球形和挤出载体。挤出载体以本领域公知的方法制备。挤出物优选为800μm(1/32英寸)直径的圆柱形。载体还可以为成型载体,如三叶、四叶、不规则成型颗粒、球粒或中空管,上述载体所具有的最大扩散路径为800μm(1/32英寸)或更小。载体还可以为球形的,本方法中使用的典型球形尺寸例如包括1600μm(1/16英寸)和3200μm(1/8英寸)。优选的球形载体具有“微球体”尺寸,包括标称直径为800μm(1/32英寸)或更小的载体材料的球体。所述球体优选通过公知的如美国专利2,620,314中所描述的油滴入技术生产,在此将其引入以作参考。油滴法包括优选通过使铝金属与盐酸反应形成铝的水溶胶;将水溶胶与适合的胶凝剂(如六亚甲基四胺)混合;并将所得到的混合物滴加到维持在高温下的油浴中。混合物液滴留在油浴中,直至凝固并形成水溶胶球体。然后,将球体连续从油浴中取出,并且通常将其在油和氨溶液中进行专门的老化和干燥处理,以进一步改善其物理性能。老化的凝胶球体在70℃至100℃下洗涤、在温度为65℃至260℃下干燥,并在温度为455℃至705℃下煅烧1至20小时。所述处理将水溶胶转化为相应的结晶γ-氧化铝。如果需要θ-氧化铝,那么将水溶胶球体在温度为950℃至1200℃下煅烧。
尽管优选微球体,如上所述的各种载体形状都是适合的。不管载体是否为球形,优选载体具有的有效直径为800μm(1/32英寸)或更小。对于非球形载体而言,有效直径定义为如果将其模制成球体,成型制品所具有的直径。
催化剂金属铜和活化剂金属可通过本领域公知的方法(如浸渍、共沉淀、共凝胶化或离子交换)分散在载体上。将金属铜和活化剂金属加入的优选方法是采用含一种或多种所需要的金属的可分解化合物的溶液浸渍载体,随后进行煅烧。可使用的可分解化合物的例子为硝酸铜、醋酸铜、乙酰丙酮化铜、硝酸镍、碳酸镍、醋酸镍、乙酰丙酮化镍、硝酸锰、醋酸锰、乙酰丙酮化锰、碳酸锰、羰基锰、硝酸钴、醋酸钴、乙酰丙酮化钴、碳酸钴、氯铂酸、四氯化铂、钯酸、氯化钯和硝酸钯。
适合的浸渍技术包括浸入、蒸发和真空浸渍。优选的浸渍方法使用带有蒸汽夹套的旋转蒸发器。在干燥器内将所需要的载体浸入含所需要的金属的浸渍液中,并在其中通过干燥器的转动使载体翻滚。通过在干燥器夹套中使用蒸汽加速与翻滚的载体接触的溶液的蒸发。将所得到的催化剂复合物干燥,然后进行煅烧。
与以前公开的催化剂相比,在本发明中使用微球催化剂复合物具有许多优点。存在于烃料流中的部分炔易于聚合并形成不希望的高分子量副产物,参见Sarkany,A.;Weiss,A.H.;Szilagyi,T.;Sandor P.;Guczi L.,Applied Catalysis,1984,12,373-379。此外,许多聚合发生在催化剂复合物的孔内,聚合产物仍保留在孔内并降低了催化剂的活性。随着催化剂的活性下降,加氢的选择性降低,并且相对于炔的加氢量而言,丁二烯的加氢量升高。通过使用微球催化剂复合物,炔在加氢之前在催化剂内的停留时间减少,从而降低了炔聚合的可能。换句话说,减少炔通过该复合物的扩散路径长度,可使之较快地加氢,并且使炔发生聚合较少。减少炔聚合量带来了增加的催化剂复合物稳定性和提高了的选择性。随着稳定性的增加,催化剂可在较不苛刻的条件下更长期操作,定期再生循环较少且不损失炔转化率。此外,产物流出物具有较高的纯度且不要求强烈的下游纯化处理。当至少50重量%且优选70重量%的铜金属和活化剂金属分散于催化剂载体的外部200μm上时,预期较大直径的催化剂可提供与上述相同的优点。
使用蒸发浸渍技术可将铜和活化剂金属加入到催化剂载体上,以使至少50重量%的金属位于载体的外部200μm层内,优选至少70重量%的金属位于载体的外部200μm层内,更优选至少80重量%的金属位于载体的外部200μm层内。最优选至少88重量%的金属位于载体的外部200μm层内。“层”意思是指基本均匀厚度的层,且”外部”意思是指载体的外层。一般而言,可使用对载体表面有高亲合性的金属络合物或性质上体积大的络合物或通过喷雾浸渍技术(其中浸渍溶液的体积少于填充孔容积所需要的体积)进行表面浸渍。表面浸渍技术描述于US-A-3,259,454、US-A-3,259,589、US-A-3,388,077、Lee,S.;Aris,R.Catal.,Rev.-Sci.Eng.,1985,27(2),207-340;Komiyama,M.,Catal.Rev.-Sci.Eng.,1985,27(2),341-372和Dougherty,R.C.;Verykios,X.E.,Catal.Rev.-Sci.Eng.,1987,29(1),101-150中。
炔选择性加氢使烃与上述催化剂复合物在固定床系统中接触。加热的反应物混合物进入固定床系统的单个床或多个子床。在各床之间的加热装置可使反应物维持在所需要的温度下。固定床系统可以以摇摆床的方式进行操作,其中一个子床在线并接收反应物混合物,同时另一个子床离线。离线的子床可进行再生或可已经完成再生并可以使用。当反应物混合物接触催化剂复合物时,使炔加氢,并使得流出物气流基本不含炔。选择性加氢反应的例子包括乙烯基乙炔加氢形成1,3-丁二烯、乙基乙炔加氢形成1-丁烯,以及甲基乙炔加氢形成丙烯。在反应器流出物中预期的残余炔类的量通常少于15重量ppm。C4-炔选择性加氢条件包括温度20℃至80℃,压力1500kPa(15巴)至5,000kPa(50巴)和液体时空速度0.5至10hr-1。氢气还可以氢气与炔的比率为1.0至5.0加入。
实施例1具体的实施方案包括在含有大量丁二烯的液态烃料流中的C4-炔的选择性加氢的方法,该方法包括使氢气和烃料流与催化剂复合物接触,所述催化剂复合物包括在其上分散有精细分割的铜金属和可选的活化剂金属的无机氧化物载体,所述活化剂金属选自镍、钴、铂、钯、锰及其组合;其中催化剂复合物是球形的且具有的平均直径最高为800μm(1/32英寸)。
氧化铝球体通过油滴法制备。将铝溶解在盐酸中形成铝的水溶胶。当将液滴分散到维持在93℃下的油浴中时,向水溶胶中添加六亚甲基四胺使混合物凝胶化形成球体。液滴留在油浴中,直至它们凝固并形成水溶胶球体。将球体从热油中取出,在130℃下加压老化,采用稀释的氢氧化铵溶液洗涤,在260℃下干燥并在640℃下煅烧1.5小时,得到平均直径为1600μm(1/16英寸)的γ-氧化铝球体。
金属的加入使用蒸发浸渍技术进行。将硝酸铜、硝酸镍、硝酸钴和硝酸锰溶解在水中制备浸渍溶液。然后将所得到的溶液加入到装载有γ-氧化铝球体的旋转蒸发器中。在将混合物冷滚动1小时之后,将蒸汽加入到外部夹套中以将过量的水蒸发。将金属浸渍的催化剂在210℃下干燥1时并在400℃下煅烧2小时。上述过程重复3次以得到三个具有1600μm(1/16英寸)直径球体的参比催化剂,确定为参比1、参比2和参比3。
实施例2再次通过公知的油滴法制备氧化铝球体,所述油滴法包括通过将铝溶解在盐酸中形成铝的水溶胶。当将液滴分散到维持在93℃下的油浴中时,向水溶胶中添加六亚甲基四胺使混合物凝胶化形成球体。液滴留在油浴中,直至它们凝固并形成水溶胶微球体。在将微球体从热油中取出之后,将它们在120℃下加压老化并采用稀释的氢氧化铵溶液洗涤,在205℃下干燥并在640℃下煅烧1.5小时得到平均直径为800μm(1/32英寸)的γ-氧化铝微球体。
金属加入采用实施例1中所述方式进行。对微球催化剂进行分析并与实施例1制备的参比催化剂进行比较。表1显示了与三个参比催化剂的典型结果相比较的微球催化剂的分析结果,所有浓度单位以催化剂复合物的重量百分率计。
表1800μm(1/32英寸)1600μm(1/16英寸)铜重量% 7.1 7.6镍重量% 0.2 0.19钴重量% 0.100.10锰重量% 0.150.14平均堆积密度以g/cc计 0.730.80BET表面积m2/g 179 182实施例3用选择性加氢法对实施例1和2中制备的催化剂进行评价,结果显示与实施例的参比催化剂1、2和3相比,实施例2的微球催化剂具有提高的稳定性和选择性。向反应器中装入实施例2中制备微球催化剂16g,并将其加热至入口温度为60℃。将粗C4烃进料气流以炔的重时空速为0.15的方式加入到反应器中,所述粗C4烃进料气流来源于石脑油裂解装置并含有38重量%的1,3-丁二烯和0.35重量%的乙烯基乙炔以及0.13重量%的乙基乙炔。氢气与炔的摩尔比为2.1。通过气相色谱对流出物进行分析并在图1-6中提供了所得到的数据。在相同条件下将试验重复3次,以测试实施例1的参比催化剂1、2和3。图1-6中提供了所有的分析结果。
图1表示在每一个试验过程中乙烯基乙炔随时间的变化产生的重量%转化率。数据清楚地表明了与参比催化剂相比微球催化剂随时间的变化的提高的稳定性。在生产中实施例2的微球催化剂使乙烯基乙炔的转化率维持在高于90重量%下70小时,而在生产中实施例1的参比催化剂在70小时下显示转化率低于80重量%。类似地,图2表示在生产中实施例2的微球催化剂使总的炔的转化率在70小时下高于78重量%,而在生产中实施例1的参比催化剂显示总的炔的转化率在70小时下低于75重量%。在图3中显示了微球催化剂的提高的选择性,其显示采用微球催化剂具有较高的丁二烯保留率(流出物中丁二烯的重量%除以进料中丁二烯的重量%);图4表示当使用微球催化剂时较低的总氢气转化率,图5表示较低的氢气与炔的用量比。在图4和图5中表示当使用微球催化剂时,通过丁二烯加氢消耗了较少的氢气。图6表示当使用实施例1的微球催化剂时,对聚合副产物或绿油的选择性较低。
权利要求
1.一种对含有大量丁二烯的液态烃料流中的C4-炔进行选择性加氢的方法,其中包括使氢气和烃料流与催化剂复合物接触,所述催化剂复合物包括其上分散有精细分割的铜金属和活化剂金属的无机氧化物载体,所述活化剂金属选自镍、钴、铂、钯、锰及其组合,所述催化剂复合物的平均有效直径最高为800μm(1/32英寸)。
2.权利要求1中的任一项的方法,其中至少70重量%、优选至少80重量%的所述铜金属和所述活化剂金属分散在载体的外部200μm层上。
3.一种对含有大量丁二烯的液态烃料流中的C4-炔进行选择性加氢的方法,其中包括使氢气和烃料流与催化剂复合物接触,所述催化剂复合物包括其上分散有精细分割的铜金属和可选的活化剂金属的无机氧化物载体,所述活化剂金属选自镍、钴、铂、钯、锰及其组合,其中至少70重量%的所述铜金属和所述活化剂金属分散于载体的外部200μm层上。
4.权利要求1、2或3的方法,其中催化剂复合物具有选自球体和挤出物的形状。
5.权利要求4中的任一项的方法,其中选择性加氢条件包括温度为20℃至80℃、压力为1500kPa(15巴)至5,000kPa(50巴)、液体时空速度为0.5至10hr-1和氢气与炔的比率为1.0至5.0。
6.权利要求4中的任一项的方法,其中所述铜金属以催化剂复合物的5至15重量%的量存在,并且所述活化剂金属以催化剂复合物的0.1至1重量%的量存在。
7.权利要求3的方法,其中还包括使用其中浸渍溶液的体积少于填充孔容积所需的体积的喷雾浸渍方法将所述铜金属和所述活化剂金属分散于所述载体上。
全文摘要
本文研究了一种对含有大量丁二烯的液态烃料流中的C
文档编号C07C7/167GK1638867SQ02829293
公开日2005年7月13日 申请日期2002年7月8日 优先权日2002年7月8日
发明者H·阿布雷沃亚, 詹登阳, K·Z·施泰格勒德尔 申请人:环球油品公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1