一种钯镁铝类水滑石催化Suzuki交叉偶联反应的方法与流程

文档序号:11930111阅读:863来源:国知局
一种钯镁铝类水滑石催化Suzuki交叉偶联反应的方法与流程

本发明属于有机合成新技术领域,具体涉及一种钯镁铝类水滑石催化Suzuki交叉偶联反应的方法。



背景技术:

联苯衍生物是一类重要的精细化工中间体,已被广泛用于药物、染料、有机导体、半导体和液晶材料等领域((a)Hassan,J.;Sevignon,M.;Gozzi,C.;Schulz,E.;Lemaire,M.Chem.Rev.2002,102,1359-1470.)。钯催化的各种卤代芳烃与芳基硼酸的Suzuki交叉偶联反应是合成该类化合物的重要方法之一((a)Suzuki,A.J.Organomet.Chem.2002,653,83-90.(b)Littke,A.F.;Fu,G.C.Angew.Chem.Int.Ed.2002,41,4176-4211.(c)Suzuki,A.J.Organomet.Chem.1999,576,147-168.)。在Suzuki交叉偶联反应中,通常采用均相催化剂来提高催化效率和反应选择性。然而,均相催化剂难以回收再利用,导致贵金属钯大量流失。催化剂的分离困难,残留的钯必然会对产物造成污染。因此,设计合成活性高、选择性好、易于回收的负载型催化剂用于催化Suzuki交叉偶联反应具有重要意义。

为此,近年来人们开发了各种载体来制备新型钯催化剂,主要包括:活性碳、金属氧化物、硅铝酸盐微孔分子筛、二氧化硅材料、活性粘土以及聚合物等((a)Seki,M.Synthesis2006,2975-2992.(b)Kitamura,Y.;Sako,S.;Tsutsui,A.;Monguchi,Y.;Maegawa,T.;Kitade Y.;Sajiki,H.Adv.Synth.Catal.2010,352,718-730.(c)Hu,M.G.;An,Z.W.;Du,W.S.;Li,J.;Gao,A.A.Chin.J.Chem.2007,25,1183-1186.(d)Liu,S.Y.;Li,H.Y.;Shi,M.M.;Jiang,H.;Hu,X.L.;Li,W.Q.;Fu,L.;Chen,H.Z.Macromolecules 2012,45,9004-9009.(e)Shylesh,S.;Schünemann,V.;Thiel,W.R.Angew.Chem.Int.Ed.2010,49,3428-3459.(f)Grirrane,A.;Garcia,H.;Corma,A.J.Catal.2013,302,49-57.)。研究表明,这些负载型钯催化剂不仅具有较高的催化活性和选择性,而且可以回收重复利用,较好地克服了均相催化剂的不足。

然而,目前这类负载型钯催化剂依然存在合成步骤复杂、催化反应条件苛刻、循环利用效率不高、污染产物和环境等缺点,限制了其应用范围。因此,需要开发制备工艺简单、循环利用效率高的负载型钯催化剂用于Suzuki交叉偶联反应。

水滑石(Layered Double Hydroxides,简称LDHs)是一类具有典型层状结构的复合金属氢氧化物,因其独特的结构和性能而成为一类极具研究潜力和应用前景的新型材料,在离子交换、吸附、医药、功能材料,尤其在超分子组装和催化领域得到了广泛的应用((a)Wang,Q.;O'Hare,D.Chem.Rev.2012,112,4124-4155.(b)He,S.;An,Z.;Wei,M.;Evans,D.G.;Duan,X. Chem.Commun.2013,49,5912-5920.(c)Xu,Z.P.;Zhang,J.;Adebajo,M.O.;Zhang,H.;Zhou,C.H.Appl.Clay Sci.2011,53,139-150.(d)Fan,G.L.;Li,F.;Evans,D.G.;Duan,X.Chem.Soc.Rev.2014,43,7040-7066.(e)Li,C.M.;Wei,M.;Evans,D.G.;Duan,X.small 2014,10,4469-4486.)。基于水滑石的模板效应及其中空结构特点来制备负载型催化剂,可有效分散催化位点,提高催化效率。但目前以水滑石为载体的钯催化剂用于Suzuki交叉偶联反应的研究并不多,而且是通过简单吸附、浸渍等方法制备,使钯在载体上的稳定性差,导致钯对末端产品和环境的污染。因此,需要继续发展新的技术改善钯在载体上的稳定性,在保证催化活性的同时,能有效降低钯的流失,解决其对产品和环境的污染问题。



技术实现要素:

本发明旨在针对上述技术分析中存在的问题,发展了一种利用钯镁铝类水滑石催化Suzuki交叉偶联反应的新方法。该方法采用双滴共沉淀技术将Pd(II)直接键合在水滑石的板层上,制备了PdMgAl-LDH类水滑石催化剂,在绿色反应条件下,高效催化Suzuki交叉偶联反应。与现有技术比较,该方法可有效降低Pd在反应过程中的流失,减少Pd对末端产品和环境的污染。特别是PdMgAl-LDH类水滑石催化剂制备、再生简单,可循环利用,经济高效,环境友好。

本发明采用如下技术方案:

本发明提供了一种钯镁铝类水滑石催化Suzuki交叉偶联反应的方法,其特点是:以卤代芳烃和芳基硼酸为原料,以PdMgAl-LDH类水滑石为催化剂,在相转移催化剂、碱、添加剂和溶剂存在的条件下反应生成联苯类化合物,所述催化剂的特点是:钯直接键合在水滑石的板层上,分布均匀、稳定性好。优选的,采用双滴共沉淀技术制备结构完整的所述PdMgAl-LDH类水滑石催化剂。所述卤代芳烃包括碘代、溴代和氯代芳烃。

其反应式如下:

其中Ar和Ar’为苯基,甲基、甲氧基、乙酰基、硝基取代苯基或吡啶、嘧啶等芳香杂环基;X为I、Br、Cl等。

采用双滴共沉淀技术制备不同钯含量的所述PdMgAl-LDH类水滑石催化剂,该催化剂结晶良好。优选的,所述双滴共沉淀方法的具体步骤如下:将金属硝酸盐混合溶液(A)和碱溶液(B)同时滴加到反应器中,维持反应体系中的pH为9.3~9.8(优选9.5),滴加完毕,将所得反应体系在95~105℃(优选100℃)陈化10~15h,过滤、洗涤、干燥后得到PdMgAl-LDH类水滑石。

优选的,所述干燥后进一步研磨过筛得到PdMgAl-LDH类水滑石催化剂。

优选的,所述金属硝酸盐混合溶液(A)是Pd(NO3)2、Mg(NO3)2和Al(NO3)3的混合溶液,其中,所述金属硝酸盐混合溶液中的二价金属离子(M2+)和三价金属离子(M3+)的摩尔比为3:1;所述碱溶液(B)为NaOH、Na2CO3组成的混合溶液。

按照此方法,合成的钯镁铝类水滑石催化剂PdMgAl-LDH,其中Pd(II)直接键合在水滑石的板层上;优选的,从催化效果来看,Pd在催化剂总重量中占0.10%~4.00%,进一步优选的,Pd在催化剂总重量中占为0.50%~3.00%(w/w)。

优选的,所述反应采用的碱为碳酸钾。

优选的,所述相转移催化剂为季铵盐;进一步优选的季铵盐为十六烷基三甲基溴化铵(CTAB)。

优选的,所述溶剂为水、乙醇、甲苯中的一种或两种的组合,进一步优选的溶剂为水。

优选的,所述添加剂为抗坏血酸钠,其中,抗坏血酸钠将水滑石板层上的Pd2+原位还原为Pd0,高效催化Suzuki交叉偶联反应。

进一步优选的,当氯代芳烃与芳基硼酸偶联反应时,需加入添加剂乙二胺四乙酸二钠(Na2H2EDTA)。

优选的,所述催化剂的用量(以Pd2+计)为卤代芳烃的0.20mol%~1.00mol%。其他反应原料的用量可以根据常规Suzuki反应以及实际情况进行确定和调整。

优选的,从该反应合成化合物的效率来看,所述反应温度为室温至80℃。

优选的,从该反应合成化合物的效率来看,所述反应时间为1~48h。

优选的,催化剂至少可以套用7次,活性基本保持不变。

优选的,PdMgAl-LDH催化剂失活后,可经简单的酸碱处理使其再生,其结构形态与催化活性保持不变。

本发明所制备的PdMgAl-LDH催化剂,其催化Suzuki交叉偶联反应的活性采用以下程序进行评价:

取一定量的PdMgAl-LDH催化剂,以3.0mL水为溶剂,2.00mmol碳酸钾为碱,0.10mmol CTAB为相转移催化剂,0.01mmol抗坏血酸钠为添加剂,加入1.00mmol卤代芳烃和1.10mmol芳基硼酸,在N2氛下于80℃催化反应。薄层层析跟踪,反应结束后分离目标产物。

本发明还提供一种钯镁铝类水滑石作为催化剂在催化Suzuki交叉偶联反应中的应用,其特点是:所述钯镁铝类水滑石采用上述双滴共沉淀的方法制备得到。

本发明提供的PdMgAl-LDH催化剂在催化Suzuki交叉偶联反应中的应用,摒弃了传统 水滑石负载钯催化剂的制备方法(即首先制备水滑石,然后再将钯通过简单吸附或浸渍等方法负载到水滑石上),采用双滴共沉淀技术将钯直接键合在水滑石的板层上,不仅钯的分布均匀、稳定性好,而且简化了催化剂的制备步骤。本发明提供的PdMgAl-LDH催化剂与传统水滑石负载钯催化剂在结构上具有很大不同,应用在Suzuki交叉偶联反应中,既保证了催化活性,又有效降低了Pd的流失、减少了其对末端产品和环境的污染。

本发明还提供一种催化剂再生的方法,其特点是:包含将失活的催化剂经过酸碱处理再生的步骤。优选的,催化剂再生方法的具体步骤如下:将失活的PdMgAl-LDH催化剂先用乙醇洗涤清除有机残留物,再用硝酸溶液硝解得到金属硝酸盐混合溶液,然后和碱溶液同时滴加到反应器中,维持反应体系中的pH为9.3~9.8,滴加完毕,将所得反应体系在95~105℃陈化10~15h,过滤、洗涤、干燥、研磨后得再生PdMgAl-LDH类水滑石催化剂。该催化剂的再生方法操作简单,再生的催化剂结构形态与催化活性保持不变。

优选的,采用热乙醇洗涤清除有机残留物。

优选的,所述硝酸溶液的质量分数为20%。

本发明的有益效果是:

本发明采用双滴共沉淀技术制备PdMgAl-LDH类水滑石催化剂,最显著的特点是将Pd(II)直接键合至水滑石的板层上,有效提高了钯在水滑石中的稳定性,实现了绿色高效催化Suzuki交叉偶联反应,不仅减少了钯在反应中的流失,而且降低了钯对末端产品和环境的污染。该类催化剂制备工艺简单,可重复使用,操作简便,生产效率高。特别是催化剂失活后,可经简单的酸碱处理使其再生,催化活性保持不变,大大提高了贵金属钯的利用效率。

附图说明

图1是催化剂PdMgAlLDH-1(a),PdMgAl-LDH-2(b)和PdMgAl-LDH-3(c)的XRD谱图。

图2是PdMgAl-LDH-1(a),PdMgAl-LDH-2(b)和PdMgAl-LDH-3(c)的TEM谱图。

图3是水滑石催化剂PdMgAl-LDH-1的EDX谱图。

具体实施方式

下面结合具体实施例,进一步阐述本发明,本发明的实施例仅用于说明本发明的技术方案,而不用于限定本发明的范围。

实施例1

催化剂PdMgAl-LDH-1(0.50%Pd,w/w)的制备:

称取Mg(NO3)2·6H2O(4.590g,17.90mmol)、A1(NO3)3·9H2O(2.251g,6.00mmol)、Pd(NO3)2·6H2O(0.027g,0.10mmol)、HNO3(0.10mol/L,1mL)溶于12.0mL去离子水中, 配成混合盐溶液(A);NaOH(1.540g,38.50mmol)、Na2CO3(1.272g,12.00mmol)溶于12.0mL去离子水中,配置碱溶液(B)。将(A)和(B)两种溶液同时慢慢滴加到盛有9.0mL去离子水的三口圆底烧瓶中,剧烈搅拌,控制滴加速度,保持pH=9.5。滴加结束,在100℃水浴中陈化13h,过滤,固体水洗至中性,110℃干燥24h,得到灰色固体2.012g,研细、过筛备用。

实施例2

催化剂PdMgAl-LDH-2(2.58%Pd,w/w)的制备:

称取Mg(NO3)2·6H2O(4.487g,17.50mmol)、A1(NO3)3·9H2O(2.251g,6.00mmol)、Pd(NO3)2·6H2O(0.133g,0.50mmol)、HNO3(0.10mol/L,1.0mL)配置盐溶液(A);NaOH(1.540g,38.50mmol)、Na2CO3(1.272g,12.00mmol)配置碱溶液(B),后续步骤同实施例1,得到灰色粉末2.012g。

实施例3

催化剂PdMgAl-LDH-1再生制备PdMgAl-LDH-3:

首先把套用10次反应(参见实施例4)后失活的催化剂PdMgAl-LDH-1(2.000g,0.46%Pd,w/w)用热乙醇洗涤清除有机残留物,然后将催化剂用11.0mL 20%的硝酸硝解,得到澄清溶液(A);NaOH(3.200g,80.00mmol),Na2CO3(1.272g,12.00mmol)配置碱溶液(B)。后续步骤同实施例1,得PdMgAl-LDH-3催化剂1.966g,灰色粉末,其中含0.44%Pd(w/w)。

从PdMgAl-LDH的XRD谱图(图1)可以看出,2θ=11.6、23.2、34.8、60.5和62.0°附近均呈现出水滑石的特征衍射峰,与LDHs标准谱(JCPDS 51-1525)比较,XRD各个衍射峰强度大,峰形尖锐,对称性好,表明制备和再生的催化剂结晶度较好;没有其他杂质峰存在,说明催化剂纯度高。

从表1的晶胞参数a、c可以看出随着Pd含量的增加,晶胞参数a增加,表明层板上金属离子之间的距离加大,原子的排列密度降低。原因是Pd2+的离子半径较大,进入层板结构,撑大了层板上八面体,使层板发生扭曲所致。从PdMgAl-LDH的TEM谱图(图2)可以看出,板层上插入少量Pd后,水滑石仍呈不规则的扁平圆片状,直径约为50~150nm。PdMgAl-LDH的EDX谱图(图3)表明Pd已经引入水滑石板层。

表1 PdMgAl-LDH催化剂的结构参数

a a=2d110.b c=3d003.

实施例4

碘苯与苯硼酸反应制备联苯及催化剂的套用:

在装有磁子的两口圆底烧瓶中,加入催化剂PdMgAl-LDH-1(43mg,0.20mol%Pd)、抗坏血酸钠(2mg,0.01mmol)、碳酸钾(256mg,2.00mmol)、CTAB(36mg,0.10mmol)、苯硼酸(134mg,1.00mmol),N2气置换后,依次加入碘苯(0.11mL,1.00mmol)、水(3.0mL)。N2气氛下缓慢升温至80℃,TLC跟踪反应。反应2h结束后,用砂芯漏斗滤出催化剂,用乙酸乙酯洗涤催化剂,合并有机相并用饱和食盐水洗至中性,无水MgSO4干燥,减压蒸除溶剂,剩余物柱层析分离(乙酸乙酯/石油醚=1:20,Rf=0.6),得白色固体144mg,产率93%,m.p.:69-70℃.IR(neat,cm-1max:1569,1470,723,688.1H NMR(300MHz,CDCl3,TMS):δ7.61(d,J=6.90Hz,4H,ArH),7.46(t,J=7.35Hz,4H,ArH),7.36(t,J=7.35Hz,2H,ArH).13C NMR(75MHz,CDCl3,TMS):δ141.30,128.80,127.30,127.22.HR-MS(APCI):m/z[M+H]+:calcd for C12H11:155.0861,found:155.0866.

将催化剂PdMgAl-LDH-1按上述步骤重复套用7次,产率分别为94%、93%、93%、92%、90%、89%和88%,活性基本保持不变。

实施例5

溴苯与苯硼酸反应制备联苯:

制备方法同实施例4,改用溴苯(0.10mL,1.00mmol)代替碘苯。反应12h结束后,柱层析分离(乙酸乙酯/石油醚=1:20,Rf=0.6),得白色固体139mg,产率90%。表征数据同实施例4。

实施例6

氯苯与苯硼酸反应制备联苯:

在装有磁子的两口圆底烧瓶中,加入催化剂PdMgAl-LDH-2(41mg,1.00mol%Pd)、抗坏血酸钠(2mg,0.01mmol)、碳酸钾(256mg,2.00mmol)、CTAB(36mg,0.10mmol)、Na2H2EDTA(34mg,0.10mmol)、苯硼酸(134mg,1.00mmol),N2气置换后,依次加入氯苯(0.11mL,1.00mmol)、水(3mL)。N2气氛下缓慢升温至80℃,TLC跟踪反应。反应48h结束后,用砂芯漏斗滤出催化剂,用乙酸乙酯洗涤催化剂,合并有机相并用饱和食盐水洗至中性,无水MgSO4干燥,减压蒸除溶剂,剩余物柱层析分离(乙酸乙酯/石油醚=1:20,Rf=0.6),得白色固体127mg,产率82%。表征数据同实施例4。

实施例7

溴苯与苯硼酸反应制备联苯评价再生催化剂PdMgAl-LDH-3的活性:

制备方法同实施例4,改用溴苯(0.10mL,1.00mmol)作底物,改用PdMgAl-LDH-3(48mg,0.20mol%Pd)作催化剂。反应12h结束后,柱层析分离(乙酸乙酯/石油醚=1:20,Rf=0.6),得白色固体138mg,产率89%。表征数据同实施例4。

本实施例证明再生的催化剂PdMgAl-LDH-3的催化活性保持不变。

实施例8

4-硝基溴苯与苯硼酸反应制备4-硝基联苯:

制备方法同实施例4,改用4-硝基溴苯(202mg,1.00mmol)作底物。反应8h结束后,柱层析分离(乙酸乙酯/石油醚=1:15,Rf=0.5),得淡黄色固体192mg,产率96%,m.p.:114-116℃.IR(neat,cm-1max:1591,1506,1396,847,733,691.1H NMR(300MHz,DMSO-d6,TMS):δ8.30(d,J=9.00Hz,2H,ArH),7.96(d,J=8.70Hz,2H,ArH),7.80-7.77(m,2H,ArH),7.56-7.45(m,3H,ArH).13C NMR(75MHz,DMSO-d6,TMS):δ147.15,147.09,138.29,129.68,129.50,128.30,127.71,124.52.HR-MS(ESI):m/z[M+H]+:calcd for C12H10NO2:200.0712,found:200.0717.

实施例9

4-硝基氯苯与苯硼酸反应制备4-硝基联苯:

制备方法同实施例6,改用4-硝基氯苯(158mg,1.00mmol)作底物。反应32h结束后,柱层析分离(乙酸乙酯/石油醚=1:15,Rf=0.5),得淡黄色固体171mg,产率86%,表征数据同实施例8。

实施例10

4-溴苯乙酮与苯硼酸反应制备4-苯基苯乙酮:

制备方法同实施例4,改用4-溴苯乙酮(199mg,1.00mmol)作底物。反应8h结束后,柱层析分离(乙酸乙酯/石油醚=1:15,Rf=0.5),得白色固体182mg,产率93%,m.p.:120-122℃.IR(cm-1max:2919,1672,1592,1477,835,759,683.1H NMR(300MHz,CDCl3,TMS):δ8.06(d,J=8.40Hz,2H,ArH),7.71(d,J=8.10Hz,2H,ArH),7.65(d,2H,J=6.90Hz,2H,ArH),7.40-7.52(m,3H,ArH),2.66(s,3H,-CH3).13C NMR(75MHz,CDCl3,TMS):δ197.75,145.81,139.90,135.89,128.97,128.93,128.25,127.29,127.24,26.67.HR-MS(ESI):m/z[M+H]+:calcd for C14H13O:197.0966,found:197.0961.

实施例11

4-氯苯乙酮与苯硼酸反应制备4-苯基苯乙酮:

制备方法同实施例6,改用4-氯苯乙酮(155mg,1.00mmol)作底物。反应36h结束 后,柱层析分离(乙酸乙酯/石油醚=1:10,Rf=0.5),得白色固体165mg,产率84%,表征数据同实施例10。

实施例12

4-溴甲苯与苯硼酸反应制备4-甲基联苯:

制备方法同实施例4,改用4-溴甲苯(0.15mL,1.00mmol)作底物。反应15h结束后,柱层析分离(乙酸乙酯/石油醚=1:20,Rf=0.5),得白色固体154mg,产率91%,m.p.:46-48℃.IR(cm-1max:2912,1600,1478,821,749,685.1H NMR(300MHz,CDCl3,TMS):δ7.63(d,J=7.20Hz,2H,ArH),7.54(d,J=8.10Hz,2H,ArH),7.47(t,J=7.50Hz,2H,ArH),7.36(t,J=7.35Hz,1H,ArH),7.30(d,J=8.10Hz,2H,ArH),2.44(s,3H,-CH3).13C NMR(75MHz,CDCl3,TMS):δ141.24,138.43,137.06,129.54,128.77,127.23,127.04,21.16.HR-MS(APCI):m/z[M+H]+:calcd for C13H13:169.1017,found:169.1013.

实施例13

4-甲氧基溴苯与苯硼酸反应制备4-甲氧基联苯:

制备方法同实施例4,改用4-甲氧基溴苯(0.13mL,1.00mmol)作底物。反应8h结束后,柱层析分离(乙酸乙酯/石油醚=1:12,Rf=0.5),得白色固体171mg,产率93%,m.p.:86-87℃.IR(neat,cm-1)νmax:2961,1600,1518,831,755,683.1H NMR(300MHz,CDCl3,TMS):δ7.60-7.55(m,4H,ArH),7.45(t,J=7.50Hz,2H,ArH),7.33(t,J=7.20Hz,1H,ArH),7.02(d,J=8.70Hz,2H,ArH),3.88(s,3H,-CH3).13C NMR(75MHz,CDCl3,TMS):δ159.19,140.86,133.81,128.72,128.16,126.74,126.66,114.24,55.34.HR-MS(APCI):m/z[M+H]+:calcd for C13H13O:185.0966,found:185.0969.

实施例14

5-溴嘧啶与苯硼酸反应制备5-苯基嘧啶:

制备方法同实施例4,改用5-溴嘧啶(158mg,1.00mmol)作底物。反应10h结束后,柱层析分离(乙酸乙酯/石油醚=2:3,Rf=0.5),得淡黄色固体148mg,产率95%,m.p.:50-52℃.IR(cm-1max:1577,1497,1408,760,693.1H NMR(300MHz,CDCl3,TMS):δ9.22(s,1H,PyrimH),8.97(s,2H,PyrimH),7.45-7.61(m,5H,ArH).13C NMR(75MHz,CDCl3,TMS):δ157.49,154.91,134.36,134.29,129.44,129.02,127.00.HR-MS(APCI):m/z[M+H]+:calcd for C10H9N2:157.0766,found:157.0762.

实施例15

4-溴吡啶与苯硼酸反应制备4-苯基吡啶:

制备方法同实施例4,改用4-溴吡啶盐酸盐(194mg,1.00mmol)作底物。反应10h 结束后,柱层析分离(乙酸乙酯/石油醚=1:1,Rf=0.5),得淡黄色固体144mg,产率93%,m.p.:77-78℃.IR(cm-1max:1581,1474,755,678.1H NMR(300MHz,DMSO-d6,TMS):δ8.64(d,J=6.00Hz,2H,PyH),7.80(d,J=6.00Hz,2H,PyH),7.69-7.71(m,2H,PyH),7.45-7.56(m,3H,ArH).13C NMR(75MHz,DMSO-d6,TMS):δ150.68,147.45,137.63,129.67,129.64,127.24,121.66.HR-MS(ESI):m/z[M+H]+:calcd for C11H10N:156.0813,found:156.0809。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1