一类含8‑羟基喹啉衍生物合Cu(II)的聚合金属配合物染料敏化剂及其制备方法与流程

文档序号:11931905阅读:368来源:国知局
一类含8‑羟基喹啉衍生物合Cu(II)的聚合金属配合物染料敏化剂及其制备方法与流程

本发明涉及一类以8-羟基喹啉衍生物合Cu(II)为辅助电子受体A′的D-A′-π-A型聚合金属配合物染料敏化剂及其制备方法与应用,属于新材料中光电材料领域。



背景技术:

染料敏化太阳能电池是Grätzel和O’Regan在1991年研究发明的。其光伏原理如下:在光照下,吸附在电池FTO玻璃极板上薄膜TiO2颗粒表面的染料敏化剂分子吸收光,由基态变为激发态,由于染料激发态与TiO2 导带的能级差,激发态电子注入TiO2 导带,电子通过敏化的TiO2薄膜转移到FTO玻璃电极后,电子通过外电路传输到电池的对(正)电极,然后再通过电池内的氧化还原电解质转移到染料敏化剂分子的激发态,使其回到基态,而氧化还原电解质所失去的电子由注入对电极的电子所补充,从而形成整个光生电子的循环回路。

染料敏化剂是染料敏化太阳能电池中最关键的组成部分,它起着吸收太阳光产生电子并通过与TiO2的紧密结合而有效传递电子等核心作用。已有研究表明,金属配合物与聚合金属配合物将是最有发展潜力的染料,其结构有D-A型、D-π-A型和D-A’-π-A型等。给体(D)与受体(A)相结合的构型,即D-A型,为比较早期研究的染料敏化剂构型,随着对敏化剂不断的深入研究,发现在D与A之间引入一个π桥能够有利于电子在D与A间的转移,并得到更好的光谱吸收。最近几年,提出了一类新型高效稳定的D-A′-π-A型染料敏化剂,这是在D-π-A型染料敏化剂基础上,增加一个辅助电子受体A′,以增强光吸收、降低电荷复合和加强电子传递,可以提高电池的光电转化效率和光伏性能。现主研究以苯并噻二唑等有机物作辅助电子受体A′,但因受其吸电子能力、与给体D的配合平衡性及其稳定性影响,效果还不很理想。8-羟基喹啉同时具有N、O强配位原子,能与很多金属进行配位,并且能形成强的配位键,金属与其形成的金属配合物将是很好的吸电子体,同时设计合成上易于将其与引达省并二噻吩(IDT)和咔唑衍生物等给体材料形成具有更大的共轭π结构的聚合金属配合物,利于分子内的电子传输,有助于提高染料光电转化效率和使用寿命。因此,本发明研究开发一类以8-羟基喹啉衍生物合Cu(II)配合物为辅助电子受体A′的D-A′-π-A型聚合金属配合物作染料敏化太阳能电池的染料敏化剂。



技术实现要素:

本发明的目的在于提供一类以8-羟基喹啉衍生物合Cu(II)的配合物作辅助电子受体的D-A′-π-A型聚合金属配合物染料敏化剂PIDT-QCu和PCZ-QCu及其制备方法。通过Yamamoto聚合反应将8-羟基喹啉衍生物合Cu(II)配合物与引达省并二噻吩(IDT)衍生物或咔唑衍生物给体聚合,形成D-A′-π-A结构的聚合金属配合物功能染料,应用于染料敏化太阳能电池。

本发明的技术方案是:一类含8-羟基喹啉衍生物合Cu(II)的聚合金属配合物。其特征在于,该化合物是以8-羟基喹啉衍生物合Cu(II)配合物作辅助电子受体A′,具有D-A′-π-A型的分子结构,其通式如下:

一类含8-羟基喹啉衍生物合Cu(II)的聚合金属配合物的制备方法:

(1).2, 5-二溴-3-[2-(8-羟基喹啉)-乙烯基]噻吩的制备:在三颈烧瓶中,加入摩尔比为1:1的5-甲酰基-8-对甲苯磺酰氧基喹啉和和2,5-二溴-3-溴甲基三苯基磷噻吩,无水乙醇作为溶剂,搅拌,在氮气保护下加入无水乙醇钠,油浴加热到60-85 ℃反应10~16 小时,反应完成后加入无水K2CO3继续回流反应10~16小时,冷却到室温减压旋转蒸发去溶剂,分别用冰冷的去离子水和无水甲醇洗涤固体粗产物,最后真空干燥得到金黄色固体2, 5-二溴-3-[2-(8-羟基喹啉)-乙烯基]噻吩;

(2).金属配合物QCu的制备:将摩尔比为1:1的2,5-二溴-3-[2-(8-羟基喹啉)-乙烯基]噻吩和2-氰基-3-(8-羟基喹啉-5-基)丙烯酸配体溶解在甲醇中,加热回流,并当开始回流时,按与配体摩尔比为1:1.05的比例将二水乙酸铜甲醇溶液滴入三颈烧瓶反应器中,回流8~36小时后反应停止,过滤并用甲醇和乙醇溶液洗涤,干燥得到金属配合物QCu;

(3).3,6-二溴-N-辛基咔唑的制备:在三颈烧瓶中分别取N-辛基咔唑、NBS(摩尔比为1 : 2.3)用三氯甲烷溶解,并且在氮气保护条件下将温度升高到30-60 ℃反应4~12 小时。等到反应结束之后,待反应体系温度冷至室温后,向其中倒入150 ml蒸馏水,再用二氯甲烷萃取三次,用无水MgSO4将得到的有机相干燥过夜。然后过滤,滤液则通过旋转蒸发仪减压旋掉溶剂之后,得到浅黄色固体,粗产物经过过柱纯化(SiO2,石油醚/乙酸乙酯,80/1,v/v),最后获得了淡黄色的针状固体产物3,6-二溴-N-辛基咔唑;

(4).聚合金属配合物PIDT-QCu和PCZ-QCu的制备:将4,4,9,9-四(4-己基苯基)-2,7-引达省并二噻吩或3,6-二溴-N-辛基咔唑,分别与金属配合物QCu以1:1的摩尔比加入到三颈反应瓶中,然后依次加入双(三苯基膦)二氯化镍、锌粉、三苯基磷以及2,2’-联吡啶,并加入N,N-二甲基甲酰胺溶液,在氮气条件下,反应体系保持70-95℃,反应36~60小时,反应终止后冷却至室温,过滤,用乙醇沉淀,将其过滤,并用乙醇溶液充分洗涤,真空条件下干燥得到两种聚合金属配合物PIDT-QCu和PCZ-QCu。

一类含8-羟基喹啉衍生物合Cu(II)的聚合金属配合物的用途,在染料敏化太阳能电池中用作染料敏化剂。

发明的主要优势在于:一类含8-羟基喹啉衍生物合Cu(II)的聚合金属配合物,以8-羟基喹啉衍生物合Cu(II)配合物作辅助电子受体,并且将有机金属配合物聚合化,以扩大配合物分子的共轭π体系,提高其吸光性能和载流子传输能力,因而提高其作为染料敏化剂的光伏性能;研究用铜等普通副族金属替换贵金属钌合成聚合金属配合物染料敏化剂,将大大降低敏化太阳能电池成本和原资源限制。

附图说明

图1 本发明实施例合成的2, 5-二溴-3-[2-(8-羟基喹啉)-乙烯基]噻吩的核磁共振氢谱(1HNMR)(400MHz,CDCl3,TMS)。

图2 本发明实施例合成的3,6-二溴-N-辛基咔唑的核磁共振氢谱(1HNMR)(400MHz,CDCl3,TMS)。

图3本发明实施例合成的化合物QCu、PCZ-QCu、PIDT-QCu的红外光谱(IR)(KBr晶体压片,4000~450 cm-1)。

图4 本发明实施所合成的聚合金属配合物PCZ-QCu、PIDT-QCu的热重分析(TGA)曲线。

图5 本发明实施所合成的聚合金属配合物QCu、PCZ-QCu、PIDT-QCu的紫外-可见光吸收光谱(UV-vis)。

图6 本发明实施所合成的聚合金属配合物PCZ-QCu、PIDT-QCu染料敏化太阳能电池的电流密度-电压(J-V)曲线。

图7本发明实施所合成的聚合金属配合物PCZ-QCu、PIDT-QCu染料敏化太阳能电池的外量子效率(IPCE)曲线。

具体实施方式

本发明的化合物的反应机理为:

下面结合具体实施例对本发明做进一步的说明。

实施例1:

一种含8-羟基喹啉衍生物合Cu(II)的聚合金属配合物PCZ-QCu。

一种以咔唑衍生物作为给体(D),8-羟基喹啉衍生物合Cu(II)配合物为辅助电子受体A′,聚合度n为11的的聚合金属配合物PCZ-QCu,其分子结构式为:

上述聚合金属配合物PCZ-QCu的制备方法:

A:2, 5-二溴-3-[2-(8-羟基喹啉)-乙烯基]噻吩的制备:在称取5-甲酰基-8-对甲苯磺酰氧基喹啉(3.15 g, 10 mmol)和2,5-二溴-3-溴甲基三苯基磷噻吩(5.97 g, 10 mmol),将其分别加入到250 ml的三口圆底烧瓶中,然后倒入100 ml的无水乙醇(CH3CH2OH),搅拌使其溶解,再在N2保护下,冰浴下通过恒压滴液漏斗缓慢向其中滴加乙醇钠溶液(Na: 0.80 g,30 ml无水乙醇),滴加完后反应体系在室温反应12 h,再向反应体系中加入无水K2CO3(13.80 g, 100 mmol),回流反应12 h,冷却到室温后减压旋掉溶剂,分别用冰冷的去离子水和无水甲醇洗涤固体粗产物,最后真空干燥得到金黄色固体2.47 g,产率为61%,熔点为167-169 ℃;1H-NMR (CDCl3, ppm): 8.82 (s, 1H), 8.48-8.51 (d, 1H), 7.77-7.79 (d, 1H), 7.52 (d, 1H), 7.44-7.50 (q, 1H), 7.30 (s, 1H), 7.21-7.23 (d, 1H), 6.96-6.99 (d, 1H). 13C-NMR (CDCl3, ppm): 158.52, 148.75, 148.11, 138.34, 132.88, 131.39, 131.14, 129.67, 128.90, 127.87, 126.78, 122.67, 116.62, 112.74, 108.61. FT-IR (KBr, cm-1): 3356 (O-H), 3092 (=C-H), 1599 (C=C), 1526 (C=N), 1494 (C-H), 793 (C-S). Anal. Calcd. for [C15H9SONBr2]: C, 43.80; H, 2.19; N, 3.41; S, 7.78. Found: C, 43.14; H, 2.46; N, 3.27; S, 8.01.(核磁共振氢谱表征如图1所示);

B:金属配合物QCu的制备:分别称取2,5-二溴-3-[2-(8-羟基喹啉)-乙烯基]噻吩(1.68 g, 4 mmol)和2-氰基-3-(8-羟基喹啉-5-基)丙烯酸(0.96 g, 4 mmol),然后将其分别加入到250 ml的三口圆底烧瓶中,再量取100ml四氢呋喃溶剂加入到反应体系中,并在不断搅拌下将称取的Cu(Ac)2·2H2O(0.875 g, 4.4 mmol)用30 ml的无水甲醇溶解后,通过恒压滴液漏斗将其缓慢滴加到反应体系中,将反应体系回流反应12 h,反应结束后将其冷却到室温并将粗产物过滤后,分别用去离子水和无水乙醇将粗产物洗涤2次,再用无水甲醇重结晶两次,最后真空干燥后得到固体(QCu)2.27 g,产率为78% ;FT-IR (KBr, cm-1): 3440 (-OH), 2220 (C≡N), 1682 (C=O), 1630 (C=C), 1565 (C=N), 1135 (C=N-Cu), 508 (N-Cu). Anal. Calcd. for [C28H15Br2SN3O4Cu]: C,47.18; H, 2.12; N, 5.89; S, 4.50. Found: C, 47.02; H, 2.28; N, 5.51; S, 4.36%;(红外光谱表征如图3所示);

C:3,6-二溴-N-辛基咔唑的制备:依次将N-辛基咔唑(4.18 g,15 mmol),NBS(6.23 g,35 mmol),三氯甲烷(60 ml)加入到250 ml的三口烧瓶之中,并且在氮气保护条件下将温度升高到40 ℃反应8 h。等到反应结束之后,待反应体系温度冷至室温后,向其中倒入150 ml蒸馏水,再用二氯甲烷萃取三次,用无水MgSO4将得到的有机相干燥过夜。然后过滤,滤液则通过旋转蒸发仪减压旋掉溶剂之后,得到浅黄色固体,粗产物经过过柱纯化(SiO2,石油醚/乙酸乙酯,80/1,v/v),最后获得了淡黄色的针状固体产物5.56 g,产率为85%;1H-NMR (CDCl3, δ, ppm): 8.14 (s, 2H), 7.56 (d, 2H), 7.28 (d, 2H), 4.23 (t, 2H), 1.81-1.84 (m, 2H), 1.23-1.31 (m, 10H), 0.86 (t, 3H);(核磁共振氢谱表征如图2所示);

D:聚合物PCZ-QCu是根据yamamoto偶联反应而合成的。将Cu(II)配合物QCu(0.285 g,0.4 mmol),双(三苯基膦)二氯化镍(0.26 g,0.4 mmol),单体咔唑衍生物(0.175 g,0.4 mmol),锌粉(0.13 g,2 mmol),三苯基磷(0.21 g,0.8 mmol)以及2,2’-联吡啶(0.006 g,0.38 mmol)依次加入50 ml三口烧瓶中,并加入15 ml N,N-二甲基甲酰胺溶液。然后抽真空通入氮气保护,并把温度升高到90 ℃之后,继续反应48 h。等反应完成以后,且反应体系温度冷却到了室温,再将其倒进大量无水乙醇溶液里,然后静置一段时间后,将其过滤,并用乙醇溶液充分洗涤,最后得到的产物是黄褐色PCZ-QCu固体0.186 g,产率55%;FTIR (KBr, cm-1): 3429 (-OH), 2978 (C-H), 2209 (C≡N), 1670 (C=O), 1618 (C=C), 1552 (C=N), 1118(C=N-Cu), 502(N-Cu). Anal. Calcd. for [C48H40N4O4SCu]: C, 69.25; H, 4.84; N, 6.73; S, 3.85%. Found: C, 69.37; H, 4.73; N, 6.76; S, 3.91%.;(红外光谱表征如图3所示)。

实施例2

一种含8-羟基喹啉衍生物合Cu(II)的聚合金属配合物PIDT-QCu。

一种以引达省并二噻吩衍生物(IDT)作为给体D,8-羟基喹啉衍生物合Cu(II)配合物为辅助电子受体A′,聚合度n为7的的聚合金属配合物PIDT-QCu,其分子结构式为:

上述聚合金属配合物PIDT-QCu的合成:

A:与实施例1中步骤A的合成方法一致;

B:与实施例1中步骤B的合成方法一致;

C:与实施例1中的步骤D类似,只是将其中的咔唑衍生物(0.175 g,0.4 mmol)换为引达省并二噻吩(IDT)衍生物(0.426 g,0.4 mmol),得到固体一种含8-羟基喹啉衍生物合Cu(II)的聚合金属配合物PIDT-QCu 0.30 g,产率为51%;FTIR (KBr, cm-1): 3421 (-OH), 2921, 2851 (C-H), 2207 (C≡N), 1650 (C=O), 1591 (C=C), 1540 (C=N), 1093 (C=N-Cu), 499 (N-Cu). Anal. Calcd. for [C92H87N3O4S3Cu]: C,75.95; H, 6.17; N, 2.83; S, 6.47. Found: C, 75.73; H, 5.96; N, 3.12; S, 6.63%;(红外光谱表征如图3所示)。

实施例3:

分别测定聚合金属配合物染料PCZ-QCu和PIDT-QCu的热失重曲线(TGA)。方法:Q50热重分析仪,N2保护下以25℃/min的升温速度进行测试,测试结果如图4。

实施例4:

以Computer-programmed Keithley 2611 SourceMeter通过电脑控制测量,Solar simulator (Oriel, 91160-1000 91192, Perccell Technologies) 为光源(500-W Xe,AM 1.5 G),电池活性电极有效面积为0.25cm2,分别测定以聚合金属配合物PCZ-QCu和PIDT-QCu为染料敏化剂的染料敏化太阳能电池的性能参数和光电转换效率,其电池电流密度-电压(J-V)曲线如图6,电池外量子效率(IPCE)曲线如图7。表一是它们的光伏性能和光电转换效率测试结果。

表一 聚合物染料敏化剂的光伏性能参数

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1