用于治疗庞帕病的反义寡核苷酸的制作方法

文档序号:11109501阅读:389来源:国知局
背景庞帕病也称为酸性麦芽糖酶缺乏症或糖原贮积症II型,是一种常染色体隐性代谢病症,其损害整个身体的肌肉和神经细胞。它是由溶酶体酸性α-葡萄糖苷酶的缺乏而引起的溶酶体糖原的累积而造成。糖原的累积导致全身的进行性肌无力(肌病)并且影响各种身体组织,尤其是心脏、骨骼肌、肝脏和神经系统。在庞帕病中,一种还被称为酸性麦芽糖酶的蛋白质,酸性α-葡糖苷酶(EC3.2.1.20)是有缺陷的,其是一种溶酶体水解酶。该蛋白质是通常降解糖原、麦芽糖和异麦芽糖中α-1,4和α-1,6键的酶,其为1-3%的细胞糖原的降解所需。这种酶的缺乏导致正常结构糖原在受影响个体的溶酶体和细胞质中积累。溶酶体内过多的糖原累积可能会中断其他细胞器的正常功能,导致细胞损伤。有缺陷的蛋白质是GAA基因在17号染色体的长臂上17q25.2-q25.3(碱基对75689876至75708272)处的突变造成的选择性剪接的结果。该基因跨越约20kb,并包含20个外显子,其中第一外显子是非编码的。虽然超过460种GAA突变已被描述(http://clusterl5.erasmusmc.nl/klgn/pompe/mutations.html),只有少数剪接突变已表征。完全废除GAA酶活性的严重突变引起肥厚性心肌病、一般骨骼肌无力、和呼吸衰竭的典型婴儿病程,在1.5岁内导致死亡。温和的突变保留部分GAA酶活性,导致较温和表型,从儿童至成人发作。在一般情况下,在原代成纤维细胞中更高的残留的酶活性与庞帕病的较晚发病相关联。已为庞帕病开发酶替代疗法(ERT),其中每两周静脉内给予重组人GAA蛋白。这种治疗可以拯救典型婴儿患者的生命并延缓迟发病患者的疾病进展,但疗效各异。IVS1突变,c.-32-13T>G,一个颠换(T至G)突变在该疾病的儿童,幼年和成人中最常见。该突变会中断RNA剪接位点。反义寡核苷酸(反义寡聚化合物),目前正在临床试验中测试其调控剪接的能力。一个经典的例子是杜氏肌营养不良症。在这种疾病中,突变热点存在于特定的外显子中。使用反义寡聚化合物,突变的外显子被跳过,突变被绕开。这将产生一个仍具有部分功能的稍短蛋白质。使用反义寡聚化合物直接诱导跳过外显子,因为显而易见的是,反义寡聚化合物必定靶向相关的剪接位点。另外,在表皮松解(WO2013053819)和莱伯先天性黑朦症状(WO2012168435)中,反义寡核苷酸被用于外显子跳跃。对于庞帕病的IVS1突变,这样的策略是行不通的。在IVS突变导致跳过外显子2,引起规范翻译起始端的删除,并导致无义介导的衰减,因此没有蛋白质被转录。为了使反义疗法在庞帕病的IVS1突变中发挥作用,需要诱导外显子纳入(inclusion)。然而,诱导外显子包含非常困难,因为它依赖于靶向剪接阻抑物序列,其不能可靠预测。对于IVS1突变,阻断剪接阻遏序列的反义寡聚化合物可促进IVS1突变的存在下的外显子2纳入。已知这样的阻抑物序列可以位于基因的任何地方,无论是在外显子(称为外显子剪接沉默子或ESS)或内含子(被称为内含子剪接沉默子或ISS)中,并且可靠近或远离突变或靠近或远离受影响的剪接位点。虽然已经报道一些能够体外调节靶基因剪接的反义化合物,但仍然需要鉴定可调节GAA基因的剪接的化合物。因此,本发明的目的是提供的反义化合物,其能够诱导外显子纳入。本发明的另一个目的是提供一种反义化合物,其能够靶向外显子剪接沉默子(ESS)或内含子剪接沉默子(ISS)。然而本发明的另一个目的是提供一种反义化合物,其能够靶向IVS-1突变。本发明满足了一个或多个所述目的。技术实现要素:在一个方面,本发明涉及靶向SEQIDNO:1的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及选自SEQIDNO:2-33和与其具有至少80%相同性的序列的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及与具有某序列的多核苷酸互补的反义寡聚化合物,所述序列选自SEQIDNO:1,37-40和与其具有至少80%相同性的序列。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及靶向选自c-32-156_-210的序列的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及包含某序列的反义寡聚化合物,所述序列选自SEQIDNO:41-540和SEQIDNO:541-1583和与其具有至少80%相同性的序列。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及与GAA基因的基因组核酸序列互补的反义寡聚化合物和与其具有至少80%相同性的序列,其靶向包含选自下述突变位点的位置:c.-32-13T>G、c.-32-3C>Gc.-32-102T>C、c.-32-56C>T、c.-32-46G>A、c.-32-28C>A、c.-32-28C>T、c.-32-21G>A、c.7G>A、c.11G>A、c.15_17AAA、c.17C>T、c.19_21AAA、c.26_28AAA、c.33_35AAA、c.39G>A、c.42C>T、c.90C>T、c.112G>A、c.137C>T、c.164C>T、c.348G>A、c.373C>T、c.413T>A、c.469C>T、c.476T>C、c.476T>G、c.478T>G、c.482C>T、c.510C>T、c.515T>A、c.520G>A、c.546+11C>T、c.546+14G>A、c.546+19G>A、c.546+23C>A、c.547-6、c.1071、c.1254、c.1552-30、c.1256A>T、c.1551+1G>T、c.546G>T、.17C>T、c.469C>T、c.546+23C>A、c.-32-102T>C、c.-32-56C>T、c.11G>A、c.112G>A、c.137C>T。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及本发明所述的反义寡聚化合物,其治疗庞帕病非常有用。在本发明和/或其实施方式的优选实施方式中,至少一个核苷酸被修饰,优选寡聚化合物被均匀修饰。在本发明和/或其实施方式的优选实施方式中,一个或多个核苷酸的糖经修饰,优选糖修饰是2'-O-甲基或2'-O-甲氧基乙基。在本发明和/或其实施方式的优选实施方式中,一个或多个核苷酸的碱基经修饰。在本发明和/或其实施方式的优选实施方式中,寡聚化合物的主链经修饰,优选所述反义寡聚化合物是吗啉代硫代磷酸酯或吗啉代磷二酰胺。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物是SEQIDNO:12或SEQIDNO:33。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物与GAA的基因组核酸序列互补,其靶向包含选自下述突变位点的位置:c.-32-3C>G、c.17C>Tc.469C>Tc.546+23C>A、c.-32-102T>Cc.-32-56C>Tc.11G>Ac.112G>A、和c.137C>T在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物与选自SEQIDNO:1,37-40的序列互补。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及调控细胞中GAA前体mRNA的剪接的方法,包括:使细胞接触本发明所述的反义寡聚化合物。在另一方面,本发明涉及治疗患者庞帕病的方法,包括给予所述患者有效量的本发明所述的反义寡聚化合物。在另一方面,本发明涉及恢复细胞中GAA的功能的方法,所述方法包括给予本发明所述的反义寡聚化合物的步骤。在另一方面,本发明涉及校正对象细胞,优选肌细胞中异常基因表达的方法,所述方法包括给予对象本发明所述的反义寡聚化合物。在本发明和/或其实施方式的优选实施方式中,所述细胞或患者包含至少一种选自下组的突变:c.-32-13T>G、c.-32-3C>G、c.547-6、c.1071、c.1254和c.1552-30,优选所述细胞或患者包含突变c.-32-3C>G或c.-32-13T>G。在本发明和/或其实施方式的优选实施方式中,完成外显子纳入,优选纳入外显子2。在另一方面,本发明涉及能与GAA基因的基因组核酸序列结合的化合物,其靶向包含选自下述突变位点的位置:c.-32-13T>G、c.-32-3C>Gc.-32-102T>C、c.-32-56C>T、c.-32-46G>A、c.-32-28C>A、c.-32-28C>T、c.-32-21G>A、c.7G>A、c.11G>A、c.15_17AAA、c.17C>T、c.19_21AAA、c.26_28AAA、c.33_35AAA、c.39G>A、c.42C>T、c.90C>T、c.112G>A、c.137C>T、c.164C>T、c.348G>A、c.373C>T、c.413T>A、c.469C>T、c.476T>C、c.476T>G、c.478T>G、c.482C>T、c.510C>T、c.515T>A、c.520G>A、c.546+11C>T、c.546+14G>A、c.546+19G>A、c.546+23C>A、c.547-6、c.1071、c.1254、c.1552-30、c.1256A>T、c.1551+1G>T、c.546G>T、.17C>T、c.469C>T、c.546+23C>A、c.-32-102T>C、c.-32-56C>T、c.11G>A、c.112G>A、c.137C>T。在另一方面,本发明涉及能与选自SEQIDNO:1,37-40的序列结合的化合物。在另一方面,本发明涉及药物组合物,其包含至少一种本发明的反义寡聚化合物或本发明的化合物。在本发明和/或其实施方式的优选实施方式中,所述药物组合物还包含药学上可接受的赋形剂和/或细胞递送试剂。附图的简要说明图1.剪接位点突变的一般分析的工作流。通过使用与侧翼外显子退火的引物的PCR(侧翼外显子PCR)然后进行测序(左部)来检测剪接位点使用的变化。异常拼接产物都采用在每个外显子(外显子-内部qPCR;右部)内退火的引物来定量。图2.健康对照和含共同IVSl剪接位点突变的庞帕病患者的剪接分析。A)健康对照的侧翼外显子PCR分析。外显子编号示于泳道上方。PCR产物通过琼脂糖凝胶上的电泳分离。B)如A),但针对携带IVSl突变的庞帕病患者1。条带旁的数字表示进一步详细分析的产物(见下文)。C)患者1检测出的主要剪接变体的卡通图。上部卡通图表示基因组DNA,其中指示突变。下部卡通图表示本研究中检测到的剪接变体。翻译起始位点示为c.1。外显子示为盒。非编码外显子为棕色,编码外显子为绿色。内含子用线表示。虚线用于表示内含子比图示更长。示出选择性剪接位点。D)外显子-内部qPCR分析。β肌动蛋白用于标准化。健康对照获得的值设为100%。误差棒表示标准差(n=3)。图3.携带杂合突变/缺失的庞帕病患者3和4的剪接分析。A)患者3的侧翼外显子PCR分析。B)患者3检测出的主要剪接变体的卡通图。C)患者4的侧翼外显子PCR分析。D)在患者4中从等位基因1检测到的主要剪接变体的卡通图。E)如D),但针对患者4,等位基因2。F)患者3和4的外显子-内部qPCR分析。误差棒表示标准差(n=3)。图4.携带纯合突变的庞帕病患者的剪接分析。A)患者5的侧翼外显子PCR分析。B)患者5检测出的剪接变体的卡通图。C)患者6的侧翼外显子PCR分析。D)患者6检测出的剪接变体的卡通图。E)患者7的侧翼外显子PCR分析。F)患者7检测出的剪接变体的卡通图。G)患者5、6和7的外显子-内部qPCR分析。误差棒表示标准差(n=3)。图5.庞帕病患者8的复杂剪接变化的分析。A)侧翼外显子PCR分析。B)从外显子8的分析检测出的等位基因1的剪接变体的卡通图。C)从外显子9的分析检测出的等位基因1的剪接变体的卡通图。D)从外显子10的分析检测出的等位基因2的剪接变体的卡通图。E)外显子-内部qPCR分析。误差棒表示标准差(n=3)。图6:表1,在本研究中使用的庞帕病患者的实验室诊断。图7:表2.由所研究的突变引起的剪接事件的总结。患者1-3(蓝色)先前已被表征,并用于试验验证。患者4-8(红色)已在这项研究进行了调查,所有的患者均发现新的剪接事件。图8.患者2的剪接分析。A)侧翼外显子PCR分析。B)外显子-内部PCR分析。图9.患者1序列分析。图10.患者3(A)和4(B-C)的序列分析。图11.A)使用与外显子5退火的正向引物和与外显子8退火的反向引物的患者5外显子7的侧翼外显子PCR分析。为了比较,显示了外显子6和8的标准侧翼外显子PCR反应。应注意,由于NMD,该患者的GAAmRNA水平低。B.患者5序列分析。C)患者6序列分析。D)患者7序列分析。图12.患者8序列分析。图13.在患者8中外显子和用于侧翼外显子PCR分析的PCR引物的位置的卡通图。只显示那些与受剪接突变影响的外显子退火的引物。图14.用五个程序(SpliceSiteFinder-样(SSF)、MaxEntScan(MES)、NNSplice(NNS)、GeneSplicer(GS)和人类剪接查找器(HSF))的剪接预测应用于野生型和突变序列。图15:实施例1中所用的侧翼外显子PCR引物。图16:实施例1中使用的外显子-内部qPCR引物。图17,修饰的U7snRNA,其用于悬垂PCR以快速生成具有反义序列的新U7snRNA载体。图18.修饰的U7snRNA慢病毒系统能够干扰CyPA的剪接,如先前所公开[Liu,S.,等,靶向亲环蛋白A的反义U7snRNA和siRNA对HIV-1增殖的抑制,NucleicAcidsRes,2004.32(12):p.3752-9]。上图:亲环素A外显子4(CyPA-E4)的RT-PCR分析。–(泳道1):未转导的HeLa细胞。+(泳道2):用表达如Liu等人的图1B中描述的U7/E4反义序列的修饰的U7snRNA慢病毒(在图17中描述)转导HeLa细胞。下图:β肌动蛋白mRNA。M:DNA分子量标记。图19.使用U7小核RNA系统对具有反义序列的GAA前体mRNA的内含子1和外显子2中的序列进行筛选的RT-qPCR的RNA表达分析。数字表示根据表1的反义序列位置。图20,使用U7小核RNA系统对具有反义序列的GAA前体mRNA的内含子1和外显子2中的序列进行筛选的RT-PCR的RNA表达分析。数字表示根据表1的反义序列位置。在GAART-PCR中,观察到三种主要产物。上部产物代表外显子2纳入,较低的双体代表外显子2部分跳过(双体的上带)和外显子2的完全跳过(双体的下带)。β-肌动蛋白RT-PCR用作上样对照。图21.使用U7小核RNA系统对具有反义序列的GAA前体mRNA的内含子1和外显子2中的序列进行筛选的GAA的酶活性。数字表示根据表1的反义序列位置。图22.用于无偏内含子1和外显子2筛选的靶向GAA的反义序列的位置的示例。图23.使用人剪接查找器的剪接预测的示例表明针对鉴定的-178序列的矛盾预测,因为增强子和沉默子基序均得到预测。图24.小基因构造和方法以鉴定影响mRNA剪接的序列。A.生成小基因和添加独特限制性位点(红色);B进行以小基因为模板的简并PCR;C.在载体中连接PCR产物并产生克隆;D.在HEK293细胞中转染克隆并通过外显子侧翼RT-PCR和外显子内部qPCR分析RNA的外显子2纳入;E克隆的序列分析。图25.IVS1小基因筛选中鉴定的突变的示例。HEK293细胞用小基因构建体转染并在24小时后分析剪接。A.野生型小基因(WT)和克隆115和97的RT-PCR分析,小基因含有IVS1突变(IVS1),这是在基于无偏小基因的筛选中鉴定的。产物1:野生型mRNA,产物2:部分跳过的外显子2mRNA,产物3:完全跳过的mRNA。B.剪接产物的卡通图。C.RT-qPCR的分析。对于转染效率,值通过新霉素(来自同一质粒骨架从单独的启动子表达)的RT-qPCR分析来标准化;对于细胞数量,使用β-肌动蛋白RT-qPCR分析来标准化。图26.利用反义寡核苷酸在患者1中校正GAA外显子2的异常剪接。图27.利用反义寡核苷酸在患者2中校正GAA外显子2的异常剪接。图28.反义寡聚化合物的特异性。图32:SEQIDNO33(AON2)对患者成纤维细胞系1的影响的时程。图33:GAA外显子纳入的基因组靶序列图34:健康人的对N-乙酰基半乳糖胺4-硫酸酯酶(芳基硫酸酯酶B:ARSB)的剪接试验。图35:具有VI型粘多醣病(拉米氏症)的患者的对N-乙酰基半乳糖胺4-硫酸酯酶(芳基硫酸酯酶B:ARSB)的剪接试验。图36:GAA外显子2纳入的靶序列。图37:无义介导衰减(NMD)途径对纳入GAAmRNA的内含子6的抑制结果。发明详述反义技术背后的原理是,反义化合物(其与靶核酸杂交)调节基因表达的活动,如转录,剪接或翻译。该序列特异性使得反义化合物作为用于靶标确认和基因官能化工具,以及作为治疗剂来选择性地调节参与疾病的基因或基因产物的表达非常有吸引力。虽然某些真核mRNA转录物被直接翻译,但许多含有一个或多个被称为“内含子”的区域,它在被翻译之前从转录物切除。剩余的(因此被翻译的)区域被称为“外显子”,并剪接在一起以形成连续的mRNA序列,得到在外显子接合的部位的外显子-外显子连接点。在正常的剪接产物的异常水平与疾病有关,或异常的剪接产物的异常水平与疾病有关的情况下,靶向外显子-外显子连接点可以非常有用。在异常剪接与疾病相关,或特定剪接产物的过生产与疾病有关的情况下,靶向剪接位点,即内含子-外显子连接点或外显子-内含子连接点也尤其有用。因重排或缺失的异常融合连接点也是适合的目标。通过来自不同基因来源的两个(或更多)的mRNA的剪接过程生产的mRNA转录物被称为“融合转录物”,其也是合适的目标。还已知可使用靶向例如DNA或前体mRNA的反义化合物有效地靶向内含子。经由RNA酶H机制工作的单链反义化合物如寡核苷酸化合物有效靶向前体mRNA。经由基于占用的机制发挥作用的反义化合物可有效用于重定向剪接,因为它们不(例如)引发mRNA的RNA酶H裂解,而是留下完整mRNA,促进所需的剪接产物的产率。本领域还已知替代RNA转录物可以从DNA的相同基因组区域来生产。这些替代转录物通常称为“变体”。更具体的,“前体mRNA变体”是从相同基因组DNA产生的转录物,其与从产自相同基因组DNA中的其它转录物在它们的开始或停止的位置方面不同并且同时包含内含子和外显子序列。在剪接过程中一个或多个外显子或内含子区域或其部分切除后,前体mRNA变体产生较小的“mRNA变体”。因此,mRNA变体是处理的前体mRNA变体并且每个独特的前体mRNA变体必须总是产生独特的mRNA变体作为剪接的结果。这些的mRNA变体也被称为“替代剪接变体”。如果不发生前体mRNA变体的剪接,则前体mRNA变体与mRNA变体相同。本领域还已知变体可以通过使用替代的信号以启动或停止转录来产生并且该前体mRNA和mRNA可具有一个以上的起始密码子或终止密码子。使用替代的起始密码子从前体mRNA或mRNA起源的变体称为前体mRNA或mRNA的“替代起始变体”。使用替代终止密码子的那些转录物被称为前体mRNA或mRNA的“替代终止变体”。替代终止变体的一种特定类型是“聚A变体”,其中产生的多个转录物通过转录机制来自由“聚A终止信号”的一个的替代选择,从而产生终止于独特的聚A位点的转录物。如本文中所使用,“反义机制”是涉及化合物与靶核酸杂交的所有机制,其中杂交的结果或效果是靶标降解或靶标占据,伴随涉及(例如)转录或剪接的细胞机器的同时停止。如本文所用,“包括”及其变形以其非限制性含义使用,表示其后的项目都包括在内,但不排除没有具体提到的项目。另外,动词“组成”可被“基本由……组成”所取代,表示本发明的化合物或附属化合物可包含除了具体鉴定的那些以外的其他组分,所述其他组分并不改变本发明的独特特征。本文使用冠词“一个”和“一种”表示一个或一个以上的(即至少一个)该冠词语法上的宾语。术语“个体”、“患者”和“对象”在本文中可互换使用,指哺乳动物,尤其是灵长动物并且优选人。术语“外显子”指存在于mRNA成熟形式中的基因的一部分。外显子包括的ORF(开放阅读框),即,其编码蛋白的序列,以及5'和3'UTR(非翻译区)。UTR对蛋白质翻译来说很重要。算法和计算机程序可用于预测DNA序列的外显子(Grail、Grail2和Genscan和US20040219522,用于确定外显子-内含子连接点)。如本文所用,术语“蛋白质编码外显子”是编码(或至少部分编码)蛋白质(或蛋白质的一部分)的外显子。mRNA中的第一个蛋白质编码外显子是包含起始密码子的外显子。mRNA中的最后一个蛋白质编码外显子是包含终止密码子的外显子。起始和终止密码子可以使用任何数量的本领域已知的程序来预测。如本文所使用的,术语“内部外显子”指的是在其5'和3'端均由另一个外显子侧接的外显子。对于包括n个外显子的mRNA来说,外显子2至外显子(N-1)是内部外显子。mRNA的第一个和最后一个外显子在本文中称为“外部外显子”。术语“内含子”指的是不翻译成蛋白质并同时存在于基因组DNA和前体mRNA中的基因的一部分,它在成熟mRNA形成中被移除。术语“信使RNA”或“mRNA”指的是从基因组DNA转录的RNA,其携带用于蛋白质合成的编码序列。前体mRNA(前mRNA)从基因组DNA转录。在真核生物中,前体mRNA加工成mRNA,其包括去除内含子,即,5'和3'末端的“剪接”和修饰(例如,多聚腺苷酸化)。mRNA通常包括从5'至3';一个5'帽(修饰的鸟嘌呤核苷酸)、5'端UTR(非翻译区)、编码序列(以起始密码子开始并以终止密码子结束)、3'端UTR,和聚(A)尾。术语“核酸序列”或“核酸分子”或多核苷酸可互换使用,指单链或双链形式的DNA或RNA分子。“分离的核酸序列”是指一种核酸序列,其不再在其从中分离出的天然环境中,例如细胞中的核酸序列。核酸分子中的“突变”是相对于野生型序列的一个或多个核苷酸的变化,例如通过一个或多个核苷酸置换、缺失或插入。“点突变”是单核苷酸的置换,或者单核苷酸的插入或缺失。“序列相同性”和“序列相似性”可以使用全局或局部比对算法在两个肽或两个核苷酸序列之间进行比对来确定。当序列优选通过例如GAP或BESTFIT程序或Emboss程序“针(Needle)”比对(使用默认参数,见下文),共享至少特定最小序列相同性百分比(如以下进一步定义)时,则序列可以称为“基本上相同”或“基本上相似”。这些程序使用Needleman和Wunsch全局比对算法来在整个长度上比对两个序列,最大化匹配数量并最小化间隙数量。通常使用默认参数,其中空位产生罚分=10并且空位延伸罚分=0.5(均用于核苷酸和蛋白质比对)。核苷酸使用的默认打分矩阵是DNAFULL而蛋白的默认打分矩阵是Blosum62(Henikoff和Henikoff,1992,PNAS89,10915-10919)。百分比序列相同性的序列比对和得分可以例如使用计算机程序,如EMBOSS来确定(http://www.ebi.ac.uk/Tools/psa/emboss_needle/)。备选序列相似性或相同性可以通过针对的数据库,如FASTA,BLAST等搜索来确定,但命中应成对检索并比对以比较序列相同性。如果百分比序列相同性是至少70%,75%,80%,85%,90%,95%,98%,99%或更高,优选90%,95%,98%,99%或更高(如通过Emboss“针”使用默认参数来确定,即空位生成罚分=10,空位延伸罚分=0.5,使用评分矩阵DNAFULL用于核酸,Blosum62用于蛋白),则两种蛋白质或两种蛋白质结构域,或两种核酸序列具有“实质序列相同性”。这样的序列在本文中也被称为“变体”,例如反义寡聚化合物的其它变体。应当理解具有实质序列相同性的序列不必具有相同的长度,并在长度可能会有所不同。例如,对于具有相同核苷酸序列但其中的一个在3'-和/或5'-侧具有其他核苷酸,也是100%相同。如本文所用的术语“杂交”一般是用来指在本领域技术人员根据探针序列和靶序列的性质而显见的严谨适当条件杂交核酸。杂交和洗涤的条件是本领域中众所周知的,并且根据所需的严谨性通过改变孵育时间、温度和/该溶液离子强度对条件进行调整是容易实现的。参见例如Sambrook,J.等,《分子克隆:实验室手册》第二版,冷泉港出版社,纽约冷泉港,1989年。条件的选择由被杂交序列的长度,具体是探针序列的长度,核酸的相对G-C含量和允许错配量决定。当需要低程度互补的链之间的部分杂交时,优选低严谨条件。当需要完全或接近完全的互补,优选高严谨条件。对于典型的高严谨条件,杂交溶液含有6XS.S.C.、0.01MEDTA、1XDenhardt溶液和0.5%的SOS。针对克隆的DNA片段,杂交在约68℃进行约3-4小时,针对真核生物总DNA,进行约12至约16小时。对于低严谨性,杂交的温度降低到双链体的解链温度(TM)以下约42℃。已知TM是G-C含量和双链长度以及溶液离子强度的函数。术语“等位基因”是指在特定基因座的基因的任何的一种或多种替代形式,所有这些等位基因涉及在一个特定的基因座处的一种性状或特性。一个等位基因存在于同源染色体对的各条染色体上。这些可能是基因的相同等位基因(纯合)或两个不同等位基因(杂合)。“突变等位基因”在本文中是指,相比野生型等位基因,编码序列(mRNA,cDNA或基因组序列)中包含一个或多个突变的等位基因。这种突变(例如插入,颠倒,缺失和/或替换一个或多个核苷酸)可以导致所编码的蛋白质具有降低的体外和/或体内的功能(功能降低)或在体外和/或体内没有功能(功能丧失),例如由于蛋白质例如被截短或具有氨基酸序列,其中一个或多个氨基酸缺失、插入或替换。这样的变化可能导致具有不同的构象的蛋白质、靶向不同的亚细胞隔室,具有修饰的催化结构域、具有对核酸或蛋白质等的修饰的结合活性等,它也可能导致不同的剪接事件。基因或核苷酸序列或反义寡聚化合物中的“片段”是指任意分子子集,例如,更短的多核苷酸或寡核苷酸。“变体”指的是基本上类似于反义寡聚化合物或其片段的分子,如具有一个或多个取代的核苷酸的核苷酸取代变体,但它保持与特定基因杂交的能力。优选的变体包含本发明所鉴定的突变。变体还包括更长的序列。“类似物”是指与整个分子其变体或其片段基本类似或功能有关的非天然分子。如本文所用,术语“前体mRNA”或“前mRNA”指信使核糖核酸(mRNA)的未成熟单链,它包含一个或多个间插序列(内含子)。前体mRNA由RNA聚合酶从细胞核中的DNA模板转录并且包括交替的内含子序列和编码区(外显子)。一旦前体mRNA已经通过剪去内含子并接合外显子而被完全处理,它被称为“信使RNA”或“mRNA”,这是只包含外显子的RNA。真核前体mRNA只在被完全加工成mRNA前短暂存在。当前体mRNA已被适当地处理为mRNA序列时,它被排出细胞核并由细胞质的核糖体最终翻译成蛋白质。如本文所用的术语“剪接”和“处理”指的是前体mRNA转录后修饰,其中内含子被除去并且外显子被连接。前体mRNA剪接涉及两个连续的生化反应。这两种反应涉及RNA核苷酸之间的剪接体酯交换反应。在第一反应中,在剪接体组装过程中所定义的内含子内特定分支点核苷酸的2'-OH,执行对内含子5'剪接位点的第一个核苷酸的亲核进攻,形成套索中间体。在第二反应中,所释放的5'外显子的3'-OH进行对内含子3'剪接位点的最后一个核苷酸的亲核攻击从而接合外显子并释放内含子套索。前体mRNA剪接由内含子沉默子序列(ISS),外显子沉默子序列(ESS)和末端茎环(TSL)序列调控。如本文所用,术语“内含子沉默子序列(ISS)”与“外显子沉默子序列(TSL)”分别是指内含子和外显子内的序列元件,其用于通过前体mRNA中的反式作用蛋白因子的结合而控制选择性剪接,由此导致剪接位点的区别应用。典型地,内含子沉默子序列比外显子-内含子连接点的剪接位点保守度低。如本文所用,“剪接的调控”指的是改变前体mRNA转录物的处理,从而例如一个或多个剪接产物增加或减少,或两种或更多种剪接产物的比例变化。剪接的调控还可以指改变前体mRNA转录物的处理,使得剪接的mRNA分子含有外显子的不同组合作为外显子跳跃或外显子纳入的结果、一个或多个外显子中的缺失,或正常情况下剪接的mRNA中没有的附加序列(例如,内含子序列)。如本文中所使用的,“剪接位点”指的是前体mRNA(未剪接的RNA)分子中外显子和内含子之间的连接点(也称为“剪接连接点”)。“隐藏剪接位点”是指通常不使用,但当通常的剪接位点被阻断或不可用时或当突变导致正常休眠位点变成活性剪接位点时可以使用的剪接位点。“异常剪接位点”是天然DNA和前体mRNA中的突变造成的剪接位点。如本文中所用,“剪接的产物”或“剪接产物”是从剪接前体mRNA的过程中产生的成熟mRNA分子。可变剪接的前体mRNA具有至少两种不同剪接产物。例如,相对于第二剪接产物,第一剪接产物可含有一个额外的外显子,或部分外显子。可以通过各种本领域技术人员公知的多种不同技术来鉴定所选的前体mRNA的剪接产物。如本文所用的“剪接供体位点”指的是在内含子的5'端或者外显子的3'端发现的剪接位点。剪接供体位点与“5'剪接位点”可以互换使用。如本文所用的“剪接受体位点”指的是在内含子的3'端或者外显子的5'端发现的剪接位点。剪接受体位点与“3'剪接位点”可以互换使用。如本文所用的“靶向”或“靶向至”是指设计寡聚化合物的过程,使得所述化合物与所选核酸分子或核酸分子区域杂交。将寡聚化合物靶向特定的靶核酸分子可以是多步骤的过程。该过程通常开始于识别其表达待调控的靶核酸。如本文中所使用的,术语“靶核酸”和“编码GAA的核酸”涵盖的编码GAA的DNA、从该DNA转录的RNA(包括前体mRNA和mRNA),以及从该RNA衍生的cDNA。例如,靶核酸可以是细胞基因(或从基因转录的mRNA),其表达与特定病症或疾病状态或来自感染物的核酸分子相关联。如本文所述,靶核酸编码GAA。靶向过程通常还包括确定靶核酸内用于反义相互作用发生的至少一个靶区域、区段或位点,从而产生所需的效果,例如表达的调控。如本文所用,“靶mRNA”是指对设计用于本文提供的寡聚化合物杂交的核酸分子。在本公开的上下文中,靶mRNA通常是未剪接的mRNA,或前体mRNA。在本发明的上下文中,靶mRNA为GAAmRNA或GAA前体mRNA。“区域”被定义为具有至少一个可识别的结构、功能或特征的靶核酸的部分。靶区域可以包括,例如特定外显子或内含子,或者可以只包括被鉴定为合适靶区域的外显子或内含子内的选择的核苷酸。靶区域也可以是剪接阻遏位点。靶核酸的区域内是区段。“区段”被定义为靶核酸内较小的区域或区域的子部分。本发明中使用的“位点”被定义为靶核酸内的独特核碱基位置。如本文中所用,寡聚化合物的“靶位置”是该化合物结合的靶核酸最5'-核苷酸。靶降解可包括RNA酶H,它是一个细胞内切酶,其切割RNA:DNA双链体的RNA链。本领域已知“DNA样”的单链反义化合物引发RNA酶H的切割。基于占据的反义机制,由此反义化合物杂交不引起靶靶标的裂解,包括翻译抑制、剪接调控、聚(A)位置选择的调控和调控RNA结构的破坏。本发明中,优选用于基于占据的反义机制的“RNA样”反义化合物。在本公开的上下文中,寡聚化合物“靶向剪接位点”是指与编码剪接位点的核酸的区域的至少一部分杂交的化合物,或与临近剪接位点的内含子或外显子杂交的化合物,从而调控mRNA的剪接。术语“寡聚化合物”是指能与核酸分子的区域杂交的聚合结构。该术语包括寡核苷酸、寡核苷、寡核苷酸类似物、寡核苷酸模拟物和它们的嵌合组合。通常线性制备寡聚化合物,但可以连接或以其它方式制备为环形。此外,支化结构在本领域是公知的。寡聚化合物可以单链、双链、环形、支化或发夹的形式引入,并且可以包含结构元件,例如内部或末端凸起或环。寡聚双链化合物可以是经杂交以形成双链化合物的双链,或具有足够自我互补性的单链,以允许完全或部分双链化合物的杂交和形成。术语“反义寡核苷酸,AON,或反义寡聚化合物”是指能够与具有互补的核苷酸序列前体mRNA或mRNA相互作用和/或杂交的寡核苷酸,从而改变基因的表达和/或剪接。酶依赖性反义寡核苷酸包括依赖于RNA酶H活性降解靶mRNA的形式,并包括单链DNA、RNA、和硫代磷酸酯反义物。立体阻断反义寡核苷酸(RNA酶-H独立反义物)通过结合至mRNA的靶序列而干扰基因表达或其他mRNA依赖的细胞过程。立体阻断反义物包括2'-0烷基反义寡核苷酸、吗啉代反义寡核苷酸、和三环-DNA反义寡核苷酸。立体阻断反义寡核苷酸在本发明中优选。如本文中所用,“RNA酶H-独立的”反义寡核苷酸是指那些当杂交至靶核酸时不引发由RNA酶H的裂解的化合物。RNA酶H-独立寡聚化合物通过基于靶标占据的基质调控基因表达,如剪接。RNA酶H独立反义寡核苷酸在本发明中优选。如本文所用,“杂交”是指寡聚化合物的互补链的配对。在本公开的上下文中,当有足够程度的互补性以避免寡聚化合物非特异性结合至非靶核酸序列时,寡聚化合物是可特异性杂交的。本领域的技术人员将能够确定何时寡聚化合物是可特异性杂交的。如本文所用,“互补”是指核酸分子,其可以在互补核苷或核苷酸之间通过传统的Watson-Crick碱基配对或其它非传统类型的配对(例如,Hoogsteen碱基或反向Hoogsteen氢键接合)而与另一核酸分子形成氢键。参考本发明的反义寡聚化合物,反义寡聚化合物与其互补序列的结合自由能足以使反义寡聚化合物进行相关功能,并有足够程度的互补性以避免在需要特异性结合的条件下(即离体或体内治疗性处理的情况中在生理条件下)反义寡聚化合物与非靶序列的非特异性结合。核酸分子的结合自由能的测定为本领域熟知(参见例如Turner等,CSHSymp.Quant.Biol.1/7:123-133(1987);Frier等,Proc.Nat.Acad.Sci.USA83:9373-77(1986);和Turner等,J.Am.Chem.Soc.109:3783-3785(1987))。因此,术语“互补”(或“可特异性杂交”)指示足够程度互补性或精确配对,使得反义寡聚化合物和前体mRNA或mRNA靶标之间发生稳定和特异性结合。本领域已知,核酸分子不必与靶核酸序列100%互补才为可特异性杂交。即,两个或更多个核酸分子可小于完全互补。互补由能够与第二核酸分子形成氢键的核酸分子中连续残基的百分比表示。例如,如果第一核酸分子具有10个核苷酸和第二核酸分子具有10个核苷酸,那么第一和第二核酸分子之间5,6,7,8,9或10个核苷酸的碱基配对分别表示50%,60%,70%,80%,90%和100%的互补性。寡聚化合物与靶核酸区域的百分比互补性可常规地使用本领域中已知的BLAST程序(基本局部比对搜索工具)和PowerBLAST程序(Altschul等J.Mol.Biol.,1990,215,403-410;Zhang和Madden,GenomeRes.,1997,7,649-656)来确定。同源性百分比、序列相同性或互补性可以通过例如Gap程序(用于Unix的Wisconsin序列分析软件包,第8版,威斯康星州麦迪逊大学研究园遗传学计算机组)使用默认设置来测定,它使用了Smith和Waterman的算法(Adv.Appl.Math.,1981,2,482-489)。“完全”或“全部”互补的核酸分子是指这样的核酸分子,其中的第一核酸分子的所有连续残基与第二核酸分子的相同数目的连续残基形成氢键,其中所述核酸分子或者都具有相同数目的核苷酸(即,具有相同的长度),或者两个分子具有不同长度。如本文所用,“均匀修饰”或“完全修饰”是指寡聚化合物、反义寡核苷酸或核苷酸的区域,其中基本上每个核苷都是具有均匀修饰的糖修饰核苷。如本文所用,“嵌合的寡聚化合物”、“嵌合的反义化合物”或“嵌合反义寡核苷酸化合物”是含有两个或更多个化学上不同的区域的化合物,所述区域各包含至少一个单体单元(即,在寡核苷酸化合物的情况下的核苷酸)。术语“嵌合的反义化合物”具体指这样的反义化合物:相对于相同寡聚化合物中的其他糖、核苷酸和核苷间连接而言,其具有被不同修饰的至少一种糖、核碱基和/或核苷间连接。其余糖、核苷酸和核苷间连接可被独立修饰或未修饰。一般来说嵌合寡聚化合物会具有修饰的核苷,其可以在孤立的位置或在将定义特定基序的区域中组合在一起。嵌合寡聚化合物通常含有至少一个修饰的区域,以便赋予增加的核酸酶降解抗性、增加的细胞摄取、和/或增加的对靶核酸的结合亲和力。在本公开的上下文中,“嵌合的RNA酶H-独立反义化合物”是具有至少两个化学上不同的区域的反义化合物,但是当杂交至靶核酸时其对由RNA酶H的切割不敏感。如本文所用,“核苷”是碱基-糖的组合,“核苷酸”是还包括共价连接到核苷的糖部分上的磷酸基团的核苷。如本文所用,具有修饰的糖残基的核苷是其中所述核苷的核糖已被化学修饰的糖部分取代的任何核苷。在本公开的上下文中,化学修饰的糖部分包括但不限于,2'-O-甲氧基乙基,2'-氟,2'-二甲基氨基氧基乙氧基,2'-二甲基氨基乙氧基乙氧基,2'-胍,2'-O-胍乙基,2'-氨基甲酸酯,2'-氨基氧基,2'-乙酰氨基和锁核酸。如本文所用,化合物“对RNA酶H降解有抗性”是具有增加化合物对RNA酶H切割的抗性的至少一个化学修饰的反义化合物。这样的修饰包括但不限于,具有糖修饰的核苷酸。如本文所用,具有修饰的糖的核苷酸包括但不限于任何核苷酸,其中2'-脱氧核糖已被化学修饰的糖部分取代。在本公开的上下文中,化学修饰的糖部分包括但不限于,2'-O-(2-甲氧基乙基),2'-氟,2'-二甲基氨基氧基乙氧基,2'-二甲基氨基乙氧基乙氧基,2'-胍,2'-O-胍乙基,2'-氨基甲酸酯,2'-氨基氧基,2'-乙酰氨基,锁核酸(LNA)和乙烯桥联核酸(ENA)。对RNA酶H切割有抗性的修饰化合物本文中有详尽的描述并且本领域技术人员熟知。在本公开的上下文中,“细胞摄取”指的是寡聚化合物输送和内化到细胞中。寡聚化合物可被内化,例如通过在培养基中生长的细胞(体外)、从动物收获的细胞(离体)或给药至动物后的组织(体内)。“对象”指生物体,是外植细胞或细胞本身的供体或受体。“对象”还指可以给予本公开所述的核酸分子的生物体。在本发明的一个实施方式和/或其实施方式中,对象是哺乳动物或哺乳动物细胞。在另一个实施方案中,对象是人或人细胞。如本文所用,术语“治疗有效量”是指反义寡聚化合物的量足以在所给予的对象(例如人)中治疗或预防的所述疾病、障碍或病症。本公开的反义寡聚化合物单独地、或组合地、或与其他药物联合使用,可用于治疗本文所讨论的疾病或病症。例如,为了治疗特定疾病、病症或病状,反义寡聚化合物可以在适合治疗的条件下单独地或与一种或多种药物组合地给予患者或给予本领域技术人员显见的合适细胞中。本发明中疾病优选庞帕病。如本文中所用,短语“药学上可接受的”是指分子实体和组合物当给予人时是生理上可耐受的并且通常不会产生过敏或类似的不良反应,如胃不适、头晕等。本文所用术语“药学上可接受”优选指被联邦或州政府管理机构批准,或美国药典或其它公认药典所列用于动物应用,更具体用于人。如本文所用,“分离的”一词是指所引用的材料被从其天然环境中例如细胞中移出。因此,分离的生物材料可以不含一些或全部细胞组分,即其中天然材料自然产生的细胞组分(例如,细胞质或膜成分)。如本文所用的术语“纯化的”指的是在减少或消除无关的材料,即污染物,包括从中得到材料的天然材料,的条件下分离的材料。例如,纯化的tc-DNA的反义寡聚化合物优选基本上不含细胞或培养物组分,包括组织培养物组分、污染物等。如本文所用,术语“基本上不含”可操作地用于材料的分析测试的情况中。优选地,纯化的材料基本上不含污染物是至少50%纯;更优选,至少90%纯,更优选至少99%纯。纯度可通过色谱法、凝胶电泳、免疫测定、组成分析、生物测定,和本领域中已知的其它方法进行评价。在本说明书中,任何浓度范围、百分数范围、比例范围或整数范围应理解为包括所述范围内的任何整数值,适当时也包括其分数值(如整数的十分之一和百分之一),除非另有说明。另外,本文所述的有关任何物理特征,如聚合物亚基、大小或厚度的任何数值范围应理解为包括所述范围内的任何整数,除非另有说明。本文所用的“约”或“基本由……组成”指所述范围、数值或结构的±20%,除非另有说明。本文所用术语“包括”和“包含“可作为同义词使用。应当理解的是,如本文所用术语“一”和“一个”是指“一个或多个”所列举的组分。替代物(例如“或”)的使用应理解为所述替代物中的一个、两个或其任何组合。术语“约”或“大约”表示在统计学上有意义的值范围内。这样的范围可以在一个数量级内,优选给定值或范围的50%以内,更优选20%以内,更优选10%以内,甚至更优选5%以内。术语“约”或“大约”所涵盖的可允许的变化形式取决于在研的具体系统,并且可容易地被本领域普通技术人员所理解。在一个方面,本发明涉及靶向SEQIDNO:1和SEQIDNO:1的单核苷酸多态性的反义寡聚化合物。.其他人以前的工作已经得到在数种人类疾病(包括杜兴肌营养不良(DMD))中促进外显子排除的反义寡聚化合物的设计。这个策略简单明了,依赖于阻断充分定义的剪接位点。这导致外显子跳跃,从而除去含有致病基因变体的外显子。所得的mRNA有点缩短,导致具有相当的残留活性的截短蛋白的表达,足以至少部分地减轻这种疾病。因为几乎所有基因的规范剪接位点是众所周知,所述该策略非常简单。唯一的需要是设计结合至前体mRNA中规范剪接位点的反义寡聚化合物,这将导致在所涉及的外显子的该位点的阻断和跳过。更艰巨的任务是相反的过程:促进外显子的纳入而非排除。为了促进外显子纳入,可以使用反义寡聚化合物阻断剪接阻遏物。然而剪接阻遏物的位置是未知的。这些可存在于内含子或外显子,称为内含子或外显子剪接沉默子(分别为ISS或ESS)。有可用来预测这种沉默存在的软件,但这些都是非常不可靠的。我们的经验进一步说明:使用含有GAA外显子1-3的小基因系统未能确认预测的剪接沉默子基序的活性。用反义寡聚化合物促使GAA的外显子2纳入来治疗庞帕病是完全新颖的。在此我们显示在所附专利申请(PCT/NL2014/050375)中,剪接阻遏物序列可以由两个筛选来鉴定:U7-snRNA反义寡聚化合物筛选,和随机诱变/小基因筛选。来自该筛选的一个靶序列成功地与反义寡聚化合物靶连,从而在IVS1变体的情况下提高GAA外显子2的纳入。这就校正了IVS1变体造成的外显子2的异常剪接,如野生型GAAmRNA的丰度增加所示。发现靶向SEQIDNO:1的序列能够提高GAA外显子2的纳入。还发现靶向SEQIDNO:37、SEQIDNO:38、SEQIDNO:39、SEQIDNO:40的序列能够提高GAA外显子2的纳入。应注意的是,靶向表示序列SEQIDNO:1的至少一部分被例如与至少一部分或序列SEQIDNO:1杂交的序列所靶向,或结合至SEQIDNO:1的至少一部分。靶向的序列可以比靶序列更短或更长。适当地,靶向SEQIDNO:1的序列与SEQIDNO:1的至少一部分杂交。杂交的序列可以比靶序列更短或更长。核苷酸序列SEQIDNO:2-33是能够增强GAA外显子2纳入的寡聚物。测试两个变体反义寡聚化合物,一个21个核苷酸(SEQIDNO:33),另一个25个核苷酸(SEQIDNO:12),并且发现二者都提高外显子2纳入。这伴随着GAA酶的活性增强至少2倍。已知IVS1变体的患者具有约15%漏损(leaky)的野生型剪接。2倍增强导致约30%的酶性,已知其大于20%的疾病阈值,因而预计恢复至少部分,或甚至全部的溶酶体糖原降解。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及选自SEQIDNO:2-33和与其具有至少80%相同性的变体和片段的反义寡聚化合物。反义寡聚化合物也可以靶向SEQIDNO:1,37,38,39,40的单核苷酸多态性。应当注意的是,它可能没有必要具有SEQIDNO:2-33的全长,还设想具有更短或更长序列片段。本发明人发现的靶基因组序列,能够纳入GAA的外显子2,并且本领域技术人员能够发现靶向该靶基因组序列例如SEQIDNO:1,37,38,39,40及其单核苷酸多态性的合适序列。靶向该靶基因组序列例如SEQIDNO:1,37,38,39,或41的示例性序列可以是SEQIDNO:2-33,也可以是与其具有至少80%的相同性的其变体和片段。具体地,考虑更短的片段,例如具有SEQIDNO:2-33的18,19,20,21,22,23,或24个核苷酸的片段。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及与具有某序列的多核苷酸互补的反义寡聚化合物,所述序列选自SEQIDNO:1,37-40和其单核苷酸多态性。还考虑与反义寡聚化合物具有至少80%相同性的序列,所述化合物与具有选自SEQIDNO:1,37-40的序列的多核苷酸互补。可设计靶向一个或一个以上的单核苷酸多态性的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及靶向选自基因组序列c-32-156_-210的序列的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及包含选自SEQIDNO:2-33,41-1583的序列和与其具有至少80%相同性的序列的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及包含选自SEQIDNO:2-33和41-540的序列的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及与GAA基因的基因组核酸序列互补的反义寡聚化合物,其靶向包含选自下述突变位点的位置:c.-32-13T>G、c.-32-3C>Gc.-32-102T>C、c.-32-56C>T、c.-32-46G>A、c.-32-28C>A、c.-32-28C>T、c.-32-21G>A、c.7G>A、c.11G>A、c.15_17AAA、c.17C>T、c.19_21AAA、c.26_28AAA、c.33_35AAA、c.39G>A、c.42C>T、c.90C>T、c.112G>A、c.137C>T、c.164C>T、c.348G>A、c.373C>T、c.413T>A、c.469C>T、c.476T>C、c.476T>G、c.478T>G、c.482C>T、c.510C>T、c.515T>A、c.520G>A、c.546+11C>T、c.546+14G>A、c.546+19G>A、c.546+23C>A、c.547-6、c.1071、c.1254、c.1552-30、c.1256A>T、c.1551+1G>T、c.546G>T、.17C>T、c.469C>T、c.546+23C>A、c.-32-102T>C、c.-32-56C>T、c.11G>A、c.112G>A、c.137C>T。上述鉴定的突变已发现调控剪接。靶向突变的位置也可调控剪接。因此可以理解的是,反义寡聚化合物靶向突变位置。突变的命名法识别位置和突变。可以理解的是,反义寡聚化合物靶向突变的位置,并且突变并不需要存在于基因组序列中或前体mRNA中。因此,突变的位置是突变的核苷酸的位置,或突变的野生型核苷酸的位置。反义寡聚化合物可靶向包含在突变位置上游和下游的核苷酸的序列。反义寡聚化合物适当地靶向包含在突变位置上游的2-50个核苷酸和/或下游的2-50个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的3-45个核苷酸和/或下游的3-45个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的5-40个核苷酸和/或下游的5-40个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的6-35个核苷酸和/或下游的6-35个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的7-33个核苷酸和/或下游的7-33个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的8-30个核苷酸和/或下游的8-30个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的9-28个核苷酸和/或下游的9-28个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的10-25个核苷酸和/或下游的10-25个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的11-22个核苷酸和/或下游的11-22个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的12-20个核苷酸和/或下游的12-20个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的13-18个核苷酸和/或下游的13-18个核苷酸的序列,反义寡聚化合物更适当地靶向包含在突变位置上游的14-16个核苷酸和/或下游的14-16个核苷酸的序列。命名法为本领域技术人员熟知,其可在下述中获取:Dunnen和Antonarakis人类突变15:7-12(2000)和AntonarakisSE,命名法工作组,1998,对人类基因突变命名系统的建议,HumMutat11:1–3和网站http://www.dmd.nl/mutnomen.html。基因组位置也可以在www.pompecenter.nl找到。所有这些都通过引用并入本文。优选基因组核酸序列是前体mRNA。这些反义寡聚化合物可用于糖原贮积症II型/庞帕病的治疗。在一个方面,靶序列是内含子剪接沉默子器或ISS。在本发明和/或其一方面的实施方式和/或本发明实施方式的优选实施方式中,靶序列是GCTCTGCACTCCCCTGCTGGAGCTTTTCTCGCCCTTCCTTCTGGCCCTCTCCCCA(SEQIDNO:1)。应当注意的是,天然存在的单核苷酸多态性也包括在内。.靶向SEQIDNO:1的反义寡聚化合物非常适于治疗庞帕病患者。靶向SEQIDNO:1的示例性反义寡聚化合物是SEQIDNO:2-33,特别是SEQIDNO:12和SEQIDNO33。然而,本发明并不限定于这两个序列。本领域技术人员有能力设计针对靶序列SEQIDNO:1,37,38,39,或40的反义寡聚化合物。针对靶序列SEQIDNO:1的反义寡聚化合物的长度可为10至100个核苷酸,优选11至75个核苷酸,优选12至73个核苷酸,优选13至70个核苷酸,优选14至65个核苷酸,优选15至60个核苷酸长度,优选16至55个核苷酸,优选17至50个核苷酸,优选18至45个核苷酸,优选19至40个核苷酸,优选20至38个核苷酸,优选21至35个核苷酸,优选22至33个核苷酸,优选23至30个核苷酸,优选24至29个核苷酸,优选25至28个核苷酸,优选26至27个核苷酸。下面给出靶向SEQIDNO:1的示例性反义寡聚化合物。在上述示例中序列为25个核苷酸,然而还考虑较长的变体或较短片段。示例是SEQIDNO:33,其仅21个核苷酸长,其包括与SEQIDNO:12相同的核苷酸但较短。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物选自SEQIDNO:2-33及其具有至少80%序列相同性的片段和变体。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物选自SEQIDNO:2-33以及与SEQIDNO:2-33具有至少80%、83%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%序列相同性的片段和变体。本发明还涉及与SEQIDNO:2-33至少80%相同的序列。优选与SEQIDNO:2-33至少85%相同、更优选与SEQIDNO:2-33至少88%相同、更优选与SEQIDNO:2-33至少90%相同、更优选与SEQIDNO:2-33至少91%相同、更优选与SEQIDNO:2-33至少92%相同、更优选与SEQIDNO:2-33至少93%相同、更优选与SEQIDNO:2-33至少94%相同、更优选与SEQIDNO:2-33至少95%相同、更优选与SEQIDNO:2-33至少96%相同、更优选与SEQIDNO:2-33至少97%相同、更优选与SEQIDNO:2-33至少98%相同、更优选与SEQIDNO:2-33至少99%相同。优选的反义序列为SEQIDNO:12和SEQIDNO:33或与SEQIDNO:12和/或33至少80%相同,优选至少85%相同,更优选至少88%相同,更优选至少90%相同,更优选至少91%相同,更优选至少92%相同,更优选至少93%相同,更优选至少94%相同,优选至少95%相同,更优选至少96%相同,更优选至少97%相同,更优选至少98%相同,更优选至少99%相同的序列。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物中选自片段SEQIDNO:2-33,其中所述片段是16,17,18,19,20,21,22,23,或24个核苷酸长。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物中选自片段SEQIDNO:2-33,其中所述片段是17,18,19,20,21或22个核苷酸长。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物中选自片段SEQIDNO:2-33,其中所述片段是19,20或21个核苷酸长。反义寡聚化合物可选自SEQIDNO:41-540。用U7筛选鉴定的序列:SEQIDNO41-97在上述示例中序列为25个核苷酸,然而还考虑较长的变体或较短片段。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物选自SEQIDNO:41-540及其具有至少80%序列相同性的片段和变体。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物选自SEQIDNO:41-540以及与SEQIDNO:41-540具有至少80%、83%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%序列相同性的片段和变体。本发明还涉及与SEQIDNO:41-540至少80%相同的序列。优选与SEQIDNO:41-540至少85%相同、更优选与SEQIDNO:41-540至少88%相同、更优选与SEQIDNO:41-540至少90%相同、更优选与SEQIDNO:41-540至少91%相同、更优选与SEQIDNO:41-540至少92%相同、更优选与SEQIDNO:41-540至少93%相同、更优选与SEQIDNO:41-540至少94%相同、更优选与SEQIDNO:41-540至少95%相同、更优选与SEQIDNO:41-540至少96%相同、更优选与SEQIDNO:41-540至少97%相同、更优选与SEQIDNO:41-540至少98%相同、更优选与SEQIDNO:2-33至少99%相同。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物中选自片段SEQIDNO:41-540,其中所述片段是16,17,18,19,20,21,22,23,或24个核苷酸长。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物中选自片段SEQIDNO:41-540,其中所述片段是17,18,19,20,21或22个核苷酸长。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物中选自片段SEQIDNO:41-540,其中所述片段是19,20或21个核苷酸长。在本发明和/或其实施方式的优选实施方式中,靶序列提供内含子6的排除。发现SEQIDNO:1584提供用于将内含子6排除的靶序列。在本发明和/或其一方面的实施方式和/或本发明实施方式的优选实施方式中,靶序列是AACCCCAGAGCTGCTTCCCTTCCAGATGTGGTCCTGCAGCCGAGCCCTGCCCTTAGCTGGAGGTCGACAGGTGGGATCCTGGATGTCTACATCTTCCTGGGCCCAGAGCCCAAGAGCGTGGTGCAGCAGTACCTGGACGTTGTGGGTAGGGCCTGCTCCCTGGCCGCGGCCCCCGCCCCAAGGCTCCCTCCTCCCTCCCTCATGAAGTCGGCGTTGGCCTGCAGGATACCCGTTCATGCCGCCATACTGGGGCCTGGGCTTCCACCTGTGCCGCTGGGGCTACTCCTCCACCGCTATCACCCGCCAGGTGGTGGAGAACATGACCAGGGCCCACTTCCCCCTGGTGAGTTGGGGTGGTGGCAGGGGAG(SEQIDNO:1584)。应当注意的是,天然存在的单核苷酸多态性也包括在内。下述基因组序列也是用于排除GAA的内含子6的靶序列。应注意的是,靶向表示序列SEQIDNO:1584-1589的至少一部分被例如与至少一部分或序列SEQIDNO:1584-1589杂交,或结合至SEQIDNO:1584-1589的至少一部分的序列所靶向。靶向序列可以比靶序列更短或更长。适当地,靶向SEQIDNO:1584-1589的序列与SEQIDNO:1584-1589的至少一部分杂交。杂交的序列可以比靶序列更短或更长。核苷酸序列SEQIDNO:541-1583是能够增强GAA内含子6排除的寡聚物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及选自SEQIDNO:541-1583和与其具有至少80%相同性的变体和片段的反义寡聚化合物。反义寡聚化合物也可以靶向SEQIDNO:1584-1589的单核苷酸多态性。应当注意的是,它可能没有必要具有SEQIDNO:541-1583的全长,还设想具有更短或更长序列片段。本发明人已发现能够排除GAA的内含子6Turner等靶基因组序列,,并且本领域技术人员能够发现靶向该靶基因组序列例如SEQIDNO:1584-1589及其单核苷酸多态性的合适序列。靶向该靶基因组序列例如SEQIDNO:1584-1589的示例性序列可以是SEQIDNO:541-1583,也可以是具有至少80%的相同性的其变体和片段。具体地,考虑更短的片段,例如具有SEQIDNO:541-1583的18,19,20,21,22,23,或24个核苷酸的片段。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及与具有某序列的多核苷酸互补的反义寡聚化合物,所述序列选自SEQIDNO:1584-1589及其单核苷酸多态性。还考虑与反义寡聚化合物具有至少80%相同性的序列,所述化合物与具有选自SEQIDNO:1584-1589的序列的多核苷酸互补。可设计靶向一个或一个以上的单核苷酸多态性的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及靶向选自基因组序列c.956-25_1194+25的序列的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及包含选自SEQIDNO:41-1583的序列和与其具有至少80%相同性的序列的反义寡聚化合物。在一个方面或多方面的实施方式和/或其实施方式中,本发明涉及包含选自SEQIDNO:541-1583的序列的反义寡聚化合物。靶向SEQIDNO:1584的反义寡聚化合物非常适于治疗庞帕病患者。靶向SEQIDNO:1584的示例性的反义寡聚化合物是SEQIDNO:541-1853。然而,本发明并不限定于这些序列。本领域技术人员有能力设计针对靶序列SEQIDNO:1584,1885,1586,1587,1588,1589的反义寡聚化合物。针对靶序列SEQIDNO:1584,1885,1586,1587,1588,或1589的反义寡聚化合物的长度可为10至100个核苷酸,优选11至75个核苷酸,优选12至73个核苷酸,优选13至70个核苷酸,优选14至65个核苷酸,优选15至60个核苷酸长度,优选16至55个核苷酸,优选17至50个核苷酸,优选18至45个核苷酸,优选19至40个核苷酸,优选20至38个核苷酸,优选21至35个核苷酸,优选22至33个核苷酸,优选23至30个核苷酸,优选24至29个核苷酸,优选25至28个核苷酸,优选26至27个核苷酸。反义寡聚化合物可选自SEQIDNO:541-1583。在上述示例中序列为18,21和25个核苷酸长,然而还考虑较长的变体或较短片段。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物选自SEQIDNO:541-1583及其具有至少80%序列相同性的片段和变体。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物选自SEQIDNO:541-1583以及与SEQIDNO:541-1583具有至少80%、83%、85%、87%、90%、92%、93%、94%、95%、96%、97%、98%、99%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%序列相同性的片段和变体。或者与SEQIDNO:541-1583至少80%相同的序列。优选与SEQIDNO:541-1583至少85%相同、更优选与SEQIDNO:541-1583至少88%相同、更优选与SEQIDNO:541-1583至少90%相同、更优选与SEQIDNO:541-1583至少91%相同、更优选与SEQIDNO:541-1583至少92%相同、更优选与SEQIDNO:541-1583至少93%相同、更优选与SEQIDNO:541-1583至少94%相同、更优选与SEQIDNO:541-1583至少95%相同、更优选与SEQIDNO:541-1583至少96%相同、更优选与SEQIDNO:541-1583至少97%相同、更优选与SEQIDNO:541-1583至少98%相同、更优选与SEQIDNO:2-33至少99%相同。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物中选自片段SEQIDNO:541-1583,其中所述片段是16,17,18,19,20,21,22,23,或24个核苷酸长。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物中选自片段SEQIDNO:541-1583,其中所述片段是17,18,19,20,21或22个核苷酸长。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物中选自片段SEQIDNO:541-1583,其中所述片段是19,20或21个核苷酸长。反义寡聚化合物还可与GAA的基因组核酸序列互补,其靶向包含选自下述突变位点的位置:c.-32-13T>G(IVS1),c.1636+5G>T,c.525delT,c.-32-3C>G,c.1551+1G>A,c.1075G>A,c.1552-3C>G,c.1437G>A,c.1256A>T,c.1551+1G>T。优选基因组核酸序列是前体mRNA。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物还可与GAA的基因组核酸序列互补,其靶向包含选自下述突变位点的位置:c.-32-3C>G,c.-32-13T>G,c.-32-102T>C,c.-32-56C>T,c.-32-46G>A,c.-32-28C>A,c.-32-28C>T,c.-32-21G>A,c.7G>A,c.11G>A,c.15_17AAA,c.17C>T,c.19_21AAA,c.26_28AAA,c.33_35AAA,c.39G>A,c.42C>T,c.90C>T,c.112G>A,c.137C>T,c.164C>T,c.348G>A,c.373C>T,c.413T>A,c.469C>T,c.476T>C,c.476T>G,c.478T>G,c.482C>T,c.510C>T,c.515T>A,c.520G>A,c.546+11C>T,c.546+14G>A,c.546+19G>A,c.546+23C>A,c.547-6,c.1071,c.1254,和c.1552-30。优选基因组核酸序列是前体mRNA。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物还可与GAA基因的基因组核酸序列互补,其靶向包含选自下述突变位点的位置:c.17C>Tc.469C>Tc.546+23C>A,c.-32-102T>Cc.-32-56C>Tc.11G>Ac.112G>Ac.137C>T。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物还可与GAA基因的基因组核酸序列互补,其靶向包含选自下述突变位点的位置:c.17C>Tc.469C>Tc.546+23C>A。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物还可与GAA基因的基因组核酸序列互补,其靶向包含选自下述突变位点的位置:c.-32-102T>Cc.-32-56C>Tc.11G>Ac.112G>Ac.137C>T。最优选的是与GAA基因的基因组核酸序列互补的反义寡聚化合物,其靶向包含突变位点c.-32-13T>G(IVS1)的位置。最优选的是与GAA基因的基因组核酸序列互补的反义寡聚化合物,其靶向包含突变位点c.-32-3C>G,c.1256A>T,c.1551+1G>T,c.546G>T的位置。最优选的是与GAA基因的基因组核酸序列互补的反义寡聚化合物,其靶向包含突变位点c.-32-3C>G的位置。最优选的是与GAA基因的基因组核酸序列互补的反义寡聚化合物,其靶向SEQIDNO:1GCTCTGCACTCCCCTGCTGGAGCTTTTCTCGCCCTTCCTTCTGGCCCTCTCCCCA(SEQIDNO:1)。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物长度为8至80个核苷酸,9至50个核苷酸,10至30个核苷酸,12至30个核苷酸,15至25个核苷酸,或约20个核苷酸。本领域技术人员应理解这表示8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79或80个核苷酸的反义化合物。在本发明和/或其实施方式的优选实施方式中,反义化合物包含13-80个核苷酸。本领域技术人员应理解这包含13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79或80个核苷酸的反义化合物。在本发明和/或其实施方式的优选实施方式中,反义化合物包含13-50个核苷酸。本领域技术人员应理解这包含13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50个核苷酸的反义化合物。在本发明和/或其实施方式的优选实施方式中,反义化合物包含13至30个核苷酸。本领域技术人员应理解这包含13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30个核苷酸的反义化合物。在本发明和/或其实施方式的优选实施方式中,反义化合物包含20至30个核苷酸。本领域技术人员应理解这包含20、21、22、23、24、25、26、27、28、29或30个核苷酸的反义化合物。在本发明和/或其实施方式的优选实施方式中,反义化合物包含15至25个核苷酸。本领域技术人员应理解这包含13、14、15、16、17、18、19、20、21、22、23、24或25个的反义化合物。在本发明和/或其实施方式的优选实施方式中,反义化合物包含20个核苷酸。在本发明和/或其实施方式的优选实施方式中,反义化合物包含19个核苷酸。在本发明和/或其实施方式的优选实施方式中,反义化合物包含18个核苷酸。在本发明和/或其实施方式的优选实施方式中,反义化合物包含17个核苷酸。在本发明和/或其实施方式的优选实施方式中,反义化合物包含16个核苷酸。在本发明和/或其实施方式的优选实施方式中,反义化合物包含15个核苷酸。在本发明和/或其实施方式的优选实施方式中,反义化合物包含14个核苷酸。在本发明和/或其实施方式的优选实施方式中,反义化合物包含13个核苷酸。在本发明和/或其实施方式的一个实施方式中,化合物包括寡核苷酸序列,所述寡核苷酸序列包含如权利要求所述的反义化合物中的一种的至少8个连续核苷酸。优选如权利要求所述的反义化合物中的一种的至少9个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少10个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少11个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少12个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少13个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少14个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少15个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少16个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少17个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少18个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少19个连续核苷酸、更优选如权利要求所述的反义化合物中的一种的至少20个连续核苷酸。寡核苷酸的任何剩余核苷酸可以是改善对RNA酶H抗性的寡核苷酸、细胞靶向序列、细胞穿透序列、标记序列或任何其它序列。本领域技术人员根据本文公开的反义化合物将能够鉴定其他反义化合物而无需过多的实验。为了反义寡核苷酸实现治疗成功,寡核苷酸化学必须允许足够的细胞摄取(Kurreck,J.(2003)Eur.J.Biochem.270:1628-1644)。剪接寡核苷酸传统上包含使寡核苷酸为RNA样的均一修饰,因此使其获得对RNA酶H切割的抗性,这对实现剪接的调控至关重要。本文提供用于剪接调控的反义化合物。在本发明和/或其实施例的一个优选的实施方案中,反义化合物与RNA样和DNA-样化学的区域嵌合。尽管DNA-样化学的区域,嵌合化合物优选具有RNA酶H抗性并且有效调控体外和体内的靶mRNA的剪接。在另一个优选的实施方式中,与均匀修饰的寡核苷酸相比公开的反义寡聚化合物显示增强的细胞摄取和更大的药理学活性。本文所考虑的是靶向靶mRNA的剪接位点、或剪接阻抑物序列、或剪接增强子序列、优选剪接阻抑物序列的反义寡聚化合物。剪接位点包括异常和隐藏剪接位点。本领域技术人员将认识到可能发生错配的纳入,但并不消除反义化合物的活性。因此本文提供的化合物是这样一种反义化合物,其含有高达约20%的核苷酸扰乱所述反义化合物与靶标的碱基配对。优选的化合物包含不超过约15%错配,更优选不超过约10%错配,最优选不超过5%错配,或没有错配。剩余的核苷酸不破坏杂交(例如,通用碱基)。本领域应理解,核苷酸亲和力修饰的纳入相比未修饰的化合物可以允许更大数目的错配。同样地,某些寡核苷酸序列可以比其他的寡核苷酸序列更耐受错配。本领域技术人员能够例如通过测定熔解温度来确定寡核苷酸之间或寡核苷酸和靶核酸之间适当数量的错配。本领域技术人员已知杂交至靶mRNA取决于条件。“严谨杂交条件”或“严谨条件”是指在该条件下的寡聚化合物将杂交至其靶序列,但与其它序列的杂交数量最小。严谨条件是序列依赖性的并且在不同的环境中不同,并且寡聚化合物杂交靶序列的“严谨条件”是由寡聚化合物的性质和组成以及研究其的试验所决定的。反义化合物或其部分,可以与SEQIDNO或具有特定Isis编号的化合物具有限定的百分比相同性。如本文所用,如果序列具有相同的核碱基配对能力,则该序列与本文所公开的序列相同。例如,在公开的序列中的胸腺嘧啶核苷的位置包含尿嘧啶的RNA会被认为是相同的,因为它们都与腺嘌呤配对。该相同性可以是在寡聚化合物的整个长度,或在反义化合物的一部分(例如,27-聚体的核苷酸1-20可以比较20聚体,以确定寡聚化合物与SEQIDNO的相同性百分比)。由本领域技术人员知晓,反义化合物不需要与本文所描述的那些具有相同的序列来行使本文中所描述的反义化合物的类似功能。本文所教导的反义化合物的缩短形式,或本文教导的反义化合物的非相同形式也可以考虑。非相同形式是其中每个碱基不具有与本文所公开的反义化合物的相同的配对活性的那些。通过被缩短或具有至少一个脱碱基位点,碱基不具有相同的配对活性。或者,非相同形式可以包括至少一个碱基被具有不同配对活性的不同的碱所替代(例如,G可以被C,A,或T替代)。相同性百分比根据具有对应于其所对比的SEQIDNO或反义化合物的相同碱基配对的碱基数来计算。非相同碱基可以是彼此相邻的、在寡核苷酸上分散的、或两者兼有。例如,具有与20聚体的核苷酸2-17相同序列的16聚体与该20聚体有80%相同。或者,含有四个核苷酸与20聚体不相同的20聚体也与该20聚体有80%相同。与18聚体的核苷酸1-14具有相同序列的14-聚体与该18聚体有78%相同。这样的计算在本领域技术人员的能力范围内。相同性百分比基于原始序列的核苷酸在修饰序列的部分中存在的百分比。因此,包含有20个核碱基活性靶片段的互补物的全序列的30个核碱基的反义化合物将具有与20个核碱基活性靶片段的互补物有100%相同性的部分,同时还包括其他10个碱基部分。活性靶片段的互补物可以构成单一部分。在本发明和/或其实施方式的一个优选实施方式中,寡核苷酸与本文所述活性靶片段的互补物的至少一部分有至少约80%,更优选至少约85%,更优选至少约90%,最优选至少95%相同。本领域技术人员知晓,可以增加或减少的反义化合物的长度和/或引入错配碱基而不消除活性。例如,Woolf等(Proc.Natl.Acad.Sci.USA89:7305-7310,1992,其通过引用并入本文)测试了一系列长度为13-25个核苷酸的反义寡聚化合物的诱导靶RNA切割的能力。长度为25个核苷酸并在端部附近有8或11个错配碱基的反义寡聚化合物能够指导靶mRNA的特异性切割,虽然比不含有错配的反义寡聚化合物程度较轻。同样,使用13个核碱基的反义寡聚化合物实现靶特异性切割,包括那些具有1或3个错配的化合物。Maher和Dolnick(Nuc.Acid.Res.16:3341-3358,1988,其通过引用并入本文)测试了一系列串联14个核碱基的反义寡聚化合物,以及分别包含两个或三个串联反义寡聚化合物的序列的28和42个核碱基的反义寡聚化合物,测试他们在兔网织红细胞检测中阻滞人DHFR翻译的能力。三种14核碱基的反义寡聚化合物的每个都能单独抑制翻译,尽管比28或42个核碱基的反义寡聚化合物具有更温和的水平。可以理解,反义化合物可以在长度和互补性百分比上与靶标不同,只要它们维持所期望的活性。本文公开确定所需活性的方法并且本领域技术人员已知这些方法。在本发明和/或其实施方式的优选实施方式中,反义寡聚化合物与靶mRA具有至少80%的互补,更优选与靶mRA具有至少85%的互补,更优选与靶mRA具有至少90%的互补,更优选与靶mRA具有至少95%的互补,更优选与靶mRA具有至少96%的互补,更优选与靶mRA具有至少97%的互补,更优选与靶mRA具有至少98%的互补,更优选与靶mRA具有至少99%的互补,更优选与靶mRA具有至少100%的互补。如本领域已知,核苷是碱基-糖的组合。核苷的碱基部分通常是杂环碱基(有时被称为一个“核碱基”或简称为“碱基”)。这种杂环碱基的两种最常见类别是嘌呤和嘧啶。核苷酸是还包括共价连接到核苷的糖部分上的磷酸基团的核苷。对于那些包括呋喃戊糖基糖的核苷,磷酸基团可以连接至糖的2',3'或5'羟基部分。在形成寡核苷酸中,磷酸基团将相邻的核苷彼此共价连接以形成线性聚合化合物。寡核苷酸内,磷酸基团通常涉及形成寡核苷酸的核苷间骨架。RNA和DNA的正常键或骨架是3'至5'磷酸二酯键。寡核苷酸中通常优选包括化学修饰以改变它们的活性。化学修饰可以改变寡核苷酸的活性,通过例如:增加反义寡核苷酸与其靶RNA的亲和性,增加核酸酶抗性,和/或改变寡核苷酸的药代动力学。使用会增加寡核苷酸对其靶的亲合性的化学可以允许使用更短的寡核苷酸化合物。本文所提供的反义化合物还可以包含具有修饰的糖部分的一种或多种核苷。核苷的呋喃糖环可以以多种方式被修饰,包括但不限于,添加取代基、桥接两个非成对环原子以形成双环核酸(BNA)和针对4'-位上的环氧的取代原子或基团例如-S-、-N(R)-或-C(R1)(R2)。修饰的糖部分是众所周知的,其可以用来改变(通常会增加)反义化合物的对其靶的亲和力和/或提高核酸酶抗性。优选的经修饰的糖的代表性例子包括但不限于双环修饰的糖(BNA's),包括LNA和ENA(4'-(CH2)2-O-2'桥);和取代的糖,特别是具有2'-F、2'-OCH2或2'-O(CH2)2-OCH3取代基的2'-取代的糖。糖也可以用糖模拟物基团等取代。修饰的糖的制备方法本领域技术人员公知。合适的化合物可以在2'位置上包括下述之一:OH;F;O-,S-,或N-烷基;O-,S-,或N-烯基;O-,S-或N-炔基;或O-烷基-O-烷基,其中所述烷基、烯基和炔基可以是取代或未取代的C1至C10烷基或C2至C10烯基和炔基。其他合适的是O((CH2)nO)mCH3,O(CH2)nOCH3,O(CH2)nNH2,O(CH2)nCH3,O(CH2)nONH2,和O(CH2)nON((CH2)nCH3)2,其中n和m是1至大约10。其它优选的寡核苷酸在2′位置包括以下之一:C1-C10低级烷基、取代的低级烷基、烯基、炔基、烷芳基、芳烷基、O-烷芳基或O-芳烷基、SH、SCH3、OCN、Cl、Br、CN、CF3、OCF3、SOCH3、SO2CH3、ONO2、NO2、N3、NH2、杂环烷基、杂环烷芳基、氨基烷氨基、聚烷氨基、取代的硅烷基、RNA切割基团、报告基团、插入剂、用于改善寡核苷酸的药代动力学特性的基团或用于改善寡核苷酸药效特性的基团,以及其它具有相似特性的取代基。一种修饰包括2'-甲氧基乙氧基(2'-O-CH2CH2OCH3,也称为2'-O-(2-甲氧基乙基)或2'-MOE)(Martin等,Helv.Chim.Acta,1995,78,486-504),即烷氧基烷氧基基团。进一步的修饰包括2'-二甲基氨基氧基乙氧基,即O(CH2)2ON(CH3)2基团,也称为2'-DMAOE,以及2'-二甲基氨基乙氧基乙氧基(在本领域中也被称为2'-O-二甲基-氨基-乙氧基-乙基或2'-DMAEOE),即2'-O-(CH2)2-O-(CH2)2-N(CH3)2。其他修饰包括2'-甲氧基(2'-O-CH3),2'-氨基丙氧基(2'-OCH2CH2CH2NH2),2'-烯丙基(2'-CH2-CH-CH2),2'-O-烯丙基(2'-O-CH2-CH-CH2)和2'-氟代(2'-F)。2'-修饰可以是在阿拉伯糖(上)位置或核糖(下)位置。一种2'-阿拉伯糖修饰是2'-F。也可在所述寡核苷酸的其它位置产生相似的修饰,特别是3′末端核苷酸或2′-5′连接的寡核苷酸的糖基的3′位置和5′末端核苷酸的5'位置。反义化合物也可具有糖基模拟物,例如环丁基部分,其代替呋喃戊糖。教导这类修饰的糖结构的制备的代表性美国专利包括但不限于,美国专利号4,981,957;5,118,800;5,319,080;5,359,044;5,393,878;5,446,137;5,466,786;5,514,785;5,519,134;5,567,811;5,576,427;5,591,722;5,597,909;5,610,300;5,627,053;5,639,873;5,646,265;5,658,873;5,670,633;5,792,747;5,700,920;和6,147,200。在本发明的一个方面,寡聚化合物包括修饰以诱导3'-内型糖构象的核苷。核苷可以纳入杂环碱基、糖部分或二者的修饰以诱导期望的3'-内型糖构象。这些修饰的核苷被用来模仿RNA样核苷,从而可以在保持期望的3'-内型构象的几何形状的同时增强寡聚化合物的特定性质。在本发明,优选RNA型双链体(A形式螺旋,主要为3'-内型),因为它们具有RNA酶H抗性。通过使用更稳定的3'-内型核苷来增强的性质包括但不限于:通过蛋白质结合、蛋白解离速率、吸收和清除的修饰来调控药代动力学性质;核酸酶稳定性以及化学稳定性的调控;寡聚物的结合亲和力和特异性(对酶以及对互补序列的亲和性和特异性)的调控;和增加RNA切割效率。核苷构象受各种因素的影响,包括呋喃戊糖基糖的2',3'或4'-位置的取代的影响。电负性取代一般优选轴向位置,而在空间上要求取代一般优选赤道位置(《核算结构原理》,WolfgangSanger,1984,Springer-Verlag)。可实现2'位的修饰以有利于3'-内型构象,同时保持2'-OH作为识别元件(Gallo等,Tetrahedron(2001),57,5707-5713.Harry-O'kuru等,J.Org.Chem.,(1997),62(6),1754-1759和Tang等,J.Org.Chem.(1999),64,747-754.)。另外,对3'-内型构象的偏好可通过删除2'-OH来实现,如2'脱氧-2'F核苷所示(Kawasaki等,J.Med.Chem.(1993),36,831-841),其采用3'-内型构象定位轴向位置中的电负氟原子。给予所得双链体A型构象的性质(3'-内型)的适合本发明的代表性2'-取代基包括2'-O-烷基,2'-O-取代的烷基和2'-氟取代基。其它合适的取代基是不同的烷基和芳基醚和硫醚、胺和单烷基和二烷基取代胺。核糖环的其他修饰,例如4'-位取代以得到4'-F修饰的核苷(Guillerm等BioorganicandMedicinalChemistryLetters(1995),5,1455-1460和Owen等,J.Org.Chem.(1976),41,3010-3017),或例如修饰以得到甲烷球菌属(methanocarba)核苷类似物(Jacobson等,J.Med.Chem.Lett.(2000),43,2196-2203和Lee等,BioorganicandMedicinalChemistryLetters(2001),11,1333-1337)也引起了对3'-内型构象的偏好。沿着类似的路线,一个或多个核苷可以以这样的方式修饰:构象锁定成C3'-内型构象,即锁核酸(LNA,Singh等,Chem.Commun.(1998),4,455-456),和乙烯桥联核酸(ENA(TM),Morita等,Bioorganic&MedicinalChemistryLetters(2002),12,73-76.)。糖的优选修饰选自2'-O-甲基2'-O-甲氧基乙基,2'-氟,2'-二甲基氨基氧基乙氧基,2'-二甲基氨基乙氧基乙氧基,2'-胍,2'-O-胍乙基,2'-氨基甲酸酯,2'-氨基氧基,2'-乙酰氨基和锁核酸。在一个优选的实施方式中,糖修饰是2'-O-甲基或2'-O-甲氧基乙基。寡聚化合物也可包括核碱基(本领域通常称为杂环碱基或简单地称为“碱基”)修饰或取代。如本文中所用的,“未修饰的”或“天然的”核碱基包括嘌呤碱基:腺嘌呤(A)和鸟嘌呤(G),以及嘧啶碱基:胸腺嘧啶(T)、胞嘧啶(C)和尿嘧啶(U)。“取代”是未修饰的或天然碱基被另一个未修饰的或天然碱基替换。“修饰的”核苷酸表示其他合成和天然核碱基,如5-甲基胞嘧啶(5-me-C)、5-羟甲基胞嘧啶、黄嘌呤、次黄嘌呤、2-氨基腺嘌呤、腺嘌呤和鸟嘌呤的6-甲基和其它烷基衍生物、腺嘌呤和鸟嘌呤的2-丙基和其它烷基衍生物、2-硫尿嘧啶、2-硫代胸腺嘧啶和2-硫代胞嘧啶、5-卤代尿嘧啶和胞嘧啶、5-丙炔基(-C[相同]C-CH3)尿嘧啶和胞嘧啶和嘧啶碱基的其他炔基衍生物、6-偶氮尿嘧啶、胞嘧啶和胸腺嘧啶、5-尿嘧啶(假尿嘧啶)、4-硫尿嘧啶、8-卤代、8-氨基、8-硫代、8-硫烷基、8-羟基和其它8-取代的腺嘌呤和鸟嘌呤、5-卤代特别是5-溴、5-三氟甲基和其他5-取代的尿嘧啶和胞嘧啶、7-甲基鸟嘌呤和7-甲基腺嘌呤、2-F-腺嘌呤、2-氨基腺嘌呤、8-氮杂鸟嘌呤和8-氮杂腺嘌呤、7-脱氮杂鸟嘌呤和7-脱氮杂腺嘌呤和3-脱氮杂鸟嘌呤和3-脱氮杂腺嘌呤。其他修饰的核苷酸包括三环嘧啶,例如吩嗪胞苷(1H-嘧啶并(5,4-b)(1,4)苯并噁嗪-2(3H)-酮),吩噻嗪胞苷(1H-嘧啶并(5,4-b)(1,4)苯并噻嗪-2(3H)-酮),G-夹例如取代的吩噁嗪胞苷(例如9-(2-氨基乙氧基)-H-嘧啶(5,4-b)(1,4)苯并噁嗪-2(3H)-酮),咔唑胞苷(2H-嘧啶并(4,5-b)吲哚-2-酮),吡啶并吲哚胞苷(H-吡啶并(3',2':4,5)吡咯并[2,3-d]嘧啶-2-酮)。修饰的核苷酸还可包括其中嘌呤或嘧啶碱基被替换为其他杂环的那些,所述杂环例如7-脱氮-腺嘌呤,7-脱氮鸟,2-氨基吡啶和2-吡啶酮。其他核苷酸包括下述公开的那些:美国专利号3,687,808、在《高分子科学与工程简明百科全书》,858-859页,Kroschwitz,J.I.编,JohnWiley&Sons,1990、Englisch等,《应用化学》国际版,1991,30,613、和Sanghvi,Y.S.,第15章,《反义研究与应用》,289-302页,Crooke,S.T.和Lebleu,B.编,CRC出版社,1993。这些核苷酸的某些本领域已知适合于提高本发明的化合物的结合亲和力。这些核碱基包括5-取代的嘧啶、6-偶氮基嘧啶以及N-2、N-6和O-6取代的嘌呤,包括2-氨基丙基腺嘌呤、5-丙炔基尿嘧啶和5-丙炔基胞嘧啶。已发现5-甲基胞嘧啶取代使核酸双链的稳定性提高了0.6-1.2℃,其是目前适合的碱基取代,当与2′-甲氧基乙基糖基修饰组合时,甚至提供更多。本领域已知碱基的修饰不涉及这种化学修饰以在核酸序列中产生取代。教导制备某些上述修饰的核苷酸以及其它修饰的核苷酸的代表性美国专利包括但不局限于:上述的美国专利号3,687,808,以及美国专利号4,845,205;5,130,302;5,134,066;5,175,273;5,367,066;5,432,272;5,457,187;5,459,255;5,484,908;5,502,177;5,525,711;5,552,540;5,587,469;5,594,121,5,596,091;5,614,617;5,645,985;5,830,653;5,763,588;6,005,096;5,681,941;和5,750,692。本发明的寡聚化合物还可以包括多环杂环化合物代替一个或多个天然存在的杂环碱基部分。先前已经报道了一些三环杂环化合物。这些化合物在反义应用常规使用以提高修饰链与靶链的结合性质。研究最多的修饰靶向鸟苷,因此他们被称为G-夹或胞苷类似物。与第二链的鸟苷形成3氢键的代表性胞嘧啶类似物包括1,3-重氮吩噁嗪--2-酮(Kurchavov等,NucleosidesandNucleotides,1997,16,1837-1846),1,3-重氮吩噁嗪-2-酮,(Lin,K.-Y.;Jones,R.J.;Matteucci,M.J.Am.Chem.Soc.1995,117,3873-3874)和6,7,8,9-四氟-1,3-重氮吩噁嗪-2-酮(Wang,J.;Lin,K.-Y.,Matteucci,M.TetrahedronLett.1998,39,8385-8388)。将这些碱基修饰纳入寡核苷酸显示出与互补鸟嘌呤杂交,而后者也显示与腺嘌呤杂交和以及通过延伸的堆积相互作用而增强螺旋热稳定性(见美国预授权公开20030207804和20030175906)。当胞嘧啶类似物/取代具有连接到刚性1,3-重氮吩噁嗪-2-酮支架上的氨基乙氧基部分时观察到进一步的螺旋稳定性质(Lin,K.-Y.;Matteucci,M.J.Am.Chem.Soc.1998,120,8531-8532)。结合研究证实,相对于5-甲基胞嘧啶,单一纳入能增强模型寡核苷酸与其互补靶DNA或RNA的结合亲和性,具有高达18℃的ΔTm,这对单一修饰来说是非常高的亲和性增强。另一方面,螺旋稳定性的增益不会损害寡核苷酸的特异性。美国专利号6028183和6007992中公开了适合本发明中使用的其他三环杂环化合物和使用它们的方法。吩嗪衍生物的增强的结合亲和力以及其无与伦比的序列特异性使他们成为开发基于反义的更有效药物的有价值的核苷类似物。事实上,体外实验的有前景的数据表明含有吩噁嗪取代的七核苷酸(heptanucleotides)能够激活RNA酶H,增强细胞摄取并呈现出增加的反义活性(Lin,K-Y;Matteucci,M.J.Am.Chem.Soc.1998,120,8531-8532)。在G-夹的情况下更加证实了活性增强,因为单一取代显示出显著改善20聚体2'-脱氧硫逐磷酸酯寡核苷酸的体外效力(Flanagan,W.M.;Wolf,J.J.;Olson,P.;Grant,D.;Lin,K.-Y.;Wagner,R.W.;Matteucci,M.Proc.Natl.Acad.Sci.USA,1999,96,3513-3518)。其他用作杂环碱基的修饰的多环杂环化合物在包括但不限于下述中公开:上面提到的美国专利号3,687,808,以及美国专利号4,845,205;5,130,302;5,134,066;5,175,273;5,367,066;5,432,272;5,434,257;5,457,187;5,459,255;5,484,908;5,502,177;5,525,711;5,552,540;5,587,469;5,594,121,5,596,091;5,614,617;5,645,985;5,646,269;5,750,692;5,830,653;5,763,588;6,005,096;和5,681,941,和美国预授权公开20030158403。本文所述的化合物可以包括将核苷或修饰的单体单元连接在一起的核苷间连接基团,由此形成反义化合物。核苷间连接基团的两个主要类别由是否存在磷原子来定义。代表性的含磷核苷间连接包括但不限于磷酸二酯,磷酸三酯,甲膦酸酯,亚磷酰胺,和硫代磷酸酯。代表性的非含磷核苷间连接基团包括但不限于,甲撑甲基亚胺基(-CH2-N(CH3)-O-CH2-),硫代二酯(-O-C(O)-S-),硫逐氨基甲酸酯(-O-C(O)(NH)-S-);硅氧烷(-O-Si(H)2-O-);和N,N'-二甲基肼(-CH2-N(CH3)-N(CH3)-)。相对于天然磷酸二酯键,修饰的核苷间连接可以用来改变(通常增加)反义化合物的核酸酶抗性。具有手性原子的核苷间连接可以制备为外消旋的、手性的、或制备为混合物。代表性手性核苷间连接包括,但不限于,烷基磷酸酯和硫代磷酸酯。制备含磷和非含磷连接的方法本领域技术人员公知。合适的修饰的核苷间连接基团例如,硫代磷酸酯,手性硫代磷酸酯,二硫代磷酸酯,磷酸三酯,氨基烷基磷酸三酯,甲基和其它烷基膦酸酯,包括3'-亚烷基膦酸酯,5'-亚烷基膦酸酯和手性膦酸酯,次膦酸酯,亚磷酰胺,包括3'-氨基亚磷酰胺和氨基烷基亚磷酰胺,硫逐亚磷酰胺,硫逐烷基-膦酸酯,硫逐烷基磷酸三酯,膦酰乙酸酯和硫代膦酰乙酸酯(参见Sheehan等,NucleicAcidsResearch,2003,31(14),4109-4118和Dellinger等J.Am.Chem.Soc.,2003,125,940-950),具有正常3'-5'键的硒磷酸酯和硼烷磷酸酯(boranophosphates),这些的2'-5'连接类似物,和具有相反极性的那些,其中一个或多个核苷间连接是3'到3',5'到5'或2'到2'连接。具有相反极性的寡核苷酸在最3'-核苷间连接处包括单个3'到3'连接,即可以是无碱基的单个反向的核苷残基(核碱基丢失或其位置被羟基基团替代)。也包括多种盐、混合的盐和游离酸形式。已经报道N3'-P5'-亚磷酰胺显示出对互补RNA链的高亲和性和核酸酶抗性(Gryaznov等J.Am.Chem.Soc.,1994,116,3143-3144)。已经研究N3'-P5'-亚磷酰胺,一些在体内成功特异下调c-myc基因的表达(Skorski等Proc.Natl.Acad.Sci.,1997,94,3966-3971;和Faira等Nat.Biotechnol.,2001,19,40-44)。教导上述含磷连接的制备的代表性美国专利包括但不限于美国专利号3,687,808;4,469,863;4,476,301;5,023,243;5,177,196;5,188,897;5,264,423;5,276,019;5,278,302;5,286,717;5,321,131;5,399,676;5,405,939;5,453,496;5,455,233;5,466,677;5,476,925;5,519,126;5,536,821;5,541,306;5,550,111;5,563,253;5,571,799;5,587,361;5,194,599;5,565,555;5,527,899;5,721,218;5,672,697和5,625,050。在本发明的一些实施方式中,寡聚化合物可具有一个或多个硫代磷酸酯和/或杂原子核苷间连接,特别是-CH2-NH-O-CH2-,-CH2-N(CH3)-O-CH2-(称为亚甲基(甲基亚氨基)或MMI骨架),-CH2-O-N(CH3)-CH2-,-CH2-N(CH3)-N(CH3)-CH2-和-O-N(CH3)-CH2-CH2-(其中天然磷酸二酯核苷间连接表示为-O-P(-O)(OH)-O-CH2-)。MMI型核苷间连接在上述引用的美国专利5,489,677中公开。酰胺核苷间连接在上述引用的美国专利5,602,240中公开。一些不包括磷原子的寡核苷酸骨架具有由短链烷基或环烷基核苷间连接,混合杂原子和烷基或环烷基核苷间连接,或一个或多个短链杂原子或杂环核苷间连接形成的骨架。这些包括具有吗啉代连接(部分从核苷的糖基部分形成)的主链;硅氧烷主链;硫化物、亚砜和砜主链;甲酰基和硫代甲酰基主链;亚甲基甲酰基和硫代甲酰基主链;核糖乙酰基(riboacetyl)主链;含烯主链;氨基磺酸酯主链;亚甲基亚氨基和亚甲肼基主链;磺酸酯和磺酰胺主链;酰胺主链和其他具有混合的N、O、S和CH2组分的主链。教导上述寡核苷酸的制备的代表性美国专利包括但不限于美国专利号5,034,506;5,166,315;5,185,444;5,214,134;5,216,141;5,235,033;5,264,562;5,264,564;5,405,938;5,434,257;5,466,677;5,470,967;5,489,677;5,541,307;5,561,225;5,596,086;5,602,240;5,610,289;5,602,240;5,608,046;5,610,289;5,618,704;5,623,070;5,663,312;5,633,360;5,677,437;5,792,608;5,646,269和5,677,439。在本发明和/或其实施方式的优选实施方式中,核苷间连接是硫代磷酸酯或磷二酰胺。进一步表示可以在一个或多个单体亚基(核苷是合适的)和/或核苷间连接的多重位点对本发明的一个或多个寡聚化合物进行多种修饰,以提高性能例如但不限于在所选择的应用中的活性。适合本发明的大量的修饰核苷的合成本领域中公知(参见例如,《核苷和核苷酸的化学》1-3卷,LeroyB.Townsend编辑,1988,Plenum出版社。修饰的核苷和它们的寡聚物的构象可通过本领域技术人员熟知的各种方法,例如分子动力学计算,核磁共振光谱和CD测量来估计。在本发明和/或其实施方式的优选实施方式中,本发明的寡聚化合物是吗啉代硫代磷酸酯或吗啉代磷二酰胺。寡聚化合物的另一组包括寡核苷酸模拟物。如本文所用的术语“模拟物”是指糖、碱基和/或核苷间连接被取代的基团。一般地,模拟物用于替代糖或糖核苷间连接组合,并且该核碱基被保持以杂交至所选靶标。糖模拟物的代表性实例包括但不限于,环己烯基或吗啉代。糖核苷间连接组合的模拟物的代表性例子包括但不限于由不带电荷的非手性键连接的肽核酸(PNA)和吗啉代基团。在一些情况下,模拟物用于替代核碱基。代表性的核碱基模拟物本领域熟知,包括但不限于三环吩噁嗪类似物和通用碱基(Berger等,NucAcidRes.2000,28:2911-14,其通过引用并入本文)。糖、核苷和核碱基类似物的合成方法本领域技术人员熟知。杂环碱基部分或修饰的杂环碱基部分优选被保持以用于与适当的靶核酸杂交。本文所述的化合物可含有一个或多个不对称中心,因此产生对映体,非对映体,和其它立体异构构象,在绝对立体化学方面其可以被定义为如(R)或(S),α或β,或(D)或(L)如氨基酸等。本公开意在包括所有这些可能的异构体,以及它们的外消旋和光学纯形式。一种这样的寡聚化合物,已被显示出具有出色的杂交性质的寡核苷酸模拟物,被称为肽核酸(PNA)(Nielsen等Science,1991,254,1497-1500)。PNA具有良好的杂交特性,高生物稳定性并且是静电中性分子。PNA化合物已被用于校正转基因小鼠模型中的异常剪接(Sazani等Nat.Biotechnol.,2002,20,1228-1233)。在PNA寡聚化合物中,用含酰胺的主链,特别是氨基乙基甘氨酸主链,替代寡核苷酸的糖主链。核苷酸直接或间接结合到主链的酰胺部分的氮杂氮原子。教导PNA寡聚化合物的制备的代表性美国专利包括但不限于,美国专利号5,539,082;5,714,331;和5,719,262。PNA化合物可商购自应用生物系统公司(AppliedBiosystems,福斯特城,美国加利福尼亚州)。基本PNA骨架的许多修饰本领域已知;特别有用的是一个或两个末端偶联有一个或多个氨基酸的PNA化合物。例如,当偶联至PNA分子末端时,1-8赖氨酸或精氨酸残基是有用的。聚精氨酸尾可适于增强细胞穿透。另一类已研究的寡核苷酸模拟物基于连接的吗啉单元(吗啉代核酸),其具有连接到吗啉环的杂环碱基。已被报道许多在吗啉代核酸中连接吗啉单体单元的连接基团。已选择一类连接基团用于提供非离子寡聚化合物。基于吗啉代的寡聚化合物是寡核苷酸的非离子型模拟物,其不太可能与细胞蛋白质形成不希望的相互作用(DwaineA.Braasch和DavidR.Corey,《生物化学》2002,41(14),4503-4510)。基于吗啉代的寡聚化合物已经在斑马鱼的胚胎中研究(参见Genesis,第30卷,3期,2001和Heasman,J.,Dev.Biol.,2002,243,209-214)。基于吗啉代的寡聚化合物的进一步的研究也已经报道(Nasevicius等Nat.Genet.,2000,26,216-220和Lacerra等Proc.Natl.Acad.Sci.,2000,97,9591-9596)。美国专利号5,034,506中公开了基于吗啉代的寡聚化合物。吗啉代类寡聚化合物已被制备成具有连接单体亚基的多种不同的连接基团。连接基团可以从手性改变成非手性,以及从带电荷改变为中性。美国专利5,166,315公开了包括-O-P(-O)(N(CH3)2)-O-的连接;美国专利5,034,506公开了手性吗啉代间连接;和美国专利5,185,444公开了含磷手性吗啉代间连接。另一类的寡核苷酸模拟物被称为环己烯核酸(CeNA)。在CeNA寡核苷酸,存在于DNA或RNA分子中的呋喃糖环通常被替换为环己烯基环。已制备CeNADMT保护的亚磷酰胺单体并用于经典亚磷酰胺化学之后的寡聚化合物的合成。已制备并研究在特定位点用CeNA修饰的完全修饰的CeNA寡聚化合物和寡核苷酸(Wang等J.Am.Chem.Soc.,2000,122,8595-8602)。CeNA单体纳入DNA链通常增加其DNA/RNA杂交体的稳定性。CeNA寡聚腺苷酸与RNA和DNA互补物形成复合物,与天然复合物具有相似稳定性。纳入CeNA结构到天然核酸结构中的研究由NMR和圆二色性显示,从而以方便的构象适应性进行。此外CeNA纳入靶向RNA的序列对血清稳定并且能够激活大肠杆菌RNA酶H,导致靶RNA链的切割。其他修饰包括双环糖部分如“锁核酸”(LNA),其中核糖基糖环的2'-羟基连接到糖环的4'碳原子,从而形成2'-C,4'-C-氧乙烯键,以形成双环糖部分(参见,Elayadi等Curr.OpinionInvens.Drugs,2001,2,558-561;Braasch等Chem.Biol.,2001,81-7;和Orum等,Curr.OpinionMol.Ther.,2001,3,239-243,也参见美国专利6,268,490和6,670,461)。所述连接可以是桥接2'氧原子和4'碳原子的亚甲基(-CH2-)基团,其中术语LNA用于双环部分;在该位置为亚乙基的情况下,使用术语ENA(TM)(Singh等Chem.Commun.,1998,4,455-456;ENA(TM):Morita等BioorganicMedicinalChemistry,2003,11,2211-2226)。LNA和其他双环糖类似物显示与互补DNA和RNA的非常高的双链体热稳定性(Tm=+3至+10℃.),对3'核酸外切降解的稳定性和良好的溶解性能。LNA可购自ProLigo公司(法国巴黎,和美国科罗拉多州博尔德)。还研究了LNA的异构体,α-L-LNA,显示其具有针对3'-核酸外切酶优越的稳定性。α-L-LNA被纳入反义间隙物(gapmer)和嵌合体,表现出有效的反义活性(Frieden等,NucleicAcidsResearch,2003,21,6365-6372)。已经制备并研究的另一类似的双环糖部分具有从糖环的3'-羟基经由单个亚甲基基团到4'碳原子的桥,从而形成3'-C,4'-C-氧乙烯连接(见美国专利6,043,060)。已经显示LNA形成非常稳定的LNA:LNA双链体(Koshkin等,J.Am.Chem.Soc.,1998,120,13252-13253)。LNA:LNA杂交被证明是最热稳定的核酸型双链体,并且在双链体水平上建立LNA的RNA模仿特征。引入3个LNA单体(T或A)显著增加对DNA互补物的熔点(Tm=+15/+11℃)。LNA-介导的杂交的普遍性已经得到形成极为稳定的LNA:LNA双链体的肯定。LNA的RNA模拟由单体的N型构象限制以及LNA:RNA双链体的二级结构所反映。LNA还与互补的DNA,RNA或LNA形成具有高热亲和力的双链体。圆二色性(CD)光谱显示涉及完全修饰的LNA的双链体(具体是LNA:RNA)结构上类似于A型RNA:RNA双链体。LNA:DNA双链体的核磁共振(NMR)检查证实LNA单体的3'-内型构象。还已经证明双链DNA的识别,这表明由LNA的链侵入。错配序列的研究表明,相对于相应的未修饰的参考链,LNA服从Watson-Crick碱基配对规则并且普遍改善选择性。DNA-LNA嵌合体已被证明当靶向荧光素酶mRNA的各区域时(5'-非翻译区,起始密码子的区域或编码区域)能够有效地抑制基因表达(Braasch等NucleicAcidsResearch,2002,30,5160-5167)。已经描述含有LNA的有效和无毒的反义寡核苷酸(Wahlestedt等Proc.Natl.Acad.ScU.S.A.,2000,97,5633-5638)。作者已经证明,LNA赋予一些所需属性。LNA/DNA共聚物不容易在血清和细胞提取物中降解。LNA/DNA共聚物在试验系统中表现出有效的反义活性,如在截然不同的活鼠脑G蛋白偶合受体信号传导中和大肠杆菌的报告基因检测中。也已经完成脂质体介导的LNA有效递送到活的人类乳腺癌细胞中。涉及LNA的其他成功体内研究显示敲减大鼠δ阿片受体而无毒性(Wahlestedt等Proc.Natl.Acad.Sci.,2000,97,5633-5638),在另一项研究中,RNA聚合酶II的大亚基的翻译受阻(Fluiter等NucleicAcidsRes.,2003,31,953-962)。已经描述LNA单体腺嘌呤、胞嘧啶、鸟嘌呤、5-甲基胞嘧啶、胸腺嘧啶和尿嘧啶的合成和制备,以及它们的寡聚化和核酸识别属性(Koshkin等Tetrahedron,1998,54,3607-3630)。LNA及其制备在WO98/39352和WO99/14226也有描述。也已制备LNA的类似物,硫代磷酸酯-LNA和2'-硫代LNA(Kumar等Bioorg.Med.Chem.Lett.,1998,8,2219-2222)。也已描述含有寡脱氧核糖核苷酸双链体作为核酸聚合酶底物的锁核苷类似物的制备(Wengel等WO99/14226)。此外,本领域已经描述2'-氨基-LNA的合成,一种新颖的构象受限的高亲和性寡核苷酸类似物(Singh等J.Org.Chem.,1998,63,10035-10039)。此外,已经制备2'-氨基-和2'-甲基氨基-LNA并且已经报道它们与互补RNA和DNA链的双链体的热稳定性。已制备并研究的另一种寡核苷酸模拟物是苏糖核酸。该寡核苷酸模拟物基于苏糖核苷替代核糖核苷。对(3',2')-α-L-苏糖核酸(TNA)最初的兴趣是针对是否存在将复制TNA的DNA聚合酶的问题。发现某些DNA聚合酶能够复制TNA模板的有限伸展(化学和工程新闻,2003,81,9)。在另一项研究中,确定TNA能够与互补的DNA,RNA和TNA寡核苷酸进行反平行的Watson-Crick碱基配对(Chaput等在J.Am.Chem.Soc.,2003,125,856-857)。在一项研究中,制备(3',2')-α-L-苏糖核酸并将其与2'和3'酰胺化类似物比较(Wu等,OrganicLetters,2002,4(8),1279-1282)。显示该酰胺化类似物以结合RNA/DNA的相当的强度的结合RNA和DNA。已经制备其他寡核苷酸模拟物,包括二环和三环核苷类似物(参见Steffens等,Helv.Chim.Acta,1997,80,2426-2439;Steffens等,J.Am.Chem.Soc.,1999,121,3249-3255;Renneberg等,J.Am.Chem.Soc.,2002,124,5993-6002;和Renneberg等,Nucleicacidsres.,2002,30,2751-2757)。这些修改核苷类似物已经使用磷亚酰胺方法而寡聚化,所得的含有三环核苷类似物的寡聚化合物显示出当与DNA,RNA和本身杂交时的增加的热稳定性(Tm's)。含有双环核苷类似物的寡聚化合物显示接近于DNA双链体的热稳定性。另一类的寡核苷酸模拟物称为膦酰基单酯核酸,其中在骨架中掺入磷基团。此类寡核苷酸模拟物被报道在抑制基因表达(反义寡核苷酸,正义寡核苷酸和三重形成寡核苷酸)方面的具有有用的物理和生物和药理特性,作为探针用于检测的核酸和作为助剂用于分子生物学。已制备适合本发明的其他寡核苷酸模拟物,其中环丁基环取代天然存在的呋喃糖环。本发明寡聚化合物的另一种修饰涉及化学连接到寡聚物化合物的一个或多个部分或偶联物,其增强寡聚化合物的性质,如增强活性,寡聚化合物的细胞分布或细胞摄取。这些部分或偶联物可以包括共价结合到官能团如伯或仲羟基基团的偶联基团。本发明的偶联基团包括嵌入剂,报道分子,多胺,聚酰胺,聚乙二醇,聚醚,增强寡聚物的药效学性质的基团,和增强寡聚物的药代动力学特性的基团。典型的偶联基团包括胆固醇,脂类,磷脂,生物素,吩嗪,叶酸,菲啶,蒽醌,吖啶,荧光素,罗丹明,香豆素和染料。在本发明的上下文中,增强药效学性质的基团包括改善摄取,提高降解抗性,和/或加强与靶核酸的序列特异性杂交的基团。在本发明的上下文中,增强药物动力学性质的基团包括改善本发明的化合物的吸收、分布、代谢或排泄的基团。代表性的偶联基团公开在1992年10月23日提交的国际专利申请PCT/US92/09196,和美国专利申请第6287860和6,762,169中。偶联物部分包括但不限于脂质部分如胆固醇部分,胆酸,硫醚,例如,己基-S-三苯甲基硫醇,巯基胆固醇,脂肪族链,例如,十二烷二醇或十一烷基残基,磷脂,例如,双-十六烷基外消旋-甘油或三乙基铵1,2-双-O-十六烷基-外消旋-甘油-3-H-膦酸酯,多胺或聚乙二醇链,或金刚烷乙酸,棕榈基部分,或十八胺或己基氨基-羰基-羟胆固醇部分。本发明的寡聚化合物也可以偶联至药物物质,例如,阿司匹林,华法林,保泰松,布洛芬,舒洛芬,芬布芬,酮洛芬,(S)-(+)-普拉洛芬,卡洛芬,丹磺酰基肌氨酸,2,3,5-三碘苯甲酸,氟灭酸,亚叶酸,苯并噻二嗪,氯噻嗪,二氮杂卓,吲哚美辛,巴比妥类药物,头孢菌素,磺胺药物,抗糖尿病药,抗菌或抗生素。寡核苷酸-药物偶联物和它们的制备在美国专利6,656,730中描述。教导此类寡核苷酸偶联物的制备的代表性美国专利包括但不限于美国专利号4,828,979;4,948,882;5,218,105;5,525,465;5,541,313;5,545,730;5,552,538;5,578,717,5,580,731;5,580,731;5,591,584;5,109,124;5,118,802;5,138,045;5,414,077;5,486,603;5,512,439;5,578,718;5,608,046;4,587,044;4,605,735;4,667,025;4,762,779;4,789,737;4,824,941;4,835,263;4,876,335;4,904,582;4,958,013;5,082,830;5,112,963;5,214,136;5,082,830;5,112,963;5,214,136;5,245,022;5,254,469;5,258,506;5,262,536;5,272,250;5,292,873;5,317,098;5,371,241,5,391,723;5,416,203,5,451,463;5,510,475;5,512,667;5,514,785;5,565,552;5,567,810;5,574,142;5,585,481;5,587,371;5,595,726;5,597,696;5,599,923;5,599,928和5,688,941。寡聚化合物也可以经修饰以具有一个或多个的稳定基团,其通常被连接到寡聚化合物的一个或两个末端,以提高性能例如核酸酶稳定性。稳定基团包括帽结构。“帽结构或末端帽部分”是指化学修饰,其纳入寡核苷酸的任一末端(参见例如Wincott等,WO97/26270)。这些末端修饰保护具有末端核酸分子的寡聚化合物免受外切核酸酶降解,并能改善在细胞内的递送和/或定位。帽可存在于5'-末端(5'-帽)或3'-末端(3'-帽),或者可以存在于单链的两个末端,或双链化合物的两个链的一个或更多末端。此帽结构并不以与存在于天然mRNA分子的5'端的倒置甲基鸟苷“5'帽”相混淆。在非限制性实例中,5'-帽包括倒置无碱基残基(部分),4',5'-亚甲基核苷酸;1-(β-D-赤呋喃糖)核苷酸,4'-硫代核苷酸,碳环核苷酸;1,5-无水己糖醇核苷酸;L-核苷酸;α核苷酸;修饰碱基核苷酸;二硫代磷酸酯键;苏-呋喃戊糖基核苷酸;无环3',4'开环核苷酸;无环3,4-二羟基丁基核苷酸;无环3,5-二羟基戊烷核苷酸,3'-3'-反向核苷酸部分;3'-3'-反向无碱基部分;3'-2'-反向核苷酸部分;3'-2'-反向无碱基部分;1,4-丁二醇磷酸酯;3'-磷酸酯;己基磷酸酯;氨己基磷酸酯;3'-磷酸酯;3'-硫代磷酸酯;硫代磷酸酯;或桥接或非桥接的甲基膦酸酯部分(更多细节参见Wincott等,国际PCT公开号WO97/26270)特别合适的3'-帽结构包括例如4',5'-亚甲基核苷酸;1-(β-D-赤呋喃糖)核苷酸;4'-硫代核苷酸,碳环核苷酸;5'-氨基-烷基磷酸酯;1,3-二氨基-2-丙基磷酸酯,3-氨基丙基磷酸酯;6-氨基己基磷酸酯;1,2-氨基十二磷酸酯;羟丙基磷酸酯;1,5-无水己糖醇核苷酸;L-核苷酸;α核苷酸;修饰碱基核苷酸;硫代磷酸酯;苏-呋喃戊糖基核苷酸;无环3',4'-开环核苷酸;3,4-二羟基丁基核苷酸;3,5-二羟基戊烷核苷酸,5'-5'-反向核苷酸部分;5'-5'-反向无碱基部分;5'-磷酸酯;5'-硫代磷酸酯;1,4-丁二醇磷酸酯;5'-氨基;桥接和/或非桥接的5'-亚磷酰胺,硫代磷酸酯和/或二硫代磷酸酯,桥接或非桥接甲基膦酸酯和5'-巯基部分(更多细节参见Beaucage和Tyer,1993,Tetrahedron49,1925)。可用于加帽寡聚化合物的一端或两端以赋予核酸酶稳定性的其他3'和5'-稳定基团包括在2003年1月16日公开的WO03/004602中的那些。在某些实施方式中,寡聚化合物,可以与各种不同的带正电荷的聚合物偶联。带正电荷的聚合物的示例包括肽,如精氨酸丰富的肽(可以在本发明的实践中使用的带正电的肽的例子包括R9F2C;(RXR)4XB(其中X可以是任何氨基酸);R5F2R4c;(RFF)3;Tat蛋白质,例如TAT序列CYGRKKRRQRRR;以及(RFF)3R),阳离子聚合物,如树枝状八胍聚合物,以及如本领域中已知的用于偶联反义寡核苷酸化合物的其他带正电荷的分子。在本发明和/或其实施方式的优选实施方式中,反义寡核苷酸偶联带正电荷的聚合物,包括具有分子量为约1,000至20,000道尔顿的聚合物,优选约5,000至10,000道尔顿。带正电荷的聚合物的另一个例子是聚乙烯亚胺(PEI),其在支链或无支链的链中包含多个带正电荷的胺基。PEI已被广泛用作基因和寡聚物递送囊泡。在本发明和/或其实施方式的优选实施方式中,寡聚化合物用细胞穿透序列修饰。合适的细胞穿透序列包括细胞穿透肽,如TAT肽,MPG,Pep-1,MAP,膜融合,抗菌肽(AMP),杀菌肽,杀真菌肽,杀病毒肽。细胞穿透肽(CPP)是促进本发明的颗粒的细胞摄取的短肽。本发明的颗粒与CPP肽通过经由共价键的化学连接或通过非共价相互作用相关联。CPP的功能是将颗粒递送到细胞中,这通常通过内吞作用发生,将货物递送到活哺乳动物细胞的内涵体。CPP通常具有氨基酸组合物,其包含高相对丰度的带正电荷的氨基酸,如赖氨酸或精氨酸,或具有包含极性/带电荷的氨基酸和非极性、疏水氨基酸的交替形式的序列。这两种类型的结构被分别称为聚阳离子或两亲性。第三类CPP是疏水性肽,只包含非极性残基,具有低的净电荷或具有对于细胞摄取关键的疏水性氨基酸基团。示例性细胞穿透肽是人类免疫缺陷病毒1(HIV-1)的反式活化的转录激活物(Tat),可以有效地由培养基中的许多细胞类型从周围介质中摄取。其他细胞穿透肽是MPG,Pep-1,运输蛋白,穿膜肽,CADY,TP,TP10,精氨酸八聚体,聚精氨酸序列,Arg8,VP22HSV-1结构蛋白,SAP富含脯氨酸的基序,肽,hCT(9–32),SynB,Pvec和PPTG1。细胞穿透肽可以是阳离子的,基本在其一级序列含有聚精氨酸的簇,或两亲性的。CPP通常小于30个氨基酸的肽,来自天然或非天然蛋白质或嵌合序列。在合适的实施方式中,寡聚化合物纳入纳米颗粒或与其关联。纳米颗粒可经适当修饰用于靶向特定细胞并针对穿透细胞优化。本领域技术人员知晓使用纳米颗粒将寡聚化合物递送至细胞的方法。在本发明的合适的实施方式中,寡聚化合物使用内涵体逃逸剂部分进行修饰。内吞途径是细胞的主要摄取机制。通过内吞途径摄取的化合物被捕获在内涵体中,并且可以通过溶酶体特异性酶降解。根据目的这可能是需要或不希望的。如果不需要内涵体摄取,也可以使用内涵体逃逸剂。合适的内涵体逃逸剂可以是氯喹,TAT肽。没有必要为给定寡聚化合物的所有位置均匀地修饰,而事实上超过一种上述修饰可以纳入单个化合物或甚至纳入寡聚化合物的单一核苷。本发明还包括是嵌合化合物的寡聚化合物。在本发明中“嵌合”寡聚化合物或“嵌合体”是单链或双链寡聚化合物,如寡核苷酸,其含有两个或多个化学上不同的区域,每个区域包括至少一个单体单元,即在寡核苷酸化合物的情况下为核苷酸。嵌合反义寡核苷酸是寡聚化合物的一种形式。这些寡核苷酸通常含有被修饰的至少一个区域,以便赋予寡核苷酸对核酸酶降解的增加的抗性,增加的细胞摄取,电荷的改变,增加的稳定性和/或提高的对靶核酸的结合亲和力。本发明的嵌合寡聚化合物可形成为两个或更多的寡核苷酸,修饰的寡核苷酸,寡核苷,寡核苷酸模拟物,或其区域或部分的复合结构。这样的化合物也已经在本领域中称为杂交物或间隙物。教导这种杂交结构的制备的代表性美国专利包括但不限于美国专利号5,013,830;5,149,797;5,220,007;5,256,775;5,366,878;5,403,711;5,491,133;5,565,350;5,623,065;5,652,355;5,652,356;和5,700,922。修饰和未修饰的核苷的寡聚化可根据用于DNA(《寡核苷酸和类似物的实验方案》,Agrawal(1993),Humana出版社)和/或RNA(Scaringe,《方法》(2001),23,206-217.Gait等《RNA:蛋白质相互作用中化学合成的RNA的应用》Smith(1998),1-36.Gallo等,Tetrahedron(2001),57,5707-5713)的文献方法常规进行。本发明的寡聚的化合物可以通过固相合成的公知技术方便地和常规地进行。用于这样合成的设备由几个供应商出售,包括例如应用生物系统公司(福斯特城,加利福尼亚州)。本领域中已知的用于这种合成的任何其他装置可以附加地或替代地使用。已知使用相似的技术制备寡核苷酸,例如硫代磷酸酯和烷基化的衍生物。以下的前体化合物,包括的亚酰胺及其中间体可以通过本领域技术人员常规方法制备;5-甲基dC亚酰胺的5'-O-二甲氧基三苯甲基胸苷中间体,5-甲基dC亚酰胺的5'-O-二甲氧基三苯甲基-2'-脱氧-5-甲基胞苷中间体,5-甲基dC亚酰胺的5'-O-二甲氧基三苯甲基-2'-脱氧N4-苯甲酰基-5-甲基胞苷中间体,(5'-O-(4,4'-二甲氧基三苯甲基)-2'-脱氧N4-苯甲酰基-5-甲基胞苷-3'-O-基)-2-氰基乙基-N,N-二异丙基亚磷酰胺(5-甲基dC亚酰胺),2'-氟脱氧腺苷,2'-氟脱氧鸟苷,2'-氟尿苷,2'-氟脱氧胞苷,2'-O-(2-甲氧基乙基)修饰的亚酰胺,2'-O-(2-甲氧基乙基)-5-甲基尿苷中间体,5'-O-DMT-2'-O-(2-甲氧基乙基)-5-甲基尿苷倒数第二中间体,(5'-O-(4,4'-二甲氧基三苯基甲基)-2'-O-(2-甲氧基乙基)-5-甲基尿苷-3'-O-基)-2-氰基乙基-N,N-二异丙基亚磷酰胺(MOET亚酰胺),5'-O-二甲氧基三苯甲基-2'-O-(2-甲氧基乙基)-5-甲基胞苷中间体,5'-O-二甲氧基三苯甲基-2'-O-(2-甲氧基乙基)-N<4>-苯甲酰基-5-甲基-胞苷倒数第二中间体,(5'-O-(4,4'-二甲氧基三苯基甲基)-2'-O-(2-甲氧基乙基)-N<4>-苯甲酰基-5-甲基胞苷-3'-O-基)-2-氰基乙基-N,N-二异丙基亚磷酰胺(MOE5-Me-C亚酰胺),(5'-O-(4,4'-二甲氧基三苯基甲基)-2'-O-(2-甲氧基乙基)-N<6>-苯甲酰基腺苷-3'-O-yl)-2-氰基乙基-N,N-二异丙基亚磷酰胺(MOEA亚酰胺),(5'-O-(4,4'-二甲氧基三苯基甲基)-2'-O-(2-甲氧基乙基)-N<4>-异丁基尿苷-3'-O-yl)-2-氰基乙基-N,N-二异丙基亚磷酰胺(MOEG亚酰胺),2'-O-(氨基氧乙基)核苷亚酰胺和2'-O-(二甲基氨基氧乙基)核苷亚酰胺,2'-(二甲基氨基氧乙氧基)核苷亚酰胺,5'-O-叔丁基二苯基硅基-O<2>-2'-无水-5-甲基尿苷,5'-O-叔丁基二苯基硅基-2'-O-(2-羟乙基)-5-甲基尿苷,2'-O-((2-邻苯二甲酰亚胺氧(phthalimidoxy))乙基)-5'-叔丁基二苯基硅基-5-甲基尿苷,5'-O-叔丁基二苯基硅基-2'-O-((2-甲醛肟氧基(formadoximinooxy))乙基)-5-甲基尿苷,5'-O-叔丁基二苯基硅基-2'-O-(N,N二甲基氨基氧乙基)-5-甲基尿苷,2'-O-(二甲基氨基氧乙基)-5-甲基尿苷,5'-O-DMT-2'-O-(二甲基氨基氧乙基)-5-甲基尿苷,5'-O-DMT-2'-O-(2-N,N-二甲基氨基氧乙基)-5-甲基尿苷-3'-((2-氰基乙基)-N,N-二异丙基亚磷酰胺),2'-(氨基氧乙氧基)核苷亚酰胺,N2-异丁基-6-O-二苯基氨甲酰-2'-O-(2-乙基乙酰基)-5'-O-(4,4'-二甲氧基三苯甲基)鸟苷-3'-((2-氰基乙基)-N,N-二异丙基亚磷酰胺),2'-二甲基氨基乙氧基乙氧基(2'-DMAEOE)核苷亚酰胺,2'-O-(2(2-N,N-二甲基氨基乙氧基)乙基)-5-甲基尿苷,5'-O-二甲氧基三苯甲基-2'-O-(2(2-N,N-二甲基氨基乙氧基)-乙基))-5-甲基尿苷和5'-O-二甲氧基三苯甲基-2'-O-(2(2-N,N-二甲基氨基乙氧基)乙基))-5-甲基尿苷-3'-O-(氰基乙基-N,N-二异丙基)亚磷酰胺。用于寡核苷酸合成的这样的前体化合物的制备是本领域中常规的并且在美国专利公开号6,426,220和公布的PCTWO02/36743中公开。2'-脱氧和2'-甲氧基β-氰乙基二异丙基亚磷酰胺可以从商业来源购买(例如Chemgenes,马萨诸塞州李约瑟,或Glen研究公司,弗吉尼亚州斯特林)。其他2'-O-烷氧基取代的核苷亚酰胺可以如美国专利中号5,506,351所述制备。含有5-甲基-2'-脱氧胞苷(5-Me-C)核苷酸的寡核苷酸可根据公开的方法常规合成(Sanghvi,等NucleicAcidsResearch,1993,21,3197-3203),使用可商购的亚磷酰胺(Glen研究公司,弗吉尼亚州斯特林或ChemGenes公司,马萨诸塞州李约瑟)。2'-氟寡核苷酸可以如(Kawasaki等,J.Med.Chem.,1993,36,831-841)和美国专利号5670633所述常规地合成。2'-O-甲氧基乙基取代的核苷的亚酰胺可按照Martin,P.,HelveticaChimicaActa,1995,78,486-504的方法常规制备。氨基氧乙基和二甲基氨基氧乙基亚酰胺可常规按照美国专利6,127,533的方法制备。含有硫代磷酸酯的寡核苷酸(P-S)可通过本领域技术人员常规的技术合成(参见,例如,寡核苷酸和类似物的实验方案,Agrawal(1993),Humana出版社)。次膦酸酯寡核苷酸可以如美国专利5,508,270中所述制备。烷基膦酸酯寡核苷酸可以如美国专利4,469,863中所述制备。3'-脱氧-3'-亚甲基膦酸酯寡核苷酸可以如美国专利5,610,289或5,625,050.中所述制备。亚磷酰胺寡核苷酸可以如美国专利5,256,775或5,366,878中所述制备。烷基硫代磷酸酯寡核苷酸可以如在公开的PCT申请PCT/US94/00902和PCT/US93/06976中所述来制备(分别公开为WO94/17093和WO94/02499)。3'-脱氧-3'-氨基亚磷酰胺寡核苷酸可以如美国专利5,476,925中所述制备。磷酸三酯寡核苷酸可以如美国专利5,023,243中所述制备。硼烷磷酸酯寡核苷酸可以如美国专利5,130,302和5,177,198中所述制备。含4'-硫代的寡核苷酸可以如美国专利5,639,873中所述进行合成。亚甲基甲基亚胺连接的寡核苷,也称为MMI连接的寡核苷,亚甲基二甲基亚肼基连接的寡核苷,也称为MDH连接的寡核苷,和亚甲基羰基氨基连接的寡核苷,也被称为酰胺-3连接的寡核苷,和亚甲基氨基羰基连接的寡核苷,也称为酰胺-4-连接的寡核苷,以及具有例如交替的MMI和P-O或P-S键的混合的主链的化合物,可以如美国专利5,378,825,5,386,023,5,489,677,5,602,240和5,610,289中所述制备。甲缩醛和硫甲缩醛连接的寡核苷可以如美国专利5,264,562和5,264,564中所述制备。环氧乙烷联寡核苷可如美国专利5,223,618所述制备。肽核酸(PNA)可以根据任何涉及肽核酸(PNA)的方法来制备:合成,性能和应用潜力(Synthesis,PropertiesandPotentialApplications),Bioorganic&MedicinalChemistry,1996,4,5-23。它们也可以根据美国专利5,539,082,5,700,922,5,719,262,6,559,279和6,762,281制备。通过本领域中常规方法在寡聚化合物中纳入至少一个2'-O-保护核苷。纳入和适当脱保护后,2'-O-保护的核苷将在纳入的位置被转换为核糖核苷。在最终寡聚化合物中的2-核糖核苷单元的数量和位置可以从任何部位的一个发生变化,或者可使用策略来制备高达全部2'-OH修饰的寡聚化合物。目前正在市售使用的主要的RNA合成策略包括5'-β-DMT-2'-O-叔丁基二甲基硅基(TBDMS),5'-O-DMT-2'-[1(2-氟苯基)-4-甲氧基哌啶-4-基](FPMP),2'-O-[(三异丙基硅基)氧基]甲基(2'-O-CH2-O-Si(iPr)3(TOM)和5'-O-硅醚-2'-ACE(5'-O-双(三甲基硅氧基)环十二烷氧基硅醚(DOD)-2'-O-双(2-乙酰氧基乙氧基)甲基(ACE)。目前提供RNA产品的一些公司包括Pierce核酸技术公司(威斯康星州密尔沃基市),Dharmacon研究公司(FisherScientific公司的子公司,拉斐特,科罗拉多州)和集成DNA技术公司(科拉尔维尔,爱荷华州)。普林斯顿分离公司市售RNA合成活化剂销售,宣传可以减少尤其是TOM和TBDMS化学品之间的偶联时间。这样的活化剂也适合于本发明的寡聚化合物。所有上述RNA合成策略适合于本发明的寡聚化合物。本文还预期的上述的混合策略,例如使用一个策略的5'-保护基团和另一策略的2'-O-保护。嵌合寡核苷酸,嵌合寡核苷和混合的嵌合寡核苷酸/寡核苷可以根据美国专利号5,623,065来合成。表现出增强细胞摄取和更大的药理活性的嵌合寡聚化合物可按照美国专利8,501,703来制备。寡聚化合物的另一种形式包括三环-DNA(tc-DNA)反义寡核苷酸。三环-DNA核苷酸是通过引入环丙烷环而修饰的核苷酸,从而限制骨架构象灵活性和优化的扭转角γ的骨架几何。含同碱性腺嘌呤和胞嘧啶的tc-DNA与互补RNA形成极稳定的A-T碱基对。包含长度6-22的三环核苷酸,特别是8-20的三环核苷酸,更特别是10至18或11至18三环核苷酸的反义寡聚化合物是合适的。例如参见WO2010115993的三环DNA(tc-DNA)反义寡核苷酸的实例。修饰和未修饰的核苷的寡聚化可根据用于DNA(《寡核苷酸和类似物的实验方案》,Agrawal(1993),Humana出版社)和/或RNA(Scaringe,《方法》(2001),23,206-217.Gait等《RNA:蛋白质相互作用中化学合成的RNA的应用》Smith(1998),1-36.Gallo等,Tetrahedron(2001),57,5707-5713)的文献方法常规进行。反义化合物可以通过固相合成的公知技术方便地和常规地制备。用于这样合成的设备由几个供应商出售,包括例如应用生物系统公司(福斯特城,加利福尼亚州)。本领域中已知的用于这种合成的任何其他装置可以附加地或替代地使用。已知使用相似的技术制备寡核苷酸,例如硫代磷酸酯和烷基化的衍生物。本公开不被反义化合物的合成方法所限制。寡核苷酸的纯化和分析的方法本领域技术人员熟知。分析方法包括毛细管电泳(CE)和电喷雾-质谱。这样的合成和分析的方法可以在多孔板中进行。本文所描述的方法不受寡聚物纯化的方法的限制。在本发明和/或其实施方式的优选实施方式中,本文提供的反义化合物具有对RNA酶H降解的抗性。在本发明和/或其实施方式的优选实施方式中,反义化合物包含至少一个修饰核苷酸。在另一个实施方式中,反义化合物在每个位置上包含修饰的核苷酸。在又一个实施方式中,反义化合物在每个位置被均匀修饰。剪接的调控可用多种本领域已知的方法来测定。靶mRNA水平可通过例如,Northern印迹分析,竞争性聚合酶链式反应(PCR),或实时PCR来定量。可以通过本领域中已知的方法对细胞总RNA或聚(A)+mRNA进行RNA分析。RNA分离的方法教导参见例如Ausubel,F.M.等,《分子生物学新方法》第1卷,pp.4.1.1-4.2.9和4.5.1-4.5.3,JohnWiley&Sons公司,1993。Northern印迹分析本领域常规,教导参见例如Ausubel,F.M.等,《分子生物学新方法》第1卷,pp.4.1.1-4.2.9,JohnWiley&Sons公司,1993。实时定量(PCR)可使用市售的ABIPRISM(TM)7700序列检测系统方便地完成,该系统可购自PE-应用生物系统公司,加利福尼亚州福斯特城,并根据制造商的说明使用。由靶mRNA编码的蛋白质的水平可以用多种本领域中公知的方式,如免疫沉淀,Western印迹分析(免疫印迹),酶联免疫吸附或荧光活化细胞分选(FACS)进行定量。针对由靶mRNA编码的蛋白质的抗体可以从各种来源鉴定并获得,如MSRS抗体目录(鹰巢公司,密歇根州伯明翰),或者可通过常规抗体生成方法来制备。用于制备多克隆抗血清的方法参见例如Ausubel,F.M.等,《分子生物学新方法》第2卷,pp.11.12.1-11.12.9,JohnWiley&Sons公司,1997。单克隆抗体的制备参见例如Ausubel,F.M.等,《分子生物学新方法》第2卷,pp.11.4.1-11.11.5,JohnWiley&Sons公司,1997。免疫沉淀的方法是本领域标准,参见Ausubel,F.M.等,《分子生物学新方法》第2卷,pp.10.16.1-10.16.11,JohnWiley&Sons公司,1998。Western印迹(免疫印迹)分析是本领域标准,参见Ausubel,F.M.等,《分子生物学新方法》第2卷,pp.10.8.1-10.8.21,JohnWiley&Sons公司,1997。酶联免疫吸附测定(ELISA)是本领域标准,参见Ausubel,F.M.等,《分子生物学新方法》第2卷,pp.11.2.1-11.2.22,JohnWiley&Sons公司,1991。本发明寡聚化合物的作用可通过RTPCT,qPCR,侧翼外显子PCR和/或包括以下的方法进行分析:在对应于mRNA的每个内部外显子上进行侧翼外显子PCR,以获得一个或多个侧翼外显子的扩增产物,并检测所述侧翼外显子扩增产物的存在和长度,定量所述mRNA的每个编码蛋白质的外显子。本文提供的寡聚化合物可用于治疗或研究。此外,能够抑制基因表达或特异性调控剪接的反义化合物,可被用于阐明特定基因或基因产物的功能或区分生物学途径的各个成员之间的功能。在本发明和/或其实施方式的优选实施方式中,寡聚化合物用于庞帕病的治疗。在本发明和/或其实施方式的优选实施方式中,寡聚化合物用于研究GAA基因的功能。本文所述的化合物可以用于调控后生动物的靶mRNA的剪接,优选哺乳动物,优选人类。在本发明和/或其实施方式的优选实施方式中,该方法包括给予动物有效量的调控靶mRNA的剪接的反义化合物的步骤。例如,靶mRNA的剪接的调控可通过测定动物的体液、组织、器官或细胞中mRNA剪接产物的水平来测定。体液包括但不限于,血液(血清或血浆),淋巴液,脑脊液,精液,尿,滑液和唾液,并且可以通过本领域常规技术方法获得。组织,器官或细胞包括但不限于,血液(例如,造血细胞,例如人造血祖细胞,人类造血干细胞,CD34+细胞的CD4+细胞),淋巴细胞等血液系细胞,皮肤,骨髓,脾脏,胸腺,淋巴结,脑,脊髓,心脏,骨骼肌,肝脏,结缔组织,胰腺,前列腺,肾,肺,口腔粘膜,食道,胃,肠骨,小肠,结肠,膀胱癌,子宫颈癌,卵巢癌,睾丸,乳腺,肾上腺,和脂肪(白色和棕色)。组织、器官和细胞的样品可通过活检而常规获得。在一些替代的情况下,组织或器官的样品可从死后的动物中回收。在本发明和/或其实施方式的优选实施方式中,剪接调控在成纤维细胞中测量,优选初级成纤维细胞,优选来自庞帕病的患者的初级成纤维细胞。寡聚化合物的治疗效果可以通过测量与上述流体、组织或器官中的靶mRNA的剪接的调控有关的生物标记物来评估,所述生物标记物通过在本领域已知的常规临床方法从与一种或多种化合物接触的动物中收集。这些生物标记物包括但不限于:葡萄糖,胆固醇,脂蛋白,甘油三酯,游离脂肪酸,和葡萄糖和脂质代谢的其他标记;肝转氨酶,胆红素,白蛋白,尿素氮,肌酸,和肾和肝功能的其他标记;白细胞介素,肿瘤坏死因子,细胞内粘附分子,C反应蛋白,和炎症的其他标记;睾酮,雌激素和其他激素;肿瘤标志物;维生素,矿物质和电解质。在本发明和/或其实施方式的优选实施方式中,生物标记物是糖原。通过将有效量的化合物加入合适的药学上可接受的稀释剂或载体中来在药物组合物中使用本文所公开的化合物。该化合物还可用于制备用于治疗与剪接改变有关的疾病和病症的药物。在本发明和/或其实施方式的优选实施方式中,疾病是庞帕病。也考虑其中体液、器官或组织与有效量的本发明的一种或多种反义化合物或组合物接触的方法。体液、器官或组织可以与本发明的一种或多种化合物接触,导致体液、器官或组织的细胞中的靶mRNA剪接的调控。有效量可以通过本领域常规方法通过监测反义化合物或化合物或组合物在靶核酸或其产物上的调控作用来确定。进一步考虑的是离体治疗方法,其中细胞或组织从对象中分离,与有效量的反义化合物或化合物或组合物接触,和通过本领域常规方法再引入对象。待给予的反义寡聚化合物的足够量将是足以诱导不需要的疾病症状发生改善的量。该量取决于多种因素而变化,例如患者性别,年龄,体重,总体健康状况等,并且可以依个案确定。量也可以根据治疗条件的类型和治疗方案的其他组成而变化(例如其它药物如类固醇的给药等)。量也可根据给药方法例如全身或局部给药而变化。在药物制剂中的反义寡核苷酸分子的典型剂量可为约0.05至1000mg/kg体重,特别是约5至500mg/kg体重。在本发明和/或其实施方式的优选实施方式中,剂量为约50至300mg/kg体重,每2周一次,或每周一次或两次,或达到治疗效果所需的任何频率。适宜量为3-50mg/kg,更合适地10-40mg/kg,更合适地15-25mg/kg。当然给药的剂量取决于使用和公知的因素,如活性成分的药效学特性;年龄,健康和体重接受者;性质和症状程度,并行治疗类型,治疗频率和所需的效果。接收者可以是任何类型的哺乳动物,但优选人类。在本发明和/或其实施方式的一个实施方式中,本发明的药物组合物的剂型(组合物)可包含约每单位1微克至50,000微克的活性成分,尤其是每单位1微克至10,000微克的活性成分.(如果这里的单位是指小瓶或一个封装用于一次注射,那么这将是非常高的,若患者体重是50千克则高达15g)。对于静脉内递送,所述药物制剂的单位剂量将通常为每千克体重0.5至500微克,优选每千克体重含有5至300微克,特别是10,15,20,30,40,50,100,200,或300微克反义寡核苷酸分子(μ克/千克体重)。优选静脉内剂量范围为每千克体重10纳克至2000微克的化合物,优选为3至300微克,更优选10至100微克。或者,单位剂量可含有2至20毫克的反义寡核苷酸分子,并按需多次给药,以达到每日剂量。在这些药物组合物中,反义寡核苷酸分子将通常为组合物的总重量约0.5-95%。在一个具体实施方式,应认识到剂量可以基于个体病人的反应而提高或降低。应理解的是,所用的反义寡核苷酸分子的实际量将根据所用的具体反义寡核苷酸分子、特定的组合物配制、应用模式,和给药的特定位置而变化。优选地,化合物每日给予,每2天一次,每3天一次,每周一次,每两周一次,或每月一次。在另一个优选的实施方式中,给予只有一次,例如使用病毒载体时。如果选择基于病毒递送反义寡聚化合物,合适的剂量将取决于不同的因素,如所采用的病毒株、递送途径(肌内,静脉内,动脉内或其他)。本领域技术人员将认识到这样的参数可在临床试验期间通常制定。此外,本领域的技术人员将认识到,虽然疾病症状可以通过本文描述的治疗方法被完全缓解,这不是必须的情况。即使症状部分或间歇性的缓解,也可能对受体有很大好处。另外,患者的治疗通常不是单一事件。相反,本发明的反义寡聚化合物很可能会在多个时间给予,取决于所得到的结果,这可能是隔数天,隔数周,或隔数月,或甚至隔数年。本领域的技术人员将认识到,有很多方法来确定或测量的蛋白质的功能水平,并以确定例如响应治疗方案的功能增加或降低的水平。这样的方法包括但不限于:测量或检测蛋白质的活性等。一般这种测量与标准或对照或“正常”的样品做比较。此外,当蛋白质缺乏功能涉及疾病过程时,疾病症状可被监控和/或测量以间接检测正常功能蛋白的存在或不存在,或评估补救缺少的蛋白质功能的治疗方案是否成功。在优选的实施方式中,测定GAA蛋白的功能性。这被适当地用本领域技术人员熟知的酶活性测定法进行。在本发明和/或其实施方式的优选实施方式中;本发明的反义寡核苷酸可以单独或与载体联合体内递送。在最广泛的意义上,“载体”是能够促进本发明的细胞的反义寡核苷酸的转移的任何载剂。优选地,相对于不存在载体时降解程度,载体输送核酸至细胞减少降解。在一般情况下,在本发明中有用的载体包括但不限于,裸质粒,非病毒递送系统(电穿孔,声穿孔,阳离子转染试剂,脂质体等),噬菌粒,病毒,从病毒或细菌衍生的已经通过反义寡核苷酸的核酸序列的插入或纳入而操作的其他载剂。病毒载体是载体的优选类型,包括但不限于来自以下病毒的核酸序列:RA病毒如反转录病毒(例如莫洛尼鼠白血病病毒和慢病毒衍生的载体),哈维鼠肉瘤病毒,鼠乳腺肿瘤病毒,和劳斯肉瘤病毒;腺病毒,腺相关病毒;SV40型病毒;多瘤病毒;EB病毒;乳头瘤病毒;疱疹病毒;牛痘病毒;脊髓灰质炎病毒。可以容易地使用没有命名但本领域已知的其他载体。根据本发明优选的病毒载体包括腺病毒和腺相关(AAV)的病毒,其是已被批准用于人类基因治疗的DNA病毒。其实12种不同AAV血清型(AAVl-12)是已知的,各有不同的组织倾向性(Wu,ZMolTher2006;14:316-27)。重组AAV从从属细小病毒AAV衍生(Choi,VWJVirol2005;79:6801-07)。腺相关病毒类型1至12可以被改造为复制缺陷型,并且能够感染广泛的细胞类型和物种(Wu,ZMolTher2006;14:316-27)。它还拥有优点例如,热和脂类溶剂稳定;在不同的细胞系(包括造血细胞)中高频率转导;和缺少二重感染抑制从而允许多重系列的转导。此外,野生型腺相关病毒感染在组织培养中跟踪超过100代而没有选择压力,这意味着腺相关病毒基因组整合是相对稳定的事件。腺相关病毒也能以染色体外方式发挥作用。其他的载体包括质粒载体。质粒载体已在本领域中广泛描述并且本领域的技术人员熟知。参见例如Sambrook等,1989。它们对此特别有利,因为它们不具有许多病毒载体的安全性问题。而是,这些质粒具有与所述宿主细胞相容的启动子,可以从质粒内可操作编码的基因表达肽。一些常用的质粒包括pBR322,pUC18,pUC19,pRC/CMV,SV40和pBluescript。其他质粒为本领域普通技术人员熟知。此外,质粒可使用限制性酶和连接反应来定制设计以除去和添加DNA的特异性片段。质粒可以通过多种肠胃外,粘膜和局部途径递送。例如,DNA质粒可以通过肌内、皮内、皮下、或其它途径注射。它也可通过,鼻内喷雾剂或滴剂、直肠栓剂和口服给药。优选地,所述DNA质粒被肌肉内或静脉内注射。它也可使用基因枪被给予到表皮或粘膜表面。质粒可在水溶液中被给予,在金颗粒上干燥或与另一DNA递送系统(包括但不限于脂质体,树枝状聚合物,螺卷和微胶囊化)关联。在本发明和/或其实施方式的优选实施方式中,反义寡核苷酸的核酸序列受异源调控区的控制,例如异源启动子。该启动子也可以是,例如,病毒启动子,如CMV启动子或任何合成的启动子。在本发明和/或其实施方式的优选实施方式中,载体可以编码超过一种反义寡聚化合物。每种反义寡聚化合物针对不同的靶标。含本发明的反义化合物的药物组合物可包括任何药学上可接受的盐、酯或这类酯的盐,或任何其它功能上化学等价物,其在给予动物(包括人)之后能够(直接或间接)提供生物活性的代谢物或其残留物。因此,例如,本发明也涉及反义化合物的前药和药学上可接受的盐、这类前药的药学上可接受的盐,及其它生物等效物。术语“前药”是指以无活性或低活性形式制备的治疗剂,其通过内源性酶、化学物和/或条件的作用在体内或细胞内转化成活性形式(即,药物)。特别地,寡核苷酸的前体药物根据WO93/24510或WO94/26764制备为SATE((S乙酰基-2-乙硫基)磷酸酯)衍生物。前药还可以包括反义化合物,其中一个或两个端部包括被切割(例如,通过在末端纳入磷酸二酯骨架键)以产生活性化合物的核苷酸。术语“药学上可接受的盐”是指化合物的生理上和药学上可接受的盐:即,保留母核化合物的所需生物活性并且其不具有不希望的毒理学影响的盐。反义寡核苷酸的钠盐是有用的,被广泛接受用于治疗性给予人类。在本发明和/或其实施方式的其他实施方式中,还提供dsRNA化合物的钠盐。本文描述的反义化合物也可混合,包封,偶联或以其它方式与其它分子,分子结构或化合物的混合物相关联。本发明还包括包含本发明的反义化合物的药物组合物和制剂。根据是否需要局部或全身治疗和待治疗的区域,药物组合物还可通过多种方式给予。在本发明和/或其实施方式的优选实施方式中,肌肉内或静脉内给药。可按照制药工业熟知的常规技术制备药物制剂,其可以单位剂型形式方便地存在。这类技术包括将活性成分与药物运载体或赋形剂结合在一起的步骤。一般通过使活性成分与液体载体,或精细磨碎的固体载体或二者均匀且紧密地结合,然后(如果需要)使产品成形(例如成为用于递送的特定粒径),来制备制剂。在本发明和/或其实施方式的优选实施方式中,药物制剂是在适当的溶剂(例如水或生理盐水,)中制备用于肌内给予,可能为无菌制剂,与载体或其它试剂。“药物运载体”或“赋形剂”可以是药学上可接受的溶剂,悬浮剂或用于递送一种或多种核酸给动物的任何其它药理学惰性载剂,并且是本领域已知的。所述赋形剂可以是例如液体或固体,且根据计划的给药方式选择,从而在与核酸和给定药物组合物的其他组分合并时提供所需体积、持久性等。本文所提供的组合物可以含有两种或多种反义化合物。在另一个相关的实施方式中,组合物可含有一种或多种靶向第一核酸的反义化合物,尤其是寡核苷酸,以及一种或多种靶向第二核酸靶标的其它反义化合物。或者,本发明的组合物可含有靶向相同核酸靶标的不同区的2种或更多种反义化合物。2种或更多种组合的化合物可一起或依次使用。组合物也可以与其它非反义化合物治疗剂合并。本发明反义寡聚化合物可以与含有适合制备水性混悬剂的赋形剂混合。这类赋形剂是助悬剂,如羧甲基纤维素钠,甲基纤维素,羟丙基甲基纤维素,藻酸钠,聚乙烯-吡咯烷酮,黄芪树胶和阿拉伯胶;分散剂或湿润剂可以是天然产生的磷脂,如卵磷脂,或环氧烷与脂肪酸的缩合产物,如聚氧乙烯硬脂酸酯;或环氧乙烷与长链脂肪醇的缩合产物,如十七-氧乙烯十六烷醇(heptadecaethyleneoxycetanol),或者环氧乙烷与衍生自脂肪酸和己糖醇的偏酯的缩合产物,如聚氧乙烯山梨糖醇单油酸酯,或者环氧乙烷与衍生自脂肪酸和己糖醇酐的偏酯的缩合产物,如聚乙烯山梨聚糖单油酸酯。水性混悬剂也可含有一种或多种防腐剂,如对羟基苯甲酸乙酯或者对羟基苯甲酸正丙酯。适合通过加水制备水悬液的可分散粉末剂和粒剂提供活性成分与分散剂或湿润剂、助悬剂和一种或多种防腐剂的混合物。反义寡聚化合物组合物可以是无菌可注射水性或油性悬浮液的形式。可按照本领域已知方法,用如上所述合适的分散剂或湿润剂和助悬剂配制该悬浮液。该无菌注射剂也可以是胃肠外可接受的无毒稀释剂或溶剂配制的无菌注射溶液或混悬液,例如,1,3-丁二醇配制的溶液。可用的可接受载剂和溶剂是水、林格氏溶液和等渗氯化钠溶液。此外,通常采用无菌非挥发油作为溶剂或悬浮介质。出于此种目的,可采用任何刺激性小的非挥发油,包括合成的甘油单酯或甘油二酯。此外,脂肪酸(如油酸)可用于制备注射剂。本公开内容还包括制备用于储存或给予的反义寡聚化合物的组合物,其在药学上可接受的运载体或稀释剂中包括药物有效量的所需化合物。用于治疗目的的可接受的运载体或稀释剂是药剂学领域众所周知的,参见例如《雷明顿药物科学》(麦克出版公司(MackPublishingCo.),A.R.Gennaro编,1985)。例如可提供防腐剂和稳定剂。这些包括苯甲酸钠、山梨酸和对羟基苯甲酸酯。此外,可以使用抗氧化剂和助悬剂。本公开的药物组合物也可以是水包油乳剂的形式。油相可以是植物油或矿物油或它们的混合。合适的乳化剂可以是天然产生的树胶,如阿拉伯胶或黄芪树胶;天然产生的磷脂,如大豆卵磷脂;和脂肪酸和己糖醇酐产生的酯或偏酯,例如山梨聚糖单油酸酯;以及所述偏酯与环氧乙烷的缩合产物,如聚氧乙烯山梨聚糖单油酸酯。本公开的反义寡聚化合物可以通过任何标准方法给予患者,有或没有稳定剂、缓冲剂、或类似物以形成适于治疗的组合物。当需要使用脂质体递送机制,可以遵循用于形成脂质体的标准方案。因此,本公开的反义寡聚化合物可以以任何形式给药,例如肌内或通过局部,全身或鞘内注射。本公开内容还提供反义寡聚化合物的组合物的用途,所述组合物包含含有聚(乙二醇)脂质的表面改性的脂质体(PEG-修饰的,或长循环脂质体或隐形(stealth)脂质体)。这些制剂提供用于增加靶组织中的反义寡聚化合物的积聚的方法。此类药物载体抵抗由单核巨噬细胞系统(MPS或RES)的调理和消除,由此就包封的反义寡聚化合物产生长的血液循环时间和增强的组织暴露(Lasic等Chem.Rev.95:2601-2627(1995)和Ishiwata等,Chem.Pharm.Bull.43:1005-1011(1995)。长循环脂质体增强反义寡聚化合物的药物动力学和药效学,特别是相对于已知在MPS组织中积累的常规阳离子脂质体(Liu等,J.Biol.Chem.42:24864-24870(1995);Choi等,PCT公开号WO96/10391;Ansell等,PCT公开号WO96/10390;Holland等,PCT公开号WO96/10392)。相比阳离子脂质体,长循环脂质体还可能在更大程度上保护反义寡聚化合物免受核酸酶降解,基于它们避免在代谢侵略性MPS组织如肝和脾中积累的能力。根据配方和本发明的方法给予反义寡聚化合物的组合物后,相比安慰剂处理或其他合适的对照组,测试对象将表现出与所治疗的疾病或病症相关的一种或多种症状中大约10%直至约99%的减少。实施例实施例1由于剪接调控的复杂机制,影响前体mRNA剪接的突变是难以预料的。系统地检测和表征序列变体对剪接的影响的通用的方法将改善目前的诊断实践。本文我们证明这样的方法是可行,其通过组合侧翼外显子RT-PCR,PCR产物的序列分析,和针对所有编码外显子的外显子-内部定量RT-PCR。它已经被应用到引起庞帕病(单基因常染色体隐性遗传病)的酸α葡萄糖苷酶基因的未表征突变中。对剪接的效果包括隐藏剪接位点使用,内含子保留和外显子跳跃。这与计算机预测不同,突出了实验测试的需要。定量漏洞野生型剪接的程度与疾病严重程度相关。材料和方法患者和健康对照患者根据临床症状和GAA酶活性确诊为庞帕病。所有患者和健康对照就分子分析提供知情同意书。命名法所描述的突变的位置针对EnsemblGAAcDNA编号ENST00000302262.3比对。c.1表示GAAmRNA的编码区的第一个核苷酸。进一步编号根据HGVS标准[14]细胞培养和cDNA制备从患者和健康个体的皮肤活检分离成纤维细胞。细胞在DMEM高糖(Lonza)+10%胎牛血清(HyClone,赛默科技公司(ThermoScientific))+1%青霉素/链霉素(Lonza)中培养。RNA使用RNAeasy小量制备试剂盒(凯杰公司(Qiagen))分离。800纳克RNA用于产生cDNA,使用iScriptcDNA合成试剂盒(伯乐公司(Biorad))。cDNA使用前稀释10倍。侧翼外显子PCR分析用FastStartTaq聚合酶(罗氏公司(Roche))扩增cDNA。引物各以0.333μM的终浓度使用,dNTP各为0.333mM。PCR程序在伯乐公司s1000热循环仪上进行(96℃,4分钟,35X[96℃20秒,60℃30秒,72℃1分钟],72℃5分钟)。5μl的各PCR反应在含有溴化乙锭的1.5%琼脂糖凝胶上运行。凝胶在TyphoonFLA9000凝胶成像仪(G&E健康公司)上拍照。使用的引物列于图15。外显子-内部qPCR分析为了测定各样品的相对浓度,4μl的各cDNA样品(水中10倍稀释)在含有IQMastermix(Biorad公司)和各引物0.333μΜ的15μlPCR反应中处理。为了说明每个特定引物组的效率,将所有样品与健康对照样品的标准曲线关联。所有样品均一式三份地进行测定。使用的引物列于图16。Sanger测序在荷兰鹿特丹伊拉斯谟MC的临床遗传学诊断部门鉴定基因组DNA突变。使用BigDye终极试剂盒v3.1(应用生物系统公司)进行侧翼外显子PCR产物的直接测序。为了获得纯的DNA样品,在剪接测定中凝胶上可见的PCR产物用20μl吸管尖刺入,并且吸管尖上的DNA上再悬浮于10μl水中。随后在一个新的PCR使用1μl(如在剪接测定中所述),以从单一模板得到DNA。根据制造商方案用Fastap热敏碱性磷酸酶(赛默科学公司)去除过量的引物和dNTP。样品用SephadexG-50(GE健康科学公司)纯化,并在AB3130遗传分析仪(应用系统公司,日立)上测定序列。GAA酶活性如[15]所述用4-甲基伞形基-α-吡喃葡糖苷(4-MU)或糖原作为底物测定成纤维细胞中的GAA活性。结果通用法检测剪接突变该方法由两部分组成。第一(图1,左),使用侧接各单独的规范外显子的标准引物对感兴趣的mRNA进行通用RT-PCR(侧翼外显子PCR)。产物由琼脂糖凝胶电泳分离。产物尺寸的变化指示替代/异常剪接。剪接连接点可使用从凝胶分离的产物的测序或通过PCR反应的直接测序来精确地确定。第二(图1,右),进行标准qPCR以定量各单独的外显子(外显子-内部qPCR)。使用每个外显子内退火的引物。结果就β-肌动蛋白mRNA和健康对照的表达进行标准化。结果定量了外显子跳跃/纳入,并且还可以指示剪接突变是否允许漏洞野生型剪接。试验的开发和验证健康对照该试验使用健康对照开发。为了检测剪接连接点和外显子的大小,使用与侧翼外显子退火的引物在从初级成纤维细胞制备的cDNA上进行侧翼外显子PCR分析(图2A)。凝胶电泳和溴化乙锭染色显示所有情况下的正确分子量产物。这表明在这些细胞中所有外显子进行规范剪接。观察到少量的一些其他产物,值得注意的是,仅上述外显子6和7。序列分析表明,这些表示其中内含子6被保留的产物。在此健康对照中和许多庞帕病患者中观察到该产物,其指示噪音异常剪接,这是一种已知的现象[16]。使用外显子-内部qPCR定量单独外显子(图1B)。值针对β肌动蛋白表达(如通过qPCR分析测定)标准化,并然后准备用于测试样品的标准化。患者1该患者用于验证是否可以用上述方法在初级成纤维细胞中精确检测良好描述的剪接突变。选择c.-32-13T>G(IVS1)突变,因为它是引起庞帕病青少年/成年发作的常见的突变。位于内含子1中接近外显子2的剪接受体位点,并且其导致外显子2的异常剪接但也允许漏洞野生型剪接[17,18]。已知第二等位基因由于NMD而表达水平非常低[19]。这是由c.1636+5G>T突变所致,其导致内含子11纳入和提前的终止密码子。由于这个原因,下述剪接测定中以含有该IVSl突变的等位基因为主。侧翼外显子PCR分析从外显子2扩增产生三种主要产物(图2A)。这些产物通过DNA测序进行分析,表明产物1代表具有规范剪接头的完整外显子2(图9)。产物2部分包含跳过的外显子2,这是由于使用c.486的隐藏剪接受体位点,同时产物3代表完全跳过外显子2(图2A和S2)。这些产物对应于IVSl突变的报告的主要剪接变体,即正常(N)(产物1),剪接变体(SV)1(产物2)和SV2(产物3)[18]。外显子-内部PCR分析显示外显子2和其他所有外显子的10-15%的表达(图2)。这可作如下解释。所述IVSl突变允许外显子2的漏洞野生型剪接(图2A中产物1),产生含有所有外显子的正常mRNA,如前所述[18,20]。两种其他主要产物2和3都导致位于外显子2中的翻译的规范起始的缺失。这导致mRNA降解,从而在定量外显子-内部qPCR分析中产生次要贡献,并从IVSl等位基因显著检测到漏洞野生型GAAmRNA。总之,使用GAA的通用剪接测定如实地检测到IVSl突变对剪接的已知作用。漏洞野生型剪接是健康对照水平的10-15%,解释了庞帕病的青少年/成年发病。应注意,这里使用的所有五个剪接预测程序(SpliceSiteFinder样(SSF),MaxEntScan(MES),NNSplice(NNS),GeneSplicer(GS)和人类剪接查找器(HSF))均未能检测到IVSl突变对剪接的效果(图14A)。患者2该患者被选择用来测试分析的灵敏性。由于纯合突变c.525delT,GAAmRNA表达由于NMD而非常低[21]。出人意料的是,侧翼外显子PCR分析表明,所有的外显子仍然可以以正确的大小被检测到,虽然水平降低(图8)。较高分子量的产物也被在甚至更低的水平观察到。这些可代表未剪接前体mRNA物质,其由于在PCR反应中竞争剪接的mRNA的丰度降低而被扩增。为了定量残余mRNA的量,进行外显子-内部qPCR并且显示相对于健康对照的所有外显子的5-10%表达(图8B)。总之,GAA的通用剪接分析允许对非常低的mRNA表达的分析和定量。这对于由于阅读框改变而经历降解的mRNA来说尤其相关。患者3在携带众所周知的缺失的患者上进行第三验证,该缺失移除整个外显子18以及其侧翼序列(delex18,orc.2481+102_2646+31del)(图2A)。该情况因为外显子18的剪接位点被移除而有趣。以前的工作表明这形成了新的mRNA,其中外显子17通过规范剪接位点整齐地剪接至外显子19[17]。所得mRNA的翻译阅读框保持完整,这表明该mRNA是不易受NMD途径的降解(图7-表2)。该患者的第二个突变c.1548G>A在外显子10中产生终止密码子[22]。迄今还没有报道其对基因表达的影响。提前的终止密码子可能导致该等位基因的mRNA丰度较低。侧翼外显子PCR表明为外显子17,18和19的扩增的变化(图3A)。外显子18的扩增得到两种产物而不是一种。序列分析表明,最高MW的产物(编号4)表示野生型剪接的外显子18,而低MW产物(编号5)缺少整个外显子18,并且外显子17和外显子19通过其规范剪接位点接合(图S3A)。相比健康对照,外显子17和19的扩增产生较少量的正确产物。用于其扩增的引物退火至外显子18,这表明它们的检测无法从delex18等位基因衍生但一定来自c.1548G>A等位基因。这表明的c.1548G>A等位基因在一定程度上表达,这解释了由侧翼外显子PCR检测到的中等水平的野生型剪接的外显子18。为了定量c.1548G>A等位基因的表达,进行外显子-内部qPCR,其表明外显子18的3%表达,而其他所有外显子表达健康对照水平的约40-50%(图3F)。这表明的c.1548G>A突变导致非常低的mRNA表达,如较低水平的外显子18检测所测量。所有其他外显子的表达源自delex18等位基因,它产生于外显子18被精确删除的稳定mRNA。总之,通用剪接法还允许检测和表征外显子缺失。通过比较侧翼外显子PCR和外显子-内部qPCR实验的结果,两个等位基因之间可以进行剖析。新剪接突变的表征接着,分析了包含部分表征或未表征的突变的一些患者。患者4患者4包含c.-32-3C>G处的新突变,位于内含子1内接近外显子2的剪接受体位点(图3D)。该突变被怀疑影响外显子2的剪接,基于其与公开的c.-32-3C>A突变的相似性[19]。在这项研究中,报道了外显子2的完美跳跃。剪接预测程序表明,对于一些但不是所有的程序而言,c.-32-3C>G突变削弱外显子2的剪接受体位点(图14C)。第二个等位基因包含先前报道[23]但未表征的c.1551+1G>A突变,其位于内含子10中接近外显子10的剪接供体位点(图3E)。基于与公开的c.1551+1G>C突变[17,24]的相似性,c.1551+1G>A突变被怀疑影响外显子10剪接。剪接预测程序指示外显子10的剪接供体位点的缺失(图14C)。侧翼外显子PCR分析的结果表明两个外显子的异常剪接:外显子2和外显子10(图3C)。外显子2的扩增产生了3种主要产物,编号6-8,并且序列分析显示这些产物包括野生型剪接,分别通过外显子2中的c.486的隐藏剪接受体位点部分跳过外显子2,和完美跳过外显子2(图3D和图10B)。这表明内含子1中的两个独立突变,位于多聚嘧啶区的c.-32-13T>G,和位于剪接受体位点附近的c.-32-3C>G,具有相对于外显子2剪接的相同的质量结果。剪接预测的程序不足以准确地预测这一结果。外显子10的侧翼外显子PCR扩增产生了两种主要产物,9和10(图3C)。序列分析表明,产物9含有外显子9,10和11之间的野生型连接点,并且产物10代表外显子10mRNA的精确跳跃(图3E和图10C),其中阅读框保持完整。这是令人吃惊,因为外显子10的剪接供体位点的削弱的最直接的结果将是未能移除内含子10,而不是外显子10的跳跃。为了确定剪接缺陷的程度,进行外显子-内部qPCR。外显子10表达约6%,而所有其他外显子表达健康对照水平的50%(图3F)。这与大多数mRNA源自外显子10被跳过的c.1551+1G>A等位基因的观点一致。更短的产物具有不变的阅读框,并预期是稳定的。与此相反,c.-32-3C>G等位基因导致(部分)的外显子2跳跃,已知导致类似于IVS1突变的mRNA降解。c.-32-3C>G等位基因对外显子-内部qPCR结果的贡献很小。它的贡献可以从外显子10的表达来判断,其源自c.-32-3C>G突变的漏洞野生型剪接。然而,外显子10表达的替代来源是c.1551+1G>A等位基因的漏洞野生型表达。外显子10的非常低的表达水平表明,c.-32-3C>G和c.1551+1G>A均具有低水平的漏洞野生型表达或没有漏洞野生型表达。这表明c.-32-3C>G突变相比IVS1突变可能更严重,因为IVS1突变允许较高水平的10-15%的野生型剪接(图2D)。庞帕病的临床过程指示该患者青少年发病,这与相较成年发病的患者而言较低水平的野生型GAA表达和较低的GAA酶活性水平一致(图6-表1)。患者5患者5是c.1075G>A纯合子,是位于外显子6的最后碱基对的p.Gly359Arg错义突变(图4B)[25]。这种突变已被列为可能非致病,对剪接可能产生影响[26]。它位于外显子6的剪接供体位点附近,并且剪接预测分析表明该位点的减弱和4个核苷酸上游的隐蔽剪接供体位点的加强(图14D)。侧翼外显子PCR分析表明不存在外显子7的产物,其它外显子的水平较低,并且外显子2的低分子量产物的水平较低(图4A)。基于该预测以及外显子6中此突变的位置,我们怀疑围绕外显子6和7的剪接连接点被改变。相一致地,外显子6PCR产物(产物11)的测序结果显示,改为使用外显子6中位于c.1071的4个核苷酸上游的隐藏剪接供体位点(图4B和图S4B)。这解释了没有针对外显子7的产物,由于用于外显子7扩增的正向引物由于改变的剪接供体位点而存在4个错配。值得注意的是,外显子侧翼PCR法未能检测到该突变的漏洞野生型剪接。这会导致存在外显子7扩增的野生型带,但并未观察到。为了进一步调查外显子7剪接,使用位于外显子5的替代正向引物。现在获得了预期产物,并显示从外显子6的c.1071到外显子7的规范剪接受体位点的剪接(图11A),如产物11的序列分析所示。所得mRNA的阅读框已被改变,从而导致过早的终止密码子(表2)。外显子2扩增得到的低MW产物没有被进一步研究。这可能是由尚未鉴定的内含子突变所致。替代地,野生型GAAmRNA已知具有漏洞外显子2跳跃,其产物可以优先扩增,这是因为由c.1071突变引起的mRNA降解。使用外显子内部qPCR试验定量GAAmRNA表达显示出,所有GAA外显子在非常低的水平表达,远低于IVS1突变所观察到的水平,但刚刚高于c.525delT突变所观察到的水平(图4G)。这证实了在此患者中的漏洞野生型剪接水平很低或不存在,而大多数的mRNA的是不稳定的。一致地,测量到成纤维细胞中非常低的GAA活性并且该患者的诊断是最严重的经典婴儿型庞帕病。患者6患者6带有纯合c.1552-3C>G突变。该突变位于内含子10中,接近外显子11(图4D)。侧翼外显子PCR分析显示外显子10的异常剪接和三种主要产物(12-14;图4E)。序列分析表明,在产物14中,外显子10是完全跳过,同时使用c.1552-30处的邻近外显子11的新剪接受体位点(图4D和11C)。该mRNA保留阅读框完整(表2)。产物13被确定为野生型剪接的mRNA。产物12由内含子10被完整保留下来的mRNA组成。阅读框在该剪接产物中被扰乱。虽然产物13和14先前已经检测到[27],但产物12是新颖的。有趣的是,在预测外显子11的规范或隐藏剪接受体位点的利用程度中,剪接预测方案是矛盾的(图14F)。此外,在任何情况下该结果都是意想不到:外显子11的剪接受体位点减弱不会预期导致外显子10的跳跃。相反,可以设想两种产物:一种产物中外显子10的剪接供体位点剪接至c.1552-30的潜在受体,导致外显子11与部分内含子10的延伸和进一步的正常剪接。其他预期的产物将是外显子11的完美跳跃。完全不同的结果说明了需要实验验证以分析潜在的剪接突变的分子结果。用外显子-内部qPCR试验进行剪接缺陷的定量。这显示所有外显子的表达为健康对照水平的为约20%(图4G)。没有观察到外显子10表达的额外减少,这表明大多数的mRNA包括外显子10,较14而言有利于产物12和13。漏洞野生型剪接(产物13)的存在与残余GAA酶活性以及该患者庞帕病的成人发病的较温和表型相一致(表1)。总之,c.1552-3C>G导致外显子10和内含子10周围的数个剪接缺陷,它允许与成人发病相容的漏洞野生型剪接。患者7患者7是c.1437G>A纯合子,一个位于外显子9的剪接供体位点的沉默突变(图4F)。侧翼外显子PCR分析表明外显子9扩增的两种产物而不是一个,并且外显子8和外显子10扩增的产量低(图4E)。序列分析表明,产物15代表野生型剪接的外显子9,而产物16中,外显子9被完全跳跃,产生缩短的转录本,其中阅读框保持不变(图4F和图11D)。如从它的位置所预期,计算机预期c.1437G>A突变被减弱以剪接外显子9的供体位点(图14E)。然而,实验结果是令人惊讶,外显子9的剪接供体位点的失败预期会导致内含子9的纳入,而非外显子9的跳跃。外显子8和外显子10扩增产物具有正确的尺寸但产率较低,因为外显子9可用性降低以作为模板用于反向PCR引物(对于外显子8)或正向PCR引物(对于外显子10)的退火。使用外显子内部qPCR定量显示所有外显子接近正常(对照的70-80%)的表达水平,除了外显子9只有健康对照表达的5%。此患者的青少年/成人发病与剪接位点突变的漏洞性质相符(表1)。综上,c.1437G>A突变导致外显子9的精确跳跃而阅读框完整,并允许低水平的漏洞野生型GAA剪接。复杂情况的表征:患者8基因型患者8包含等位基因1上的错义突变c.1256A>T。它位于外显子8的中间,导致p.Asp419Val,并已被列为轻度致病(图5B)[26]。第二等位基因含有c.1551+1G>T突变,其位于内含子10中接近外显子10的剪接供体位点[26]。它类似于上述患者4的c.1551+1G>A突变。剪接产物分析侧翼外显子PCR分析表明从外显子8,9和10的扩增产生多个PCR产物(图5A)。所有这些产物通过测序分析(图12)。这表明野生型外显子8剪接(产物17)的存在和对c.1254处外显子8中新的剪接供体位点的利用,其位于c.1256A>T突变的上游2个核苷酸(产物18;图5B-C)。这个供体接合到外显子9的规范剪接受体位点并且所得阅读框架是不变的(表2)。剪接预测程序确实表明,c.1254由于c.1256A>T突变而变成剪接供体位点(图14G)。外显子8的规范化剪接供体位点保持不变,并且计算机预测不清楚两个位点中哪个是优选的。产物21代表外显子10的野生型剪接,而产物22是外显子10完美跳跃的结果,其中阅读框保持完整(图5D和图12)。由c.1551+1G>T突变引起的外显子10剪接供体部位的缺失与与剪接预测相一致(图14G),但并没有预期结果,因为内含子10纳入而非外显子10跳跃似乎是最合乎逻辑的结果。低水平的漏洞野生型剪接的证据随着如下所述外显子-内部qPCR分析,侧翼外显子PCR试验通过产物的相对强度提供了关于突变的严重程度的信息。这些可以基于剪接产物的鉴定(图5B-D)和用于扩增的引物的位置(图13)而进行说明。外显子7用退火至外显子6的3'末端的正向引物和外显子8的5'端的反向引物进行外显子7的检测(图13)。在所有的情况下外显子8的5'端被保持,而3'部分在c.1256A>T等位基因中被剪去。因此外显子7的侧翼外显子PCR检测不应在该患者中受到影响,事实确实如此(图5A)。外显子8用于检测外显子8的侧翼外显子PCR的引物退火至外显子7和9(图13)。该患者中两个外显均没有受到影响,预测外显子8的所有剪接改变本身应以半定量方式检测。事实上,检测到强的野生型产物(编号17),以等位基因2为主,并且由于在等位基因1中c.1254处的新的隐藏剪接供体位点所以检测到稍弱的较小产物18。预期最多50%的产物17会从等位基因2产生,因此其相比产物18的更强丰度表明等位基因1具有漏洞野生型剪接。外显子9通过侧翼外显子PCR进行外显子9的检测所用的引物退火至外显子8的5'部分,这是在等位基因1中没有被跳过的部分,并且退火至外显子10,其在等位基因2中被完全跳过(图12)。这使得从这两个等位基因检测外显子9变的复杂:由于外显子8的部分跳跃,从等位基因1的产物会比正常缩短。从等位基因2的产物是不可能的,这是由于外显子10的精确跳跃,而此外显子为引物退火所需。得到的主要产物是更短的源自等位基因1的产物,编号20。然而,还观察到少量的野生型产物编号19。这表明两个等位基因中的至少一个允许漏洞野生型剪接。外显子10外显子10的侧翼外显子PCR分析用在均不受影响的外显子9和外显子11中退火的引物进行。因此,结果以半定量的方式反映出外显子10的剪接改变。代表野生型剪接的产物21是最丰富的,而外显子10被完全跳过的产物22丰度稍低。因为等位基因1的外显子10剪接不受影响,并可以占到野生型产物的50%,这个结果表明等位基因2也有类似等位基因1的漏洞野生型剪接。使用外显子-内部qPCR分析进行定量每个外显子的mRNA表达的定量表明,除了外显子8和10的所有外显子相比健康对照显示出约2倍的更高丰度。外显子8和10分别产生相对于其他外显子2倍低的表达水平,但仍在健康对照水平的80-120%。这表明在该患者中的异常高mRNA表达。等位基因1(1256A>T)受外显子8部分跳跃的影响,导致未能检测到qPCR产物。因此外显子8的残留检测源自等位基因2(c.1551+1G>T),预期贡献50%,并且剩余的表达很可能源自等位基因1的漏洞野生型剪接。同样的原理也适用于检测外显子10。在这种情况下,表达相对于其他的外显子接近50%,这表明c.1551+1G>T突变允许低得多的野生型剪接水平。应当指出的是,还不清楚为什么这种患者显示出相对健康对照2倍高的GAA表达,以及这种增加是否以相似程度适用于两个等位基因。该患者童年/青少年发病,但相比经典婴儿庞帕病患者显然影响较小,这与GAA残留野生型表达水平较低是一致的(表1)。总之,患者8包含了两个剪接突变。c.1256A>T是外显子8的错义突变,导致p.Asp419Val并且还在c.1254生成新的剪接供体位点,导致外显子8的部分跳跃和漏洞野生型剪接。c.1551+1G>T位于内含子10中,导致外显子10的完美跳跃和漏洞野生型剪接。庞帕病的童年/青少年发病表明两种突变是中度至严重致病。这与比成年发病患者低的GAA酶活性水平相一致。VI型粘多醣病(拉米氏症)为编码N-乙酰半乳糖胺-4-硫酸酯酶(芳基硫酸酯酶B:ARSB)的基因中的缺陷导致的常染色体隐性遗传单基因疾病。为了证明剪接试验的一般性质,将试验改用于MPSVI。为此,侧翼外显子引物被设计用于ARSB基因的全部编码外显子(外显子2-7;第一和最后一个外显子不能被侧接)。使用以下的引物序列和预期产物大小(列“野生型产物大小”):培养来自健康对照的初级成纤维细胞,收获总RNA,合成cDNA,并且通过PCR扩增外显子2-7,参见图34。产物在琼脂糖凝胶分离,并使用溴化乙锭可视化。图34显示出所有外显子在预期的大小产生主要单一条带(尺寸标记在左侧指示,数字表示bp尺寸)。接下来,从对ARSB变体c.1142+2T>C纯合的患者中生长成纤维细胞。该患者如前所述,Brands等(OrphanetJRareDis.2013Apr4;8:51)。虽然怀疑剪接缺陷,但并没有得到证实。此外,不知道可能的剪接缺陷有多严重。应用剪接试验分析该变体的性质揭示了有两个主要结果的严重剪接缺陷,如图35,左部分所示:1)相比健康对照,外显子5的扩增的产物较低:现在得到117bp的单一产物而非361bp,这与外显子5的跳跃和在mRNA中缺失244个核苷酸相一致,参见上文,所有产物相比健康对照具有较低的丰度。这与下述观点是一致的:244个核苷酸缺失导致阅读框移位,从而导致无义介导的衰变途径的激活和mRNA的降解。有趣的是,没有检测到漏洞野生型剪接。这与该患者中严重和快速的疾病进展是一致的,如Brands等所述(OrphanetJRareDis.2013Apr4;8:51)。综上,表达和剪接试验成功应用于MPSVI,其中实现对c.1142+2T>CARSB变体引起的剪接缺陷的鉴定。没有漏洞野生型剪接与是所涉及的患者的严重表型相一致。实施例21.生成SF-U7snRNA反义载体在PCR扩增中使用具有PstI和SalI突出端(粗体小写字母表示)的引物Fw-GCGCTAACAACATAGGAGCTGTG(SEQIDNO:1602)和Rv-GCGCCAGATACGCGTTTCCTAGGA(SEQIDNO:1603)从雌性小鼠基因组DNA中获取含启动子的U7snRNA基因。将整个PCR反应物装载在1%凝胶并且根据制造商说明书(英杰公司(Invitrogen))将PCR片段(425bp)克隆到Topo-II载体上。根据内部和外部引物设计,通过位点定向诱变产生SMopt和StuI位点,用Fw-(GCTCTTTTAGAATTTTTGGAGCAGGTTTTCTGACTTCG(SEQIDNO:1604)和Rv-U7snRNA-SmOPT(CGAAGTCAGAAAACCTGCTCCAAAAATTCTAAAAGAGC(SEQIDNO:1605)或Fw-(CCTGGCTCGCTACAGAGGCCTTTCCGCAAGTGTTACAGC(SEQIDNO:1606)和Rv-U7snRNA-StuI(GCTGTAACACTTGCGGAAAGGCCTCTGTAGCGAGCCAGG(SEQIDNO:1607)作为内部引物,并且用Fw-M13(GTAAAACGACGGCCAG)(SEQIDNO:1608)和Rv-M13(CAGGAAACAGCTATGAC)(SEQIDNO:1609)作为外部引物[Heckman,K.L.和L.R.Pease,《通过PCR驱动的重叠延伸进行基因剪接和诱变》(GenesplicingandmutagenesisbyPCR-drivenoverlapextension.)NatProtoc,2007.2(4):924-32页]。通过使用PstI和SalI位点并代替原来的SFFV启动子,将修饰的U7snRNA序列克隆入pRRL.PPT.SF.pre载体中[WarlichE等,“慢病毒载体的设计和成像方法来可视化细胞重新编程的早期阶段(Lentiviralvectordesignandimagingapproachestovisualizetheearlystagesofcellularreprogramming)”MolTher.2011年4月;19(4):782-9]。这是产生SF_U7snRNA载体的过程。2.SF-U7snRNA反义载体针对高通量筛选的优化最初使用的Stul位点在Warlich等的慢病毒载体中并非独特,并通过位点定向诱变用NsiI限制位点所替代,使用Fw-cctggctcgctacagatgcaTaggaggacggaggacg(SEQIDNO:1610)和Rv-cgtcctccgtcctcctAtgcatctgtagcgagccagg(SEQIDNO:1611)引物。大写字母表示突变残基。3.插入反义序列通过使用含有所需反义序列的突出正向引物gcgc-反义序列-ttggagcagg)(SEQIDNO:1612),用悬垂PCR插入新反义序列。粗体大写字母表示NsiI限制性位点。反向引物Rv_ms_U7snRNA_SalI是(GCGCgtcgacCAGATACGCGTTTCCTAGGA)(SEQIDNO:1613),其在每个构建体中相同,小写字母表示SalI限制位点。使用PfuUltraHF(安捷伦科技公司(AgilentTechnologies)).在修饰的载体(SF_U7snRNA_NSI)上进行悬垂PCR。PCR程序由下述组成:95℃下30秒起始变性步骤,35次循环的95℃10秒、60℃30秒、72℃10秒。最终的延伸步骤是在72℃下进行10分钟。含有所需的反义序列和U7snRNA的PCR反应物装载在含有0.2%溴化乙锭染色的2%琼脂糖凝胶上。然后在透照器(UVP,LLC)下观察条带,切出并用QIAquick凝胶提取试剂盒提取(QiagenGmbH公司,德国希尔登)。凝胶提取后,16μl的纯化产物使用SalI和NsiI(罗氏公司)在37℃下消化1小时并用QIAquickPCR纯化试剂盒纯化(QiagenGmbH公司,德国希尔登)。同时原始载体在37℃用SalI和NsiI消化1小时,从而得到无反义序列的载体。消化的载体上样于用溴化乙锭染色的1%琼脂糖凝胶。在透照器下观察条带,并切出对应于消化的载体的条带(6358bp),使用QIAquick凝胶提取试剂盒纯化(QiagenGmbH公司,德国希尔登)。用T4DNA连接酶和ATP(NEB公司)在室温下放置1小时,将纯化的消化的载体和消化的PCR产物连接。连接产物在大肠杆菌(TOP10)中转化并接种于含有100μg/ml氨苄青霉素(西格玛公司(Sigma))的LB琼脂平板上。隔夜培养后,每种连接产物挑取三个菌落用于小量制备培养。挑取的菌落在含有100μg/ml氨苄青霉素的2mlLB中37℃生长过夜。使用QlAprepSpinMiniprep试剂盒(QiagenGmbH,德国希尔登)进行质粒纯化。提取之后,用Nanovue分光光度计测量DNA浓度。新产生的构建体的序列使用BigDyeTerminatorv3.1(应用生物系统公司)用Sanger测序进行验证用于测序反应,并根据制造商方案用SephadexG-50(西格玛公司)纯化。序列SEQIDNO:41-97是用U7筛选鉴定的反义化合物。上述反义序列以DNA表示,因其被克隆到载体中,然而在细胞中其被转录成RNA分子。本领域技术人员知晓T是U。图22显示用于无偏内含子1和外显子2筛选的靶向GAA的反义序列的位置的示例。酶活性试验使用4-甲基伞形酮试验测量酶活性。转导12天后收获样品。裂解缓冲液由50mMTris(pH7.5),100mMNaCl,50mMNaF,1%Tx-100和一种含EDTA的片剂(tablet)蛋白酶抑制剂(罗氏公司)组成。收获前裂解缓冲液在转导的成纤维细胞上冰上孵育5分钟。样品可直接使用或用液氮快速冷冻并储存在-80℃。或者,将样品在冰上保持,进一步用于4-甲基伞形酮试验。用底物4-甲基伞形基-α-D-吡喃葡糖苷测量GAA活性,其天然具荧光。样品的蛋白质浓度使用BCA蛋白质试验试剂盒(Pierce,赛默科技公司)进行通过Lowry蛋白质方法来确定。牛血清白蛋白(BSA)标准由0,0.1,0.2,0.4,0.5,0.6,1.0,2.0mg/ml组成562nm处测得BCA蛋白质的吸光度,而对于4-甲基伞形酮试验则是激发为365nm,发射为448nm,使用Varioskan(赛默科技公司)酶标仪。GAA酶活性表示为每毫克总蛋白中每小时水解的底物的纳摩尔数。慢病毒载体产生为了产生慢病毒载体,在10厘米培养皿中生长的293T细胞90%汇流以1/8接种至10厘米培养皿。16-24小时后,共3μgU7snRNA构建体,2μgPAX2和1μgVSV用Fugene6转染试剂(Promega公司)共转染。转染后72小时收获病毒上清(9毫升),用0.45μm滤器(MillexHV,密理博(Millipore)公司)过滤并在Beckman超速离心机(贝克曼库尔特(BeckmanCoulter)公司)中以20000转,4℃进行2小时超速离心来浓缩。病毒粒料在100μl低葡萄糖DMEM(吉布可(Gibco)公司,英国佩斯利)中再悬浮,在冷冻管(赛默科技公司)中等分并储存在-80℃。超速离心浓缩后,用HIVp24抗原ELISA试剂盒(Retrotek,ZeptroMetrix公司)确定慢病毒滴度。该试验用Varioskan酶标仪(赛默科技公司)进行。细胞转导接种24小时后,培养基用含有6ng/ml硫酸鱼精蛋白(西格玛公司)的新培养基替换。细胞用相等滴度的慢病毒转导(见上)。对患者的初级纤维细胞进行转导(见上)使用含U7snRNAAON构建体的慢病毒并允许发生剪接。对成纤维细胞的筛选通过用表达单一类型U7snRNAAON的慢病毒感染含有初级成纤维细胞的单孔感染进行。感染后第5天分析RNA。用RT-qPCR分析剪接产物。感染12天后分析GAA酶活性(见上:酶活性试验)。图19显示不同AON的外显子纳入的变化。RT-qPCR的RNA表达分析,使用反义序列在GAA的内含子1和外显子2上进行筛选,使用U7小核RNA系统。数字表示根据表1的反义序列位置。对照是不添加AON载体的患者成纤维细胞。图20示出RT-qPCR的RNA分析,使用反义序列在GAA的内含子1和外显子2上进行筛选,使用U7小核RNA系统。数字表示根据表1的反义序列位置。在GAART-PCR中,观察到三种主要产物。上部产物代表外显子2纳入,较低的双体代表外显子2部分跳过(双体的上带)和外显子2的完全跳过(双体的下带)。β-肌动蛋白RT-PCR用作上样对照。图21示出在U7小核RNA系统中使用反义序列在GAA的内含子1和外显子2上进行筛选的GAA酶活性。数字表示根据表1的反义序列位置。对照是不添加AON载体的患者成纤维细胞。很显然,一些克隆显著增加外显子2的纳入,从而为具有IVS1突变的庞帕病患者提供潜在的治疗候选物。图23显示示例,表明不能预测所识别的序列,因为所识别的序列被鉴定为即是增强剂又是沉默子基序。实施例3目前,造成庞帕病最常见的突变是在c.-32-13T>G(IVS1)突变。GAA基因中的该突变位于外显子2的上游13碱基对处的内含子中,该外显子包含用于GAAmRNA翻译的起始密码子。IVS1突变导致约90%的GAA转录物中外显子2的错误剪接,因为它破坏了多聚嘧啶区,降低了外显子2的剪接受体位点的强度。为了抵消剪接位点的该强度降低,我们希望鉴定结合对GAA外显子2的剪接产生负面影响的剪接因子的序列。通过在外显子2中和周围整合随机突变,我们能够找到这些序列。为了快速筛选大量突变,我们产生含有GAA外显子1、内含子1、外显子2、内含子2、外显子3、以及部分内含子3的小基因。(图24,第1部分)。通过整合2种独特限制性位点,我们能够将小基因的外显子2周围的部分与突变序列快速替换(图24,第2部分)。PCR在次优的条件下进行以在PCR产物中整合随机突变(图24,第3部分)。这些PCR产物也包含位于外显子2周围的限制性位点,这些产物可以直接连接到目标载体。连接产物转化后,可挑取克隆并且可从克隆中分离含有随机突变的质粒(图24,第4部分)。这些克隆分别转染到HEK293细胞中,从GAA小基因产生RNA转录物,得到与对照相比的差异剪接。图第5部分显示示例,针对来自3个克隆产生的cDNA进行侧翼外显子RT-PCR和外显子内部qPCR(图24所示,第5部分)。对产生外显子2的较高纳入的质粒测序鉴定到重要序列,其以负面方式影响剪接。后续这些序列可作为用于反义治疗的潜在靶标而用于测试,或用于筛选结合到该区域的化合物。图25提供了两个克隆的结果。克隆115和克隆97表明外显子2纳入相比IVS1突变分别增加了118%和297%。克隆115包含突变c.17C>T,c.469C>T,和c.546+23C>A。它导致野生型剪接增加(带1)和完美跳跃减少(带3)。克隆97包含突变:c.-32-102T>C,c.-32-56C>T,c.11G>A,c.112G>A,和c.137C>T。该克隆也缺少c.-32-553至c.-32-122,然而,这并不影响外显子2的排出(如我们对含或不含该区域的小基因构建体的剪接之间的比较所确定)。野生型剪接(带3)显著增加,而部分(带2)和完美(带3)跳跃均减少。除了外显子1-外显子3的小基因外,我们还产生含GAA外显子5至GAA外显子8的基因组区域的小基因。利用该小基因我们可以测试影响剪接的类似IVS1突变的其他突变。图36显示无义介导衰减(NMD)途径对纳入GAAmRNA的内含子6的抑制结果。对来自健康对照(上部凝胶),具有基因型c.-32-13T>G、c.525delT的庞帕病患者(中间凝胶),具有基因型c.525delT、c.525delT的庞帕病患者(下部凝胶)的初级成纤维细胞进行环己酰胺治疗。不抑制NMD途径(标记为0小时的条带),采用RT-PCR检测到强条带,代表外显子6和外显子7的规范剪接。在紧邻规范条带上方观察到微弱条带。通过DNA测序分析确定该条带代表内含子6被排出。因为该产物改变阅读框,导致NMD途径的活化,我们推测内含子6的纳入实际上可能是逃避正确检测的频发事件。这个观点被NMD途径的抑制所证实:这导致检测到代表内含子6纳入的强条带。这表明,许多GAA前体mRNA物质在健康对照和庞帕病患者中逃避规范剪接。含上述GAA外显子5-8的小基因和U7snRNA筛选将用于鉴定序列,该序列可通过阻断外显子6/7剪接的阻遏物来防止在最终的mRNA中纳入内含子6。这代表了针对具有引起庞帕病的漏洞野生型剪接的所有剪接突变的通用治疗,因为外显子6/7的正确剪接会被增强,从而也提高漏洞野生型剪接的水平。下述突变增加RNA表达:c.17C>T,c.469C>T,和c.546+23C>A.,c.-32-102T>C,c.-32-56C>T,c.11G>A,c.112G>A,和c.137C>T。靶向存在这些突变的mRNA序列的AON可用于治疗患者。SEQIDNO:98-540是用小基因方法发现的示例性序列。上表显示SEQIDNO:98-540以及其靶向的突变或基因组序列。图26显示SEQIDNO:12(AON1)(上图)和SEQIDNO:33(AON2)(下图)的剂量-响应曲线。在一个等位基因上具有基因型c.-32-13T>G(IVS1)并在另一个等位基因上具有c.525delT的患者衍生的成纤维细胞或者不处理(“无转染”),或者与0-20μM的反义寡聚化合物孵育。应注意,c.525delT经历无义介导的衰减,这解释了为什么RNA水平的影响主要来自IVSl等位基因。3天后收获细胞用于RNA分析(A,C),并且5天后的用于蛋白质分析(B,D)。SEQIDNO:12AON1和SEQIDNO:33(AON2)都结合至GAA前体mRNA的内含子1中存在的序列,使用U7snRNA试验鉴定。这促进外显子2纳入,产生高表达的野生型GAAmRNA。这在mRNA水平(使用特异性检测野生型GAA的引物)和蛋白质水平(使用GAA酶活性的试验)测量。RNA分析:分离总RNA,合成cDNA,并进行RT-qPCR分析以检测GAA外显子2的纳入(使用外显子1特异正向引物和外显子2特异反向引物)。蛋白质分析:使用4-MU试验测量GAA酶活性。活性标准化为BCA试验所测的总蛋白。反义寡聚化合物治疗:本文所用反义寡聚化合物是基因工具所获的吗啉代化合物。根据厂商说明书使用endoporter(基因工具)将反义寡聚化合物转染入细胞。下面的实验类似于患者成纤维细胞系1(图26),用于证明反义寡聚化合物在另一个患者的独立细胞系2中也工作。在这种情况下,基因型为一个等位基因上的IVS1和另一个等位基因上的错义变体(c.923A>C)。应注意,c.923A>C等位基因不经历无义介导的衰减,并且mRNA水平代表两个等位基因的混合,使得对IVS1等位基因的效果相比患者1而言不那么显著。图27显示SEQIDNO:12(AON1)(上图)和SEQIDNO:33(AON2)(下图)的剂量-响应曲线。图28显示反义寡聚化合物SEQIDNO:12(AON1)和SEQIDNO:33(AON2)促进外显子2纳入的特异性。SEQIDNO:35(对照AON2)和SEQIDNO:36(对照AON3)靶向GAA的内含子1中的另一区域,但是在促进外显子2纳入方面是无效的。靶向CypAmRNA的无关AON(对照AON1;SEQIDNO:34)并不影响GAA外显子2纳入。SEQIDNO:12(AON1)和SEQIDNO:33(AON2)有效促进GAA外显子2的纳入,如RT-qPCR分析(A)和伴随的GAA酶活性测定(B)所示。这表明,只有在U7snRNA试验中的鉴定的内含子剪接沉默(ISS)序列被靶向时(如用SEQIDNO:12(AON1)和SEQIDNO:33(AON2)),GAA外显子2的纳入才得到促进。*CypAcDNA序列是参考序列登录号NM_021130.4**GAAcDNA序列是参考序列登录号NM_000152.3图32显示SEQIDNO33(AON2)对患者成纤维细胞系1的影响的时程。在加入反义寡聚化合物后3-7天,测定细胞的GAA活性。在整个实验过程中反义寡聚化合物在培养基中连续存在。该图表明对GAA活性的影响于3天后开始并在加入AON后5天到达最大值。参考文献1.Boycott,K.M.,等,下一代测序中的罕见疾病遗传学:发现翻译(Rare-diseasegeneticsintheeraofnext-generationsequencing:discoverytotranslation).NatRevGenet,2013.14(10):p.681-91.2.Havens,M.A.,D.M.Duelli,和M.L.Hastings,靶向RNA剪接用于疾病治疗(TargetingRNAsplicingfordiseasetherapy).WileyInterdiscipRevRNA,2013.4(3):p.247-66.3.Desmet,F.O.,等,人类剪接搜索器:预测剪接信号的在线生物信息学工具(HumanSplicingFinder:anonlinebioinformaticstooltopredictsplicingsignals.)NucleicAcidsRes,2009.37(9):p.e67.4.Yeo,G.和C.B.Burge,短序列基序的最大熵模型与RNA剪接信号的应用(MaximumentropymodelingofshortsequencemotifswithapplicationstoRNAsplicingsignals.)JComputBiol,2004.11(2-3):p.377-94.5.Reese,M.G.,等,在基因中改善剪接位点检测(ImprovedsplicesitedetectioninGenie).JComputBiol,1997.4(3):p.311-23.6.Pertea,M.,X.Lin,和S.L.GeneSplicer:用于剪接位点预测的新计算方法(Salzberg,GeneSplicer:anewcomputationalmethodforsplicesiteprediction).NucleicAcidsRes,2001.29(5):p.1185-90.7.Palacios,I.M.,无义介导的mRNA衰减:从机械见解到对人类健康的影响(Nonsense-mediatedmRNAdecay:frommechanisticinsightstoimpactsonhumanhealth).BriefFunctGenomics,2013.12(1):p.25-36.8.vanderPloeg,A.T.和A.J.Reuser,庞帕病(Pompe'sdisease).Lancet,2008.372(9646):p.1342-53.9.Umapathysivam,K.,J.J.Hopwood,和P.J.Meikle,在皮肤成纤维细胞中酸性α-葡萄糖苷酶和糖原含量与庞帕病发病年龄的相关性(Correlationofacidalpha-glucosidaseandglycogencontentinskinfibroblastswithageofonsetinPompedisease.)ClinChimActa,2005.361(1-2):p.191-8.10.VandenHout,H.,等,在庞帕病患者中从兔牛奶重组人α-葡糖苷酶(Recombinanthumanalpha-glucosidasefromrabbitmilkinPompepatients).Lancet,2000.356(9227):p.397-8.11.Kishnani,P.,等,在婴幼儿庞帕病(IPD)用重组人酸性α-葡萄糖苷酶(rhGAA)的酶替代疗法:2期研究结果(Enzymereplacementtherapywithrecombinanthumanacidalphaglucosidase(rhGAA)ininfantilePompedisease(IPD):ResultsfromaPhase2study).PediatricResearch,2003.53(4):p.259a-259a.12.Kishnani,P.S.,等,重组人酸性α-葡萄糖苷酶-在婴儿发病的庞帕病中的主要临床益处(Recombinanthumanacidalpha-glucosidase-Majorclinicalbenefitsininfantile-onsetPompedisease).Neurology,2007.68(2):p.99-109.13.Gungor,D.,等,酶替代疗法对庞帕病成人的生存的影响:前瞻性国际观察研究的结果(ImpactofenzymereplacementtherapyonsurvivalinadultswithPompedisease:resultsfromaprospectiveinternationalobservationalstudy).OrphanetJournalofRareDiseases,2013.8.14.denDunnen,J.T.和S.E.Antonarakis,突变命名扩展和描述复杂突变的建议:讨论(Mutationnomenclatureextensionsandsuggestionstodescribecomplexmutations:Adiscussion).HumanMutation,2000.15(1):p.7-12.15.Butterworth,J.和D.M.Droadhead,使用4-甲基伞形基-α-D-吡喃葡糖苷作为底物在培养的皮肤成纤维细胞和初级羊水细胞中诊断庞帕病(DiagnosisofPompe'sdiseaseinculturedskinfibroblastsandprimaryamnioticfluidcellsusing4-methylumbelliferyl-alpha-D-glucopyranosideassubstrate).ClinChimActa,1977.78(2):p.335-42.16.Pickrell,J.K.,等,噪音剪接驱动人类细胞中的mRNA同种型的多样性(NoisysplicingdrivesmRNAisoformdiversityinhumancells).PLoSGenet,2010.6(12):p.e1001236.17.Huie,M.L.,等,成年发病的II型糖原贮积症(GSDII)的异常剪接:在大多数患者中的IVS1(-13T-->G)突变和新型IVS10突变(+1GT-->CT)突变的分子鉴定(AberrantsplicinginadultonsetglycogenstoragediseasetypeII(GSDII):molecularidentificationofanIVS1(-13T-->G)mutationinamajorityofpatientsandanovelIVS10(+1GT-->CT)mutation).HumMolGenet,1994.3(12):p.2231-6.18.Boerkoel,C.F.,等,在酸性麦芽糖酶基因中的漏洞剪接突变与II型糖原贮积的延迟发作相关联(LeakysplicingmutationintheacidmaltasegeneisassociatedwithdelayedonsetofglycogenosistypeII.)AmJHumGenet,1995.56(4):p.887-97.19.Pittis,M.G.,等,患有庞帕病的意大利婴儿中8种新颖GAA突变的分子与功能表征(MolecularandfunctionalcharacterizationofeightnovelGAAmutationsinItalianinfantswithPompedisease).HumMutat,2008.29(6):p.E27-36.20.Dardis,A.,等,GAA基因的常见c.-32-13T>G突变的功能表征:鉴定潜在治疗剂(Functionalcharacterizationofthecommonc.-32-13T>GmutationofGAAgene:identificationofpotentialtherapeuticagents).NucleicAcidsRes,2014.42(2):p.1291-302.21.Hermans,M.M.,等,单碱基对缺失(deltaT525)和C1634T错义突变pro545leu)对糖原贮积症II型患者中溶酶体α糖苷表达的影响(Theeffectofasinglebasepairdeletion(deltaT525)andaC1634Tmissensemutation(pro545leu)ontheexpressionoflysosomalalpha-glucosidaseinpatientswithglycogenstoragediseasetypeII).HumMolGenet,1994.3(12):p.2213-8.22.Hermans,M.M.,等,溶酶体α-糖苷酶基因(GAA)中22个新的突变强调糖原贮积症II型中基因型-表型的相关性(Twenty-twonovelmutationsinthelysosomalalpha-glucosidasegene(GAA)underscorethegenotype-phenotypecorrelationinglycogenstoragediseasetypeII).HumMutat,2004.23(1):p.47-56.23.Orlikowski,D.,等,在由于庞帕病而严重呼吸衰竭的成年患者中重组人酸性α-葡糖苷酶(rhGAA)(Recombinanthumanacidalpha-glucosidase(rhGAA)inadultpatientswithsevererespiratoryfailureduetoPompedisease).NeuromusculDisord,2011.21(7):p.477-82.24.Stroppiano,M.,等,作为婴儿发病的糖原贮积症II型(GSDII)病因的催化位点的异常剪接:新型IVS9(+2GT-->GC)的分子鉴定与罕见IVS10(+1GT-->CT)的组合(AberrantsplicingatcatalyticsiteascauseofinfantileonsetglycogenstoragediseasetypeII(GSDII):molecularidentificationofanovelIVS9(+2GT-->GC)incombinationwithrareIVS10(+1GT-->CT)).AmJMedGenet,2001.101(1):p.55-8.25.Muller-Felber,W.,等,迟发性庞帕病:38个患者的临床和神经生理学谱,其中18个经长期随访(LateonsetPompedisease:clinicalandneurophysiologicalspectrumof38patientsincludinglong-termfollow-upin18patients).NeuromusculDisord,2007.17(9-10):p.698-706.26.Kroos,M.,等,用60个新颖GAA序列变体更新庞帕病突变数据库和34个之前报道的变体的功能性效果的进一步研究(Updateofthepompediseasemutationdatabasewith60novelGAAsequencevariantsandadditionalstudiesonthefunctionaleffectof34previouslyreportedvariants).HumMutat,2012.33(8):p.1161-5.27.Kroos,M.,等,7例来自希腊的庞帕病(SevencasesofPompediseasefromGreece).JInheritMetabDis,2006.29(4):p.556-63.28.Barbosa-Morais,N.L.,等,脊椎动物中可变剪接的进化景观(Theevolutionarylandscapeofalternativesplicinginvertebratespecies).Science,2012.338(6114):p.1587-93.29.Wang,G.S.和T.A.Cooper,疾病中的剪接:破坏剪接编码和解码器件(Splicingindisease:disruptionofthesplicingcodeandthedecodingmachinery).NatRevGenet,2007.8(10):p.749-61.30.Kwan,T.,等,人类转录物同种型变异的全基因组分析(Genome-wideanalysisoftranscriptisoformvariationinhumans).NatGenet,2008.40(2):p.225-31.31.Castle,J.C.,等,24,426个人可变剪接事件的表达和在48个组织和细胞系中预测的顺式调控(Expressionof24,426humanalternativesplicingeventsandpredictedcisregulationin48tissuesandcelllines).NatGenet,2008.40(12):p.1416-25.32.Wang,E.T.,等,人体组织转录组中的可变同种型调控(Alternativeisoformregulationinhumantissuetranscriptomes).Nature,2008.456(7221):p.470-6.33.Lappalainen,T.,等,转录组和基因组测序揭示人类的功能变异(Transcriptomeandgenomesequencinguncoversfunctionalvariationinhumans).Nature,2013.501(7468):p.506-11.34.Lalonde,E.,等,RNA测序揭示剪接多态性在调控人基因表达中的作用(RNAsequencingrevealstheroleofsplicingpolymorphismsinregulatinghumangeneexpression).GenomeRes,2011.21(4):p.545-54.35.Wokke,J.H.,等,成年发病的酸性麦芽糖酶缺乏症中基因型-表型的相关性(Genotype-phenotypecorrelationinadult-onsetacidmaltasedeficiency).AnnNeurol,1995.38(3):p.450-4.36.Kishnani,P.S.,等,交叉反应的免疫物质状况影响庞帕病婴儿的治疗效果(Cross-reactiveimmunologicmaterialstatusaffectstreatmentoutcomesinPompediseaseinfants).MolGenetMetab,2010.99(1):p.26-33.37.Lim,K.H.,等,使用位置分布来鉴定剪接元件和预测人类基因中的前体mRNA加工缺陷(Usingpositionaldistributiontoidentifysplicingelementsandpredictpre-mRNAprocessingdefectsinhumangenes).ProcNatlAcadSciUSA,2011.108(27):p.11093-8.38.Fan,L.,等,Sudemycins,FR901464的新型小分子类似物,诱导可变基因剪接(Sudemycins,novelsmallmoleculeanaloguesofFR901464,inducealternativegenesplicing).ACSChemBiol,2011.6(6):p.582-9.39.Webb,T.R.,A.S.Joyner,和P.M.Potter,SF3b的小分子调控剂作为癌症治疗药物的开发和应用(ThedevelopmentandapplicationofsmallmoleculemodulatorsofSF3bastherapeuticagentsforcancer).DrugDiscovToday,2013.18(1-2):p.43-9.40.Warlich,E.,等,慢病毒载体的设计和成像方法来可视化细胞重新编程的早期阶段(Lentiviralvectordesignandimagingapproachestovisualizetheearlystagesofcellularreprogramming).MolTher,2011.19(4):p.782-9.当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1